Organic & Biomolecular Chemistry

PAPER

Cite this: DOI: 10.1039/c5ob01148e

Diastereoselective synthesis of pitavastatin calcium via bismuth-catalyzed two-component hemiacetal/oxa-Michael addition reaction†

Fangjun Xiong, Haifeng Wang, Lingjie Yan, Lingjun Xu, Yuan Tao, Yan Wu* and Fener Chen*

An efficient and concise asymmetric synthesis of pitavastatin calcium (1) starting from commercially available (*S*)-epichlorohydrin is described. A convergent $C_1 + C_6$ route allowed for the assembly of the pitavastatin C_7 side chain *via* a Wittig reaction between phosphonium salt 2 and the enantiomerically pure C_6 -formyl side chain 3. The 1,3-*syn*-diol acetal motif in 3 was established with excellent stereo control by a diastereoselective bismuth-promoted two-component hemiacetal/oxa-Michael addition reaction of (*S*)- α , β -unsaturated ketone 4 with acetaldehyde.

Accepted 10th August 2015 DOI: 10.1039/c5ob01148e

Received 8th June 2015.

www.rsc.org/obc

Introduction

Over recent decades, the asymmetric synthesis of pitavastatin calcium (1, Fig. 1), an HMG-CoA reductase inhibitor, has aroused continuing interest.¹ As a result of its proven benefits in both primary and secondary prevention of cardiovascular events, many new synthetic strategies for the preparation of 1 continue to be developed.² However, to the best of our knowledge, none of the known synthetic approaches towards this statin appear to have a commercial advantage over the currently used process using a chiral C₆-formyl side chain with a *syn*-1,3-diol subunit developed by Sagami Chemical Research Center in 1993.³ Although this synthesis continues to provide 1 on an industrial scale, there are still two principal limitations that involve the diethylmethoxyborane-mediated diastereo-selective reduction for setting the (3*R*)-stereochemistry, and using a large excess of highly toxic cyanide.⁴ As a consequence,

Fig. 1 Structure of pitavastatin calcium (1).

enhanced efficiency in its synthesis remains a challenge. We took on the challenge and herein report our success in the development of a concise and efficient asymmetric synthesis of **1**.

Results and discussion

The highly diastereoselective bismuth-mediated two-component hemiacetal/oxa-Michael addition of chiral δ -hydroxyl- α , β -unsaturated carbonyl compounds with alkyl aldehydes has recently been reported.⁵ This reaction provides direct and convenient access to *syn*-1,3-diol acetals rich in synthetic potential, as exemplified by Evans' total synthesis of natural polyene macrolide RK-397. Applying this strategy to **1** leads to a retrosynthetic route as illustrated in Fig. 2.

The essential carbon–carbon double bond forming step would be achieved by Wittig olefination of phosphonium salt **2** with (3R,5S)-C₆-formyl derivative **3** for the assembly of the C₇side chain skeleton of **1**. (3R,5S)-Aldehyde **3** should be attainable from (S)- α , β -unsaturated ketone **4** using a diastereoselective bismuth-mediated two-component hemi-acetal/oxa-Michael addition reaction. (S)-Epichlorohydrin (**5**) was chosen as a readily available starting material for the synthesis of **4**. The desired quinoline phosphonium salt **2** could be provided *via* Friedlander condensation of 2-amino-4'-fluorobenzophenone (**7**) with cyclopropyl α , β -unsaturated ketone **6**, derived from 1-cyclopropylethanone (**8**).

The synthesis of (3R,5S)-C₆-formyl side chain **3** began with commercially available (*S*)-(–)-epichlorohydrin (5) (Scheme 1). Following our previously reported procedures,⁶ (*S*)-homoallylic alcohol **9** was prepared in 92% yield by treatment of **5** with

View Article Online

Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. E-mail: rfchen@fudan.edu.cn, wywin8@163.com †Electronic supplementary information (ESI) available. See DOI: 10.1039/ c5ob01148e

Fig. 2 Retrosynthesis of pitavastatin calcium (1).

Scheme 1 Synthesis of (S)- α , β -unsaturated ketone 4.

vinylmagnesium chloride under CuI catalysis in anhydrous THF. The carbon elongation was completed by Horner–Wadsworth–Emmons olefination of aldehyde **10**, obtained by ozonolysis of **9** under standard conditions (DCM, -40 °C, **1** h), with diethyl(2-oxopropyl)phosphonate. The (*S*)- α , β -unsaturated ketone **4** was obtained as a single *E* isomer with an overall yield of 73% from **9**.

The stereocenter at C_5 in this statin side chain was installed by the bismuth-mediated two-component hemiacetal/oxa-Michael addition⁵ of **4** and acetaldehyde (Table 1). The diastereoselectivity of the reaction was determined by analysis of the crude product **11**. Purification by chromatography provided a 91% yield of pure **11** with a dr of >99:1 when using 10% mol Bi(NO₃)₃ as a catalyst in CH₂Cl₂ (entry 1). We then examined the effects of various solvents (EtOAc, MeCN and THF), and a dramatic decrease in the diastereoselectivity was observed in all cases (entries 2–4). Next, we investigated the

Table 1 Bismuth-catalyzed hemiacetal/oxa-Michael addition reaction of $\mathbf{4}^a$

 a All reactions were performed at r.t. on a 1 mmol scale. b Yield of isolated product. c Determined by GC analysis of the crude product.

same reaction using other bismuth salt catalysts including $BiCl_3$, BiI_3 , Bi_2SO_4 and $Bi(OTf)_3$, and observed that all these catalysts gave a moderate yield of **11** and poor diastereo-selectivity (entries 5–7), except for $Bi(OTf)_3$ (entry 8). These observations are now understood as the result of the thermo-dynamic control of this reaction as pointed out by Evans *et al.*⁵ The minor diastereoisomer **11**' can be transformed into the stable *syn*-1,3-dioxane **11** under the reaction conditions (Fig. 3).

At the outset, we tried to convert the methylketone **11** to desired chloro-acid **12** using the bromoform reaction (NaOH/ $Br_2/H_2O/dioxane$) at 0 °C. Unfortunately, only 10% of the desired product **12** was formed, along with 10% α -bromo by-product **13** and 70% decarboxylation by-product **14**. Significant effort was made to optimize the reaction conditions. It was found that the use of $Br_2/NaOMe/MeOH$ instead of $NaOH/Br_2/$

Fig. 3 Proposed mechanism for diastereoselective Michael addition between 4 and acetaldehyde.

 $H_2O/dioxane$ led to the formation of a 1 : 4 mixture of desired methyl ester 15 and its α -monobromo by-product 16. No decarboxylation by-product 14 was detected. The mixture of 15 and 16 was directly subjected to reductive debromination with zinc powder in glacial acetic acid at 35 °C to furnish the pure chiral chloro-ester 15 as a single product in 90% yield over two steps (Scheme 2).

Heating **15** with sodium benzoate at 160 °C in DMSO led to displacement of the chloro moiety with a benzoyl group and diester **17** was isolated in 80% yield. Methanolysis of **17** with sodium methoxide in methanol at room temperature worked well to afford the corresponding alcohol **18** in 87% isolated yield. This then underwent a Parikh–Doering oxidation⁷ (py-SO₃, NEt₃, DMSO, DCM, 0 °C, 3 h) to generate the (3R,5S)-C₆-formyl side chain **3** in 82% yield (Scheme 3).

Formylation of cyclopropylketone **8** in the presence of potassium *tert*-butoxide in anhydrous THF at room temperature proceeded smoothly to obtain the potassium enolate **19** in quantitative yield, which directly reacted with 2-(chlorotriphenylphosphoranyl) acetonitrile⁸ in MeOH at room temperature to afford nitrile **6** (E/Z = 7:3, HPLC) in 64% isolated yield. Under the standard Friedlander condensation conditions⁹ (MsOH, toluene, reflux, 13 h), the construction of the quinoline core was realized by the reaction of **6** with 7, affording the quinoline nitrile **20** in 87% yield. HPLC analysis of the unpurified reaction mixture indicated an E/Z ratio of 3:1 for the Friedlander condensation. Cleavage of the double bond in **19**

with ozone at -78 °C in MeOH/DCM, followed by reductive workup with NaBH₄, provided quinoline alcohol **21** in 74% yield. Chlorination¹⁰ of **21** was carried out with mesyl chloride in the presence of trimethylamine in DCM to give quinoline chloride **22** quantitatively. Subsequent treatment with PPh₃ in acetonitrile formed the corresponding phosphonium salt **2** in 95% yield (Scheme 4).

With efficient syntheses of both 2 and 3 secured, the Wittig coupling of the two building blocks was undertaken. The aldehyde 3 and phosphonium salt 2 were treated with anhydrous K_2CO_3 in DMSO at 70 °C,¹¹ and crude 23 was obtained as a mixture of E/Z > 17:1, determined by NMR spectroscopy. Chromatographic separation of the resulting E/Z olefin

Scheme 2 Synthesis of (3R,5S)-chloro-ester 15.

Scheme 4 Synthesis of phosphonium salt 2.

Scheme 5 Synthesis of pitavastatin calcium (1).

isomers provided (*E*)-**23** in 76% yield with >99% isomeric purity. Finally, pitavastatin calcium (**1**) was prepared by deprotection of **23** in the presence of TFA, basic hydrolysis with NaOH, and calcium salt formation with $CaCl_2$, in a one-pot protocol, in an 83% yield over three steps (Scheme 5).

Experimental

All reagents and solvents were obtained from commercial sources and used without further purification. ¹H (400 MHz) and ¹³C (100 MHz) NMR were recorded on a Bruker Avance 400 spectrometer using TMS or CDCl₃ as internal standards, IR spectra were recorded on a Nicolet iS5 FT-IR spectrometer, optical rotations were measured by using a JASCO P1020 digital polarimeter. EI-MS were recorded on an Agilent 6890N/5975 spectrometer and ESI-MS were recorded on a Waters Micromass Quattro Micro spectrometer. HRMS were recorded on a Bruker micrOTOF spectrometer.

(S,E)-7-Chloro-6-hydroxyhept-3-en-2-one (4)

To a solution of (*S*)-1-chloropent-4-en-2-ol (1.20 g, 10 mmol) in DCM (25 mL) was bubbled with O_3 (1 ml min⁻¹) at -40 °C for 10 min, and purged with O_2 for 1 min, then dimethylsulfide (2 mL) was added under stirring and the reaction mixture was warmed to r.t., the solvent was removed *in vacuo* and THF (10 mL) was added. This THF solution of **10** was directly used in the next step.

To a stirring solution of *t*-BuOK (1.12 g, 10 mmol) in dry THF (20 mL) was added diethyl(2-oxopropyl)phosphonate (1.94 g, 10 mmol) at 0 $^{\circ}$ C and stirred for 30 min, then the solu-

tion of 10 in THF was added dropwise within 10 min at 0 °C, stirring was continued for 1 h at r.t. The solvent was evaporated in vacuo and water (20 mL) was added, extracted with DCM (20 mL \times 3), washed with 10% aq. NaHCO₃ and sat. aq. NH₄Cl, dried over Na₂SO₄ and evaporated *in vacuo* to afford 4 (1.18 g, 73%) as a vellow oil, which could be used in the next step without further purification. Analytical sample was achieved by flash chromatography (petroleum ether/EtOAc = 5:1). $\left[\alpha\right]_{D}^{29} = -11.3$ (c 1, MeOH). FT-IR (ATR): ν 3283, 1713, 1435, 1118, 720, 693 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 6.81 (dt, J = 16, 7.2 Hz, 1H), 6.18 (d, J = 16.0 Hz, 1H), 3.99 (s, 1H), 3.63 (dd, J = 11.2, 4 Hz, 1H), 3.52 (dd, J = 11.2, 6.4 Hz, 1H), 2.65–2.34 (m, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, $CDCl_3$): δ = 198.4, 142.5, 133.8, 70.2, 49.4, 37.2, 27.1 MS (ESI): m/z = 185 $[M + Na]^+$. HRMS (ESI) calcd for $C_7H_{12}ClO_2 [M + H]^+$ 163.0520, found 163.0520.

1-((2*S*,4*R*,6*S*)-6-(Chloromethyl)-2-methyl-1,3-dioxan-4-yl)propan-2-one (11)

To a suspension of 4 (1.62 g, 10 mmol), bismuth nitrate pentahydrate (0.48 g, 1 mmol) in DCM (25 mL) was added freshly prepared acetaldehyde (2.20 g, 50 mmol) and stirred at r.t. for 48 h. The reaction mixture was filtered through a short column of silica gel and evaporated *in vacuo* to afford **11** (1.87 g, 91%) as a clear yellow oil. $[\alpha]_{D}^{26} = +6.4$ (*c* 1, MeOH). FT-IR (ATR): ν 2871, 1713, 1123, 937 693 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 4.74$ (q, J = 5.2 Hz, 1H), 4.05–4.16 (m, 1H), 3.82–3.90 (m, 1H), 3.55 (dd, J = 11.2, 6.0 Hz, 1H), 3.45 (dd, J = 11.2, 5.6 Hz, 1H), 2.79 (dd, J = 16.4, 7.2 Hz, 1H), 2.50 (dd, J = 16.4, 5.6 Hz, 1H), 2.18 (s, 3H), 1.79–1.70 (m, 1H), 1.36–1.24 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 206.2$, 98.8, 75.5, 71.9, 49.3, 46.3, 33.9, 31.1, 20.9. MS (EI): m/z = 205 [M – H]⁺. HRMS (ESI) calcd for C₉H₁₆ClO₃ [M + H]⁺ 207.0782, found 207.0772.

Methyl 1-((4*R*,6*S*)-6-(chloromethyl)-2-methyl-1,3-dioxan-4-yl)-acetate (15)

To a stirred solution of 11 (2.00 g, 10 mmol), MeONa (5.40 g, 0.1 mol) in MeOH (50 mL) was added Br_2 (5.60 g, 35 mmol) dropwise at -40 °C within 10 min, stirring was continued for 30 min and then poured into sat. aq. NaHSO₃ (50 mL), the reaction mixture was adjusted to pH 6-8 with Na₂SO₃. MeOH was removed in vacuo, extracted with EtOAc (25 mL \times 3) and evaporated in vacuo. To the residue was added zinc dust (1.3 g, 20 mmol) and glacial acetic acid (20 mL), the stirring was continued for 12 h at 35 °C, then water (20 mL) was added and extracted with DCM (20 mL \times 3), washed with sat. aq. NaHCO₃, dried with Na₂SO₄ and evaporated in vacuo to afford 15 (1.95 g, 90%) as a yellow oil. $[\alpha]_{D}^{25} = +5.6$ (c 1, CHCl₃). FT-IR (ATR): ν 3248, 2953, 1737, 1123, 1028 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 4.86-4.70 (m, 1H), 4.25-4.02 (m, 1H), 4.02-3.84 (m, 1H), 3.72 (s, 3H), 3.59 (dd, J = 11.2, 6.0 Hz, 1H), 3.49 (dd, J = 11.2, 5.6 Hz, 1H), 2.68 (dd, J = 15.6, 7.2 Hz, 1H), 2.49 (dd, J = 15.6, 6.0 Hz, 1H), 1.81 (d, J = 12.8 Hz, 1H), 1.46–1.26 (m, 4H). ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 171.0, 98.9, 75.5, 72.3, 51.8, 46.3,$

40.6, 33.8, 20.9. MS (EI): $m/z = 221 [M - H]^+$. HRMS (ESI) calcd for C₉H₁₆ClO₄ [M + H]⁺ 223.0732, found 223.0733.

((4*S*,6*R*)-6-(2-Methoxy-2-oxoethyl)-2-methyl-1,3-dioxan-4-yl)methyl benzoate (17)

A mixture of 15 (1.11 g, 5 mmol) and NaOBz (1.44 g, 10 mmol) in DMSO (10 mL) was stirred at 160 °C for 4 h under a N₂ atmosphere. The reaction mixture was cooled to r.t. and water (50 mL) was added, extracted with EtOAc/petroleum ether $(1:1, 40 \text{ mL} \times 3)$, the combined organic phase was washed with water, dried with Na₂SO₄ and purified by using a filter through a short column of silica gel to afford 17 (1.23 g, 80%) as a light brown syrup. $\left[\alpha\right]_{D}^{20} = +4.7$ (c 1, MeOH). FT-IR (ATR): ν 2950, 1716, 1270, 1111, 710 cm⁻¹. ¹H NMR (400 MHz, $CDCl_3$): $\delta = 8.06$ (d, I = 7.6 Hz, 2H), 7.56 (t, I = 7.2 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 4.79 (q, J = 5.2 Hz, 1H), 4.44-4.27 (m, 2H),4.19-4.10 (m, 1H), 4.00-4.10 (m, 1H), 3.70 (s, 3H), 2.66 (dd, J = 15.6, 7.2 Hz, 1H), 2.48 (dd, J = 15.6, 6.0 Hz, 1H), 1.69 (d, J = 12.8 Hz, 1H), 1.47 (q, J = 12 Hz, 1H), 1.35 (d, J = 5.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 171.1, 166.4, 133.1, 129.9, 129.8, 128.4, 98.8, 73.8, 72.3, 66.8, 51.8, 40.7, 32.6, 21.0. MS (EI): $m/z = 293 [M - CH_3]^+$. HRMS (ESI) calcd for $C_{16}H_{21}O_6$ $[M + H]^+$ 309.1333, found 309.1344.

Methyl 2-((4*R*,6*S*)-6-(hydroxymethyl)-2-methyl-1,3-dioxan-4-yl)-acetate (18)

A mixture of 17 (310 mg, 1 mmol) and NaOMe (10 mg, 0.2 mmol) in MeOH (5 mL) was stirred at r.t. for 1 h, and then sat. aq. NH₄Cl (1 mL) was added, the solution was washed with PE (10 mL \times 3) and the methanolic phase was evaporated in vacuo, then water (10 mL) was added and extracted with DCM (20 mL \times 3), dried (Na₂SO₄) and evaporated *in vacuo* to afford **18** (178 mg, 87%) as a colorless oil. $[\alpha]_{D}^{20} = +11.5$ (c 1, CHCl₃). FT-IR (ATR): ν 3464, 2953, 2871, 1731, 1129 cm⁻¹. ¹H NMR (400 MHz, $CDCl_3$): δ = 4.77 (q, J = 5.2 Hz, 1H), 4.15–4.07 (m, 1H), 3.84–3.77 (m, 1H), 3.69 (s, 3H), 3.65 (dd, J = 11.6, 2.8 Hz, 1H), 3.56 (dd, J = 11.6, 6.4 Hz, 1H), 2.64 (dd, J = 15.6, 7.2 Hz, 1H), 2.45 (dd, J = 15.6, 6.0 Hz, 1H), 1.72 (br, 1H), 1.56–1.50 (m, 1H), 1.41 (dd, J = 24, 11.2 Hz, 1H), 1.33 (d, J = 5.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 171.1, 105.8, 98.7, 76.3, 72.3, 65.5, 51.8, 40.7, 31.8, 21.0. MS (EI): m/z = 203 $[M - H]^+$. HRMS (ESI) calcd for C₉H₁₇O₅ $[M + H]^+$ 205.1071, found 205.1076.

Methyl 2-((4R,6S)-6-formyl-2-methyl-1,3-dioxan-4-yl)acetate (3)

A solution of Py·SO₃ (0.5 g, 3 mmol) in DMSO (2 mL) was stirred at 0 °C for 30 min, and then the solution of **18** (200 mg, 1 mmol) and Et₃N (600 mg, 6 mmol) in DCM (2 mL) was added, the reaction mixture was stirred for an additional 3 h and water (20 mL) was added, extracted with DCM (20 mL × 3), washed with brine (10 mL), dried with Na₂SO₄ and evaporated *in vacuo* to give **3** (159 mg, 82%) as a yellow syrup. This instable material should be used immediately in the next step without further purification. (EI): $m/z = 201 [M - H]^+$.

Potassium 3-cyclopropyl-3-oxoprop-1-en-1-olate (19)

To a solution of 1-cyclopropylethanone (4.2 g, 50 mmol), *t*-BuOK (5.6 g, 50 mmol) in dry THF (50 mL) was added ethyl formate (7.4 g, 0.1 mol) dropwise within 5 min, the stirring was continued for 3 h and evaporated *in vacuo* to afford **19** (7.5 g, 100%) as a yellow solid.

5-Cyclopropyl-5-oxopent-2-enenitrile (6)

A mixture of **18** (1.5 g, 10 mmol) and (cyanomethyl)triphenylphosphonium chloride (3.37 g, 10 mmol) in MeOH (20 mL) was stirred at r.t. for 24 h. The solvent was evaporated *in vacuo* and purified by silica column chromatography (petroleum ether/EtOAc = 5:1) to afford **6** (0.86 g, 64%) as an orange oil (*E*/*Z* = 7:3, HPLC). FT-IR (ATR): ν 3341, 3008, 2225, 1693, 1385, 1062 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 6.93–6.46 (m, 1H), 5.57–5.35 (m, 1H), 3.79–3.26 (m, 2H), 2.22–1.77 (m, 1H), 1.15–0.80 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 205.4, 205.4, 198.8, 147.4, 146.9, 133.1, 131.7, 116.9, 115.9, 115.7, 103.2, 102.2, 46.6, 45.1, 20.9, 20.8, 20.4, 20.3, 11.9, 11.8, 11.7. MS (EI): *m*/*z* = 135 [M]⁺. HRMS (ESI) calcd for C₈H₁₀N₁O₁ [M + H]⁺ 136.0757, found 136.0756.

3-(2-Cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl)acrylonitrile (20)

A mixture of **6** (1.60 g, 12 mmol), 2-amino-4'-fluorobenzophenone (2.14 g, 10 mmol) and methanesulfonic acid (100 μ l) in toluene (50 mL) was stirred under reflux for 13 h, the solvent was removed *in vacuo* and the residue was purified by silica column chromatography (petroleum ether/EtOAc = 5 : 1) to afford 20 (2.73 g, 87%) as a yellow crystalline solid. (*E*/*Z* = 3 : 1, HPLC). The analytic samples of *E* and *Z* isomers were achieved by preparative HPLC by using Venusil XBP-C18 column with the eluent MeOH/H₂O = 80 : 20.

E-Isomer. Almost white powder. mp 169–172 °C (lit.¹² mp 145–146 °C). FT-IR (ATR): ν 3072, 3002, 2221, 1512, 1488, 1218, 1162, 761, 738 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 1H), 7.70–7.65 (m, 1H), 7.52 (d, J = 17.0 Hz, 1H), 7.40–7.35 (m, 2H), 7.29–7.18 (m, 5H), 5.58 (d, J = 17.0 Hz, 1H), 2.40–2.17 (m, 1H), 1.49–1.38 (m, 2H), 1.14–1.08 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 161.7, 159.3, 148.1, 147.7, 146.5, 131.8, 131.7, 131.6, 131.5, 130.5, 129.2, 126.5, 126.4, 126.0, 125.7, 117.6, 116.3, 116.1, 104.1, 16.6, 10.6. MS (EI): $m/z = 313 [M - H]^+$.

Z-Isomer. Almost white powder. mp 127–129 °C. FT-IR (ATR): ν 3059, 3013, 2871, 2244, 2214, 1489, 1218, 829, 765 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.4 Hz, 1H), 7.67 (t, J = 6.9 Hz, 1H), 7.45–7.27 (m, 5H), 7.20 (t, J = 8.6 Hz, 2H), 5.63 (d, J = 11.5 Hz, 1H), 2.23–2.11 (m, 1H), 1.48–1.33 (m, 2H), 1.13–1.06 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 161.6, 159.2, 149.1, 148.1, 145.7, 132.0, 131.8, 131.7, 130.1, 129.2, 126.6, 126.1, 126.1, 125.5, 116.0, 115.8, 115.6, 104.8, 16.1, 10.9. MS (EI): m/z = 313 [M – H]⁺.

(2-Cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl)methanol (21)

To a stirred solution of 20 (314 mg, 1 mmol) in MeOH (10 mL) and DCM (10 mL) was bubbled with ozone (0.5 ml min⁻¹) at

–78 °C. The reaction was carefully monitored by TLC (*ca.* 45 min), then NaBH₄ (80 mg, 2 mmol) was added and the reaction was allowed to reach r.t. The stirring was continued for 30 min, the solvent was evaporated *in vacuo*, and the residue was purified by silica column chromatography (petroleum ether/EtOAc = 4 : 1) to afford **21** (214 mg, 73%) as a colorless crystal. mp 131–133 °C (lit.¹² mp 132–133 °C). FT-IR (ATR): ν 3419, 3065, 3008, 2899, 2738, 1577, 1510, 1494, 1223, 981, 840, 771 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, *J* = 8.4 Hz, 1H), 7.64–7.60 (m, 1H), 7.38–7.21 (m, 6H), 4.75 (s, 2H), 2.64–2.54 (m, 1H), 1.63 (br, 1H), 1.42–1.34 (m, 2H), 1.15–1.06 (m, 2H). MS (EI): *m/z* = 293 [M]⁺.

3-(Chloromethyl)-2-cyclopropyl-4-(4-fluorophenyl)quinoline (22)

To a stirred solution of **21** (300 mg, 1 mmol), Et₃N (200 mg, 2 mmol) in DCM (5 mL) was added mesyl chloride (228 mg, 2 mmol) at r.t., the stirring was continued for 2 h. Then DCM (20 mL) was added, washed with water, dried with Na₂SO₄, evaporated *in vacuo* to afford **22** (320 mg, 100%) as a yellow crystalline solid, mp 126–130 °C. FT-IR (ATR): ν 3014, 1507, 1494, 1221, 839, 762, 742 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, *J* = 8.4 Hz, 1H), 7.69–7.58 (m, 1H), 7.41–7.23 (m, 6H), 4.69 (s, 2H), 2.66–2.32 (m, 1H), 1.43–1.35 (m, 2H), 1.17–1.10 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 164.0, 161.7, 161.5, 147.5, 146.9, 131.8, 131.7, 131.3, 131.2, 129.6, 129.0, 127.2, 126.5, 126.1, 125.8, 115.8, 115.6, 41.5, 14.6, 9.8. MS (EI): *m*/*z* = 310 [M - H]⁺. HRMS (ESI) calcd for C₁₉H₁₆ClF₁N₁ [M + H]⁺ 312.0950, found 312.0946.

((2-Cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl)methyl)triphenylphosphonium chloride (2)

A mixture of 22 (311 mg, 1 mmol) and triphenylphosphine (262 mg, 1 mmol) in MeCN (10 mL) was stirred under reflux for 24 h and evaporated to dryness to afford 2 (544 mg, 95%), the crude product was used in the next step without further purification. FT-IR (ATR): ν 3014, 1507, 1494, 1221, 839, 762, 742 cm⁻¹. MS (ESI): $m/z = 538 [M - Cl]^+$. HRMS (ESI) calcd for $C_{37}H_{31}F_1N_1P [M - Cl]^+$ 538.2094, found 538.2094.

Methyl 2-((4*R*,6*S*)-6-((*E*)-2-(2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl)vinyl)-2-methyl-1,3-dioxan-4-yl)acetate (23)

A mixture of 3 (159 mg, 0.8 mmol), 2 (460 mg, 0.8 mmol), anhydrous K₂CO₃ (220 mg, 1.6 mmol) in DMSO (5 mL) was stirred at 70 °C for 2 h under a N₂ atmosphere, and cooled to r.t., water (20 mL) was added. The reaction mixture was extracted with DCM (20 × 3), dried with Na₂SO₄ and evaporated *in vacuo* to dryness. The residue was purified by silica column chromatography (petroleum ether/EtOAc = 10 : 1) to afford 23 (350 mg, 76%) as a colorless syrup. $[\alpha]_D^{20}$ = +8.6 (*c* 0.84, CHCl₃). FT-IR (ATR): ν 3361, 3059, 2974, 1510, 1489, 1432, 1220, 1108, 744, 687 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, *J* = 8.4 Hz, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.38–7.27 (m, 2H), 7.24–7.11 (m, 4H), 6.59 (d, *J* = 16.4 Hz, 1H), 5.60 (dd, *J* = 16.4, 6.0 Hz, 1H), 3.71 (s, 3H), 2.62 (dd, *J* = 15.6, 6.8 Hz, 1H), 2.40 (dd, *J* = 15.4, 6.0 Hz, 2H), 1.44–1.23 (m, 7H), 1.11 (dd, *J* = 24, 11.2 Hz, 1H), 1.04 (dd, J = 8.0, 3.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.3$, 163.6, 161.2, 160.8, 147.0, 144.5, 137.1, 133.5, 132.2, 132.1, 131.9, 131.8, 129.3, 129.0, 128.9, 126.6, 126.2, 125.5, 115.5, 115.4, 115.3, 115.3, 98.7, 76.4, 72.4, 51.9, 40.7, 36.2, 21.1, 16.1, 10.6, 10.3. MS (ESI): $m/z = 462 \text{ [M + H]}^+$. HRMS (ESI) calcd for C₂₈H₂₉F₁N₁O₄ [M + H]⁺ 462.2075, found 462.2074.

Pitavastatin calcium (1)

A mixture of 22 (230 mg, 0.5 mmol), TFA (2 mL) and water (0.2 mL) was stirred at r.t. for 1 h, the TFA was removed in vacuo, then THF (2 mL) and 1 M aq. NaOH (0.5 mL) were added and stirred at r.t. for 2 h, the organic solvent was removed in vacuo and water (2 mL) was added, 5% aq. CaCl₂ (2 mL) was added dropwise and stirring was continued for 1 h, the precipitant was collected by filtration and dried in vacuo to afford 1 (183 mg, 83%) as a white solid. mp 214 °C (dec.), $\left[\alpha\right]_{D}^{17}$ = +22.3 (c 1, MeCN/H₂O 1:1) (lit.^{2e} $[\alpha]_{D}^{20}$ = +23.1 (c 1, MeCN/ H₂O 1:1)). ¹H NMR (400 MHz, DMSO- d_6): δ = 7.84 (d, J = 8.0 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.40–7.22 (m, 6H), 6.48 (d, J = 16.0 Hz, 1H), 5.58 (dd, J = 16.0, 5.2 Hz, 1H), 4.91 (br, 1H), 4.12 (q, J = 5.6 Hz, 1H), 3.75–3.49 (m, 1H), 2.07 (dd, J = 15.2, 3.6 Hz, 1H), 1.91 (dd, I = 15.2, 8.0 Hz, 1H), 1.54–1.30 (m, 1H), 1.25–1.15 (m, 1H), 1.12–1.06 (m, 1H), 1.05–0.97 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 178.7$, 162.8, 160.6, 160.4, 146.0, 143.7, 142.2, 133.1, 132.2, 132.1, 131.9, 131.8, 129.7, 128.8, 128.4, 125.7, 125.7, 125.6, 123.2, 115.4, 115.3, 115.2, 115.1, 68.9, 65.7, 44.2, 43.9, 15.4, 10.8, 10.7.

Conclusions

In summary, we have successfully implemented a stereocontrolled preparation of the key chiral C_6 -formyl building block with a 1,3-diol pattern starting from commercially available (*S*)-epichlorohydrin using a bismuth-catalyzed two-component hemiacetal/oxa-Michael addition reaction as the key step. This process constitutes a practical and concise synthesis of pitavastatin calcium (1), and offers a general and economic synthetic route to the statin-family HMG-CoA reductase inhibitors.

Notes and references

- (a) Z. Časar, *Curr. Org. Chem.*, 2010, 14, 816–845;
 (b) J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu, *Chem. Rev.*, 2014, 114, 2432–2506.
- 2 (a) S. Takano, T. Kamikubo, T. Sugihara, M. Suzuki and K. Ogasawara, *Tetrahedron: Asymmetry*, 1993, 4, 201–204;
 (b) K. Takahashi, T. Minami, Y. Ohara and T. Hiyama, *Tetrahedron Lett.*, 1993, 34, 8263–8266;
 (c) N. Miyachi, Y. Yanagawa, H. Iwasaki, Y. Ohara and T. Hiyama, *Tetrahedron Lett.*, 1993, 34, 8267–8270;
 (d) T. Hiyama, T. Minami, Y. Yanagawa and Y. Ohara, *WO Pat.* 9511898, 1995; *Chem. Abst.*, 1995, 123, 313782;
 (e) M. Suzuki, Y. Yanagawa, H. Iwasaki, H. Kanda, K. Yanagihara,

H. Matsumoto, Y. Ohara, Y. Yazaki and R. Sakoda, *Bioorg. Med. Chem. Lett.*, 1999, 9, 2977–2982; (f) M. Acemoglu,
A. Brodbeck, A. Garcia, D. Grimier, M. Hassel, B. Riss and
R. Schreiber, *Helv. Chim. Acta*, 2007, 90, 1069–1081;
(g) J. Fabris, Z. Časar and I. G. Smilović, *Synthesis*, 2012, 1700–1710; (h) J. Fabris, Z. Časar, I. G. Smilović and
M. Črnugeljb, *Synthesis*, 2014, 2333–2346.

- 3 T. Hyama, T. Minami, S. Yanagawa and Y. Obara, *JP Pat.* 05310700, 1993; *Chem. Abstr.*, 1994, **120**, 244704.
- 4 (a) H. I. Shin, B. S. Choi, K. K. Lee, H. Choi, J. H. Chang, K. W. Lee, D. H. Nam and N. S. Kim, *Synthesis*, 2004, 2629–2632; (b) H. Choi and H. Shin, *Synlett*, 2008, 1523–1525; (c) R. Sun, F. Q. Zhang, T. J. Du, L. P. Fang and F. M. Meng, *CN Pat.* 102180862, 2011; *Chem. Abstr.*, 2011, 155, 457681.
- 5 P. A. Evans, A. Grisin and M. J. Lawler, *J. Am. Chem. Soc.*, 2012, **134**, 2856–2859.
- 6 F. J. Xiong, J. Li, X. F. Chen, W. X. Chen and F. E. Chen, *Tetrahedron: Asymmetry*, 2014, **25**, 1205–1208.

- 7 (a) N. S. Joshi, A. S. Khile, Y. B. Kajale and H. H. Kamble, WO Pat. 2008059519, 2008; Chem. Abstr., 2008, 148, 585906;
 (b) J. R. Parikh and W. v. E. Doering, J. Am. Chem. Soc., 1967, 89, 5505-5507.
- 8 R. A. Abramovitch and B. W. Cue, *J. Org. Chem.*, 1980, 45, 5316–5319.
- 9 K. Nagashima, T. Fukumoto, T. Hayashibara and M. Torihara, WO Pat. 2004041787, 2004; Chem. Abstr., 2004, 140, 423596.
- 10 Y. M. Zhang, X. D. Fan, S. M. Yang, R. H. Scannevin, S. L. Burke, K. J. Rhodes and P. F. Jackson, *Bioorg. Med. Chem. Lett.*, 2008, **18**, 405–408.
- 11 S. R. Manne, K. R. Bairy, K. R. Chepyala, K. K. Muppa, R. T. Srinivasan, E. Sajja and S. R. Maramreddy, *Orient. J. Chem.*, 2007, 23, 559–564.
- 12 M. Suzuki, H. Iwasaki, Y. Fujikawa, M. Kitahara, M. Sakashita and R. Sakoda, *Bioorg. Med. Chem.*, 2001, 9, 2727–2743.