CONFORMATIONALLY RESTRICTED P₁-P₁' TRANSITION STATE ANALOGUES. SYNTHESIS OF 1(R), 3(R) [1(S), 2(S)] and 1(S), 3(S) [1(S), 2(S)] 3-[3-CYCLOHEXYL-2-[(BOC)AMINO]-1-HYDROXYPROPYL]-2,2-DIMETHYLCYCLOPROPANE CARBOXYLIC ACIDS

Michael J. Melnick, Sharon N. Bisaha and Ronald B. Gammill*

The Research Laboratories The Upjohn Company, Kalamazoo, MI 49001

Abstract: A concise synthesis and determination of absolute stereochemistry of two novel diastereomeric cyclopropyl containing transition state mimics is described.

A major advance in the development of renin inhibitors was the replacement of the scissile bond (P₁-P₁') with "transition state mimics" such as statine¹ (1) and Leu[CH(OH)CH₂]Val^{2a,b} (2, LVA). This strategy replaced the P₁-P₁'dipeptide with a nonhydrolysable analogue which contained a β -hydroxyl group thought to mimic a proposed transition state (3) in the enzyme- substrate complex.³ The improved potency and associated specificity of peptides containing transition state analogues (TSA's) has resulted in intense interest in this area.of research with the hope of discovering smaller, more potent peptides with improved bioavailability.⁴

Interest in our laboratory has focused on the evaluation of novel TSA's which represent conformationally restricted P₁-P₁' mimics.⁵ It is well recognized that the conformational properties of peptides are intrinsically related to their biological activities. The conformational properties of a peptide should relate to its receptor affinity and selectivity, biological transduction (ground state to excited state) and dissociation from the receptor. Through the incorporation of small carbocycles in the transition state insert (see 4) torsional angles within P₁-P₁' can be expected to influence conformation in both isolated segments, as well as the entire peptide backbone.

Molecular modeling studies established the suitability of the diastereomeric cyclopropyl amino acids 5 and 6 as synthetic targets useful as probes for both local (P_1 - P_1 ') and backbone perturbations on the system.⁶

In this letter we report the synthesis and establish the absolute stereochemistry of two novel diastereomeric transition state analogues containing a cyclopropane ring system.

Our approach to the TSA's 5 and 6 involved the cyclopropanation of an amino acid derived olefin (9) with the carbene derived from t-butyl diazoacetate.^{7,8} Olefin 9 (45,55) is readily available from (L)- phenyl alaninol in several steps via aldehyde 7 (see Scheme) 2b Addition of 7 to 2methylpropyl magnesium bromide (THF/-55°C) gave 89 as an inseparable mixture (5/1) of diastereomeric amino alcohols in which the threo isomer (shown) predominated. While attempts to add the diazoester directly to 8 or silv protected derivatives thereof failed, successful cyclopropanation was realized with an acetonide derivative. Treatment of 8 with 2methoxypropene (PPTS/CH₂Cl₂) afforded 9 in 50% yield from 7. With 9 in hand we began to investigate cyclopropanation conditions which would allow us to use excess diazo ester rather than excess olefin (the more expensive reactant), as is normally the case.¹⁰ After extensive experimentation with various catalyst and reaction conditions, we found that cyclopropanation of 9 could readily be achieved with an excess of t-butyl diazoacetate (5 eq) in the presence of catalytic CuSO₄ (1 mole %/neat/90°C). That reaction afforded 10 as a mixture of facial diastereomers in 44% yield.11 Treatment of that mixture with acid (0.2 eq. TSA/CH₃OH) smoothly removed the acetonide protecting group to then afford a separable mixture (1/1; silica gel chromatography) of BOC amino alcohols 11 (MP 94-7°C) and 12 (MP 103-5°C).12

The absolute stereochemistry of 11 and 12 was then assigned by individual chemical degradation to the know 1,2-cyclopropane dicarboxylic acids (see Scheme). Cyclopropyl ester 11 or 12 was treated with TFA (neat/O°C/RT) to afford the amino acid salt 13 or 14. Aminols 13 and 14 were oxidatively cleaved¹³ with cat. KMnO₄/NalO₄ to give the desired diacids 15 or 16 whose absolute configuration has been established.¹⁴ It was then possible to assign the absolute stereochemistry of 11 and 12 based on optical rotations.¹⁵ Thus 11 was assigned the 1(R), 3(R) configuration about the cyclopropane ring and 12 was assigned the 1(S), 3(S) configuration. This facile method of stereochemical assignment should expedite subsequent stereochemical assignments in our evaluation of conformationally restricted TSA's.

To complete the synthesis, both 11 and 12 were first treated with TFA (neat/O°C/RT; which removed both the t-butyl ester and BOC group), then in a second step BOC anhydride (dioxane/H₂O[1:1]/RT) to yield the new protected TSA's 17 (MP 78-82°C) and 18 (MP 118-122°C).

We have devised a concise synthesis of two diastereomeric cyclopropyl containing amino acids for evaluation as transition state mimics. The absolute stereochemistry of these two compounds was established via a novel and efficient degradative procedure. The biological results reflective of the conformational restraints of peptides containing **17** and **18** are in preparation.

SCHEME

Acknowledgement: We would like to thank our colleagues in Physical and Analytical Chemistry for characterization of compounds and also Professor Scott Denmark for helpful suggestions and disscussions.

References and Notes

- Boger, J.; Lohr, N.S.; Ulm, E.H.; Poe, M.; Blaine, E.H.; Fanelli, G.M.; Lin, T.-Y.; Payne, L.S.; 1. Schorn, T.W.; LaMont, B.I.; Vassil, T.C.; Stabilito, I.I.; Veber, D.F.; Rich, D.H.; Bopari, A.S.; Nature (London) (1983) 303, 81.
- a) Bock, M.G.; Dipardo, R.M.; Evans, B.E.; Freidinger, R.M.; Rittle, K.I.; Payne, L.S.; Boger, J.; 2. Whitter, W.L.; LaMont, B.I.; Ulm, E.H.; Blaine, E.H.; Schorn, T.W.; Veber, D.F.; J. Med. Chem. (1988) 31, 1918. Buildmayer, P.; Caselli, A.; Fuhrer, W.; Coschke, R.; Rasetti, V.; Rueger, H.; Staton, J.L.; Criscione, L.; Wood, J.M. J. Med. Chem. (1988) 31, 1839. Boger, J.; Payne, L. S.; Perlow, L. S.; Lohr, N.S.; Poe, M.; Blaine, E. H.; Ulm, E. H.; Schorn, T. W.; LaMont, B. I.; Lin, T.-Y.; Vassil, T. C.; Kawai, M.; Rich, D. H.; Veber, D. F.; J. Med. Chem. (1985) 28, 1779; b) For other examples of transition state mimics see: Kempf, D.J.; de Lara, E.; Stein, H.H.; Cohen, J.; Plattner, J.J.; J. Med. Chem. (1987) and reference therein 30, 1978; Thaisrivongs, S.; J. Med. Chem. (1987) 30, 976 and references 2 and 3 therein; Dellaria, J. F.; Maki, R. G.; Bopp, B. A.; Cohen, J.; Kleinert, H. D.; Luly, J. R.; Merits, I.; Plattner, J. J.; Stein, H. H.; J. Med. Chem. (1987) 30, 2137.
- a) Lienhard, G.E. Science (Washington, D.C.) (1973) 180, 149. B) Wolfenden, R. In Transition 3. States of Biochemical Processes; Gandour, R.D.; Schowen, R.C., Eds.; Plenum: New York, 1978; 555-78.
- Rich, D.H. In A.J. Barrett and G. Salvesen (eds.) Proteinase Inhibitors, Elsevier, Amsterdam 4. (1986) pp. 179-208. Szelke, M. In V. Kostka (ed.) <u>Aspartic Proteinases and Their Inhibitors</u>, Walter de Gruyter, Berlin (1985) pp. 421-441. Wolfenden, R. <u>Transition States of Biochemical</u> Processes; Gandour, R.D.; Schowen, R.L.; Eds.; Plenum, New York, 1978, p 555.
- For earlier examples that lack the critical 3S hydroxyl group see: Spaltenstein, A.; Carpino, P.; Miyake, F.; Hyskins, P.B.; <u>Tetrahedron Let.</u> (1986) 2095 and Johnson, R.L.; <u>J. Med. Chem.</u> (1984) 5. 27, 1351. Also see: Kempf, D.J.; de Lara, E.; Stein, H.H.; Cohen, J.; Plattner, J.J.; J. Med. Chem. (1987) 30, 1978.
- 6. Hruby, V.J.; Trends in Pharmaceutical Science (1985) 259. The advantage of the cyclohexyl group over the isopropyl has been discussed (see ref. 2, 3).
- For a recent review of cyclopropanations with diazoesters see: Maas, G.Topics in Curr. Chem. 7. (1987), 137, 75.
- For the synthesis of t-butyl diazoacetate see Org. Syntheses (1968),48, 36. 8.
- All new compounds exhibited physical and analytical characteristics (IR, UV, 1H-NMR/13C-NMR, 9. CHN analysis and/or high resolution mass determination) consistant with the assigned strucuture.
- 10. For an exception see: Doyle, M.P.; Van Leusen, D.; Tamblyn, W.H. Synthesis (1981), 781. This modification failed with our olefin.
- 11. Cyclopropanes 10 were a mixture of both facial isomers in both the threo and the ervthro series with predominently trans stereochemistry about the cyclopropane ring. 12. Any cis isomers in this mixture were lactonized under the reaction conditions, allowing their
- easy separation by flash chromatography along with the erythro isomers.
 13. Von Rudloff, E. <u>Can. J. Chem.</u> (1965), 43, 1784.
 14. Crombie, L.; Doherty, C.F.; Pattenden, G. <u>J. Chem. Soc. (C)</u> (1970), 1076.

- 15. Our observed [a]'s were somewhat lower than the literature values for two reasons: 1) The EE of the starting L-phenyl alaninol (commerically available) was 92%, thus the maximum value of $[\alpha]$ was 30, and 2) the cyclopropane dicarboxylic acids contained small amounts of impurities and since the direction of rotation answered our question, we did not purify to analytical purity.

(Received in USA 28 November 1989)