Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Q. foucart, Y. Shimadate, J. Marrot, A. Kato, J. Desire and Y. Blériot, *Org. Biomol. Chem.*, 2019, DOI: 10.1039/C9OB01402K.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

View Article Online

View Journal

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Synthesis and glycosidase inhibition of conformationally locked DNJ and DMJ derivatives exploiting a 2-oxo-C-allyl iminosugar

Quentin Foucart,^a Yuna Shimadate,^b Jérôme Marrot,^c Atsushi Kato,^{*b} Jérôme Désiré^{*a} and Yves Blériot^{*a}

A series of analogs of the iminosugars deoxynojirimycin (DNJ) and deoxymannojirimycin (DMJ), in which an extra five or six-membered ring has been fused to the C1-C2 bond have been prepared. The synthetic strategy exploits a key 2-keto-C-allyl iminosugar, easily accessible from gluconolactam, which upon Grignard addition and RCM furnishes a bicyclic scaffold that can be further hydroxylated at the C=C bond. This strategy furnished DNJ mimics with the piperidine ring locked in a ¹C₄ conformation with all substituents in axial orientation when fused to a six-membered ring. Addition of an extra ring to DNJ and DMJ motif proved to strongly modify the glycosidase inhibition profile of the parent iminosugars leading to modest inhibitors. The 2-keto-C-allyl iminosugar scaffold was further used to access N-acetylglycosamine analogs via oxime formation.

Introduction

Published on 12 July 2019. Downloaded by Nottingham Trent University on 7/12/2019 4:36:41 PM

The biology and synthesis of the polyhydroxylated indolizidine alkaloid castanospermine¹ has been the subject of intensive research. This naturally occuring bicyclic iminosugar, in which the endocyclic oxygen atom of the parent sugar is replaced by a nitrogen atom, has indeed demonstrated significant therapeutic potential² for the treatment of a number of pathologies.³ Therefore, many synthetic analogues have been designed to improve the pharmacological properties and selectivity of the parent molecule.^{3,4} Along with chemical modifications of the hydroxyl groups of this molecule,^{5,6} branched derivatives,⁷ as well as other analogs with a modified five-membered ring,8 have been explored. As the fivemembered ring present in castanospermine plays a crucial role to lock the deoxynojirimycin (DNJ) iminosugar moiety in a precise conformation, orientating the OH group at C-6 in a pseudoaxial orientation⁹ that has been shown important for binding,¹⁰ an array of bicyclic derivatives, in which the ring size

of one of the two rings has been modified, leading respectively to polyhydroxylated quinolizidines,¹¹ perhydroazaazulenes¹² as well as conidines,¹³ has been reported (Figure 1). In continuation of our efforts dedicated to the design and biological evaluation of conformationally biased iminosugars including flexible structures^{14,15,16} and locked derivatives,¹⁷ we have investigated herein the relevance as glycosidase inhibitors of bicyclic compounds in which the ring fused to the iminosugar ring found in castanospermine has been moved from the C5-N bond to the iminosugar C1-C2 bond as in A (Figure 1). Actually, such 1,2-annulated carbohydrate motif has attracted special attention within the structurally rich class of carbon-branched carbohydrates^{18,19} but this scaffold is scarce in the iminosugar field.^{20,21} We expected that introduction of a six-membered ring fiveor 1,2-annulated to the polyhydroxylated piperidine ring would lock the iminosugar ring into a unique conformation^{22,23} while maintaining the hydroxyl pattern of the polyhydroxylated piperidine affording bicyclic analogs of unprecedented the canonical deoxynojirimycin (Figure 1). We reasoned that structures of type A could be accessed from gluconolactam 1a via a regioselective deprotection at C-2 followed by conversion into a C-allyl iminosugar with subsequent introduction of an alkene at C-2 to allow final RCM and deprotection.

Results and discussion

Synthesis

Furman has reported the synthesis of *C*-alkyl and *C*-aryl iminosugars exploiting sugar lactams²⁴ via formation of the corresponding imine, using the Schwartz's reagent,²⁵ followed by its trapping with nucleophiles. We envisioned that this sequence could be applied to a 2-hydroxy derivative that could be further modified at C-2 position en route to **A**. To this end,

^{a.} Université de Poitiers, IC2MP, UMR CNRS 7285

Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France

E-mail: jerome.desire@univ-poitiers.fr; yves.bleriot@univ-poitiers.fr

^b. Department of Hospital Pharmacy. University of Toyama.

²⁶³⁰ Sugitani, Toyama 930-0194, Japan

E-mail: kato@med.u-toyama.ac.jp

^c Institut Lavoisier de Versailles, UMR-CNRS 8180, Université de Versailles, 45 avenue des États-Unis, 78035 Versailles Cedex, France.

⁺ Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: Copies of $^{1}\text{H},~^{13}\text{C}$ NMR spectra of all new compounds and X-ray crystallography data for compound 10b. See DOI: 10.1039/x0xx00000x

the regioselective debenzylation of **1a** was achieved with BCl_3^{26} to yield the 2-hydroxy lactam **2a** in 83% yield.

View Article Online Scheme 1 : Synthesis of C-allyl iminosugar 6 from D-gluconolation C9OB01402K

Figure 1: Structures of known natural and synthetic bicyclic iminosugars and proposed new synthetic derivatives To further exemplify the generality of this deprotection that also works with the D-manno configured lactam,27 it was succesfully applied to the D-galactonolactam 1b to produce the corresponding alcohol 2b in good yield (93%). Alcohol 2a was then treated with the Schwartz's reagent followed by AllSnBu₃ and Yb(OTf)₃. Unfortunately, no C-allyl iminosugar 5 was detected and only the starting lactam was recovered, demonstrating the detrimental role of the OH at C-2 in this transformation. The 2-OH was therefore orthogonally protected as its silvl ether with TBDMSOTf to afford lactam 328 (89%) that, upon Furman's procedure, provided the α -C-allyl piperidine 4 (68%) as a single diastereomer, resulting from addition of AllSnBu₃ syn to the TBSO group of the imine B adopting a ⁴H₃ conformation, in agreement with Woerpel's model.²⁹ As manipulation of Schwartz's reagent proved tricky, we investigated a one-pot procedure,³⁰ in which the reagent was generated in situ from Cp₂ZrCl₂, that furnished compound 4 in a similar 66% yield. Removal of the TBDMS group with TBAF provided the 2-hydroxypiperidine 5 (74%) that was further N-benzylated to obtain the key intermediate 6 (74%) (Scheme 1).

Overall, the C-allyl iminosugar 6 was obtained in 27% yield from D-gluconolactam 1 over five steps. This sequence is complementary to the one recently reported to access 2hydroxy -C-allyl iminosugars.³¹ Oxidation of 6 with PDCP and DMSO furnished the ketone 7 in 91% yield. Its allylation with allyl magnesium bromide at -78°C afforded a 1:1 separable mixture of the D-manno 8a (39%) and D-gluco 8b (39%) configured 1,2-di-C-allyl piperidines. Each compound was then submitted to ring closing metathesis using Hoveyda-Grubbs catalyst in CH₂Cl₂ at 40°C and provided the corresponding bicycles 9a (89%) and 9b (87%), which upon hydrogenolysis, uneventfully and quantitatively provided the expected tetrahydroxylated cis- and trans-decahydroquinolines 10a and 10b respectively (Scheme 2). The conformation in solution of the D-gluco-like isomer 10b was studied by NMR, allowing the assignment of a ${}^{1}C_{4}$ conformation for the polyhydroxylated piperidine ring $(J_{3-4} = 2.4 \text{ Hz})$, a conformation also observed in the solid state by X-ray crystallography (Scheme 2). Interestingly, compound 10b can be seen as a DNJ analogue with all hydroxyl groups adopting a pseudo-axial orientation. Such conformation has been invoked to explain the strong glucocerebrosidase inhibition developed by imino-D-xylitols (DIX) derivatives.³² We next examined the dihydroxylation of alkenes 9a and 9b. Using a standard protocol (OsO4, NMO in wet acetone), 9a furnished the separable endo diol 11a (22%) and exo diol 11a' (39%) in reasonable yield (see SI). The same reaction applied to alkene 9b furnished the endo diol 11b (19%) along with the exo diol 11b' (35%). Separate hydrogenolysis of these four triols provided the hexahydroxylated decahydroquinolines 12a, 12a', 12b and 12b' respectively (Scheme 2). To investigate the eventual impact of the size of the additional ring on the glycosidase inhibition profile of these derivatives, the synthesis of octahydro-1*H*-Cyclopenta[*b*] pyridine polyhydroxylated analogues bearing a six-five fused rings system was examined starting from ketone 7 (Scheme 3). Vinylation of 7 with CH₂=CHMgBr produced the separable D-manno (60%) and Dgluco- configured (15%) dienes 13a and 13b respectively. Their ring closing metathesis yielded the bicyclic alkene 14a (87%) and 14b (84%) that, upon hydrogenolysis, furnished the fivesix fused analogs 15a and 15b respectively. Unlike the previous alkenes 9a and 9b, dihydroxylation of alkenes 14a and 14b failed in our hands while such reaction has been reported for related systems (Scheme 3).³³

2 | J. Name., 2012, **00**, 1-3

This journal is C The Royal Society of Chemistry 20xx

in order to introduce a pseudoanomeric CH_2OH group, yielding only **19** in 32% yield with no trace of the three of the the three of the the three of the the t

Scheme 2 : Synthesis of bicyclic iminosugars 10a, 10b, 12a, 12a', 12b, 12b' and X-ray structure of 10b

The 2-oxo-C-allyl iminosugar 7 holds an important synthetic potential and could be useful to access other types of iminosugars. Because of our interest for hexosaminidase inhibitors,^{15,16} compound 7 was converted to its crude oxime (NH₂OH, pyr.) that was directly reduced with LiAlH₄ and further acetylated with Ac₂O to provide the D-gluco 16 (8%) and the Dmanno- 17 (28%) configured 2-acetamido C-allyl iminosugars. This sequence, that does not involve nucleophilic displacement of the hydroxyl at C-2 position to introduce an acetamide, is appealing as it avoids competitive ring contraction,³¹ providing only the piperidine derivatives albeit in modest yield. In parallel, we also examined the introduction of an additional allyl group at the pseudoanomeric position in order to access a 1,1-diallyl piperidine scaffold¹² en route to bisubstrate analogs and spiro-iminosugars.³⁴ We expected the ketone at C-2 to guide the allylation at C-1. Unfortunately, when derivative 7 was treated with LiHMDS and allyl bromide at -78°C in THF, no trace of the diallyl derivative 18 was detected and only an unsaturated product 19 resulting from the elimination of the benzyloxy group at C-4 was isolated in 20%. A similar product has been reported in the C-allyl glucoside series when treated with 10% Et₃N in MeOH.³⁵ Applying these reaction conditions to 7 raised the yield of this transformation to 91%. A similar result was observed when aldol conditions³⁶ were applied to 7

Scheme 4 : Chemical exploration of 2-oxo-C-allyl iminosugar 7

Glycosidase inhibition

Finally, all the polyhydroxylated bicyclic piperidines were assayed on a panel of fifteen targeted glycosidases and proved to be modest glycosidase inhibitors. As shown in Table 1, the basic structure, 1-deoxymannojirimycin (DMJ) is a known weak inhibitor of Jack bean α -mannosidase and bovine kidney α -L-fucosidase, with IC₅₀ values of 803 and 354 μ M, respectively. In

contrast, the corresponding bicyclic iminosugar **10a** was completely inactive on all glycosidases tested even at concentrations as high as 1000 μ M demonstrating the detrimental role of the additional six-membered ring on inhibition. Cis-dihydroxylation of this ring as in **12a'** and **12a** led to molecules that weakly inhibited rice α -glucosidase, with IC₅₀ values of 564 and 967 μ M, respectively. These results clearly suggest that the presence of two hydroxyl groups in the tetrahydroquinoline ring is one of the essential features for recognition by the active site of α -glycosidase. It is noteworthy that **15a**, displaying a smaller five-membered fused ring, showed a broader inhibition spectrum including activity towards rice α -glycosidase, bovine liver β -glucosidase, coffee beans α -galactosidase and bovine liver β -galactosidase, with IC₅₀ values of 654, 298, 560, and 359 μ M, respectively.

Table 1 Concentration of iminosucars giving 50 % inhibition of various glycosidases								
Table 1. Concentration of Infine	лоцдагь giving συ ->> inimonion or various grycosidases IC _w (μΜ)							
	но Но но	но но он	но НО ОН	но но он	но но он			
enzyme	DMJ	10a	12a'	12a	15a			
α-glucosidase								
rice	* NI	N	564	967	654			
rat intestinal maltase	N	N	NI	NI	NI			
yeast	NI	N	NI	NI	NI			
6-olucosidase								
Almond	NI	N	NI	NI	NI			
bovine liver	N	N	NI	NI	298			
α-galactosidase								
coffee beans	NI	N	NI	NI	560			
R-malactosidasa								
bovine liver	NI	NI	NI	NI	359			
bowing mon					000			
a-Mannosidase								
Jack bean	803	N	NI	NI	NI			
p-Mannnosidase								
snail	N	N	NI	NI	N			
a-L-fucosidase								
bovine kidney	354	N	NI	NI	NI			
T . 1. 1								
Irenalase								
porcine kidney	N	N	NI	NI	N			
Amyloglucosidase								
A.niger	N	N	NI	NI	NI			
α-L-rhamnosidase								
Penicillium decumbens	NI	N	NI	NI	NI			
β-glucronidase								
E.coli	NI	N	477	NI	NI			
bovine liver	N	N	NI	NI	NI			
	*NI : No inhibition (less than 50% inhibition at 1000 μM).							

1-Deoxynojirimycin (DNJ) is well known as potent inhibitor toward rice and intestinal maltases (Table 2). This compound also showed porcine kidney trehalase and A. niger amyloglucosidase inhibition, with IC_{50} values of 64 and 781 µM, respectively. As for 10a, introduction of an additional sixmembered ring in 10b almost completely abolished the inhibition profile of the parent DNJ and led only to a weak inhibitor of bovine liver β -galactosidase. Dihydroxylation of the extra ring present in 10b produced 12b' and 12b that proved much weaker inhibitors against α -glucosidases compared to DNJ. However, it should be noted that 12b' and 12b showed some inhibition toward coffee beans α -galactosidase and P. decumbens α -L-rhamnosidase. As in the mannose series with 15a, the gluco-configured bicycle 15b showed a broader inhibition spectrum compared to its congeners and competitively inhibited bovine liver β-glucosidase, βgalactosidase, and E.coli β-glucuronidase. Altogether, these data clearly suggested that the size and hydroxylation pattern of the additional ring have a significant influence the glycosidase inhibition spectrum of this family leformation of this family leformation of the profile distinct from the one found for the parent monocyclic compound.

Table 2. Concentration of iminosi	agars giving 50 % inhibition	of various glycosidases	10 / 10				
	IC (µM)						
			но н.на	но н.нсі			
	но но	HO' HO OH	но он	но то он	HOTHO		
enzyme	DNJ	10b	12b'	12b	15b		
a-glucosidase							
rice	5,8	N	331	651	NI		
rat intestinal maltase	0,16	N	N	838	NI		
yeast	* NI	N	N	NI	NI		
β-glucosidase							
Almond	NI	N	NI	NI	NI		
bovine liver	NI	N	N	NI	313		
a-galactosidase							
coffee beans	NI	N	572	381	NI		
β-galactosidase							
bovine liver	NI	975	NI	NI	271		
a-Mannosidase							
Jack bean	NI	N	N	N	N		
β-Mannnosidase							
snail	NI	N	N	NI	NI		
a-L-fucosidase							
bovine kidney	NI	N	703	NI	NI		
Trehalase							
porcine kidney	64	NI	NI	NI	NI		
Amyloglucosidase							
A.niger	781	N	N	NI	NI		
a-L-rhamnosidase							
Penicillium decumbens	NI	NI	196	114	NI		
B-olucronidase							
E.coli	NI	N	217	NI	542		
bovine liver	NI	N	N	NI	NI		

Experimental

General Methods. All starting materials and reagents were purchased from commercial sources, and used as received without further purification. Air and H₂O sensitive reactions were performed in oven dried glassware under Ar atmosphere. Moisture sensitive reagents were introduced via a dry syringe. Anhydrous solvents were supplied over molecular sieves, and used as received. Petroleum ether (PE) refers to the 40-60 °C boiling fraction. Powdered molecular sieves were activated before use by heating for ~5 min under high vacuum. Reactions were monitored by thinlayer chromatography (TLC) with silica gel 60 F₂₅₄ 0.25 mm precoated aluminum foil plates, visualized by using UV₂₅₄ and/or phosphomolybdic acid stain [3 g 12MoO₃.H₃PO₄.xH₂O in 100 mL EtOH] followed by heating with a heat gun. Flash column chromatography was performed using Macherey-Nagel silica gel 60 (15-40 µm). NMR experiments were recorded with a Bruker Avance 400 spectrometer at 400 MHz for ¹H nuclei and at 100 MHz for ¹³C nuclei. The chemical shifts are expressed in part per million (ppm) relative to TMS (δ = 0 ppm) and the coupling constant J in Hertz (Hz). NMR multiplicities are reported using the following abbreviations: br = broad, s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet. HRMS were recorded on a Bruker micrOTOF spectrometer. The melting points were recorded with a SMP50 Stuart Scientific melting point apparatus. Optical rotations were measured using an Anton Paar MCP100 Polarimeter.

General procedure A for RCM. To a solution of 1,2-bis-allyl or 1allyl-2-vinyl derivative in dry CH_2Cl_2 (0.05 M) under Ar atmosphere was added Hoveyda-Grubbs catalyst 2nd generation (0.1 eq.). The reaction mixture was stirred at 50 °C for 2 h by which time TLC

Journal Name

monitoring showed the total consumption of the starting material. Lead(IV) acetate (1.5 eq. per eq. of catalyst) was added and the reaction mixture was stirred at room temperature for 3 h. The mixture was concentrated under reduced pressure and purified by flash chromatography.

General procedure B for total debenzylation. The benzylated substrate was dissolved in a 1:1 mixture of *i*-PrOH/THF (0.05 M - v/v). The mixture was flushed 4 times with Ar then a 1M solution of HCl (3 eq.), palladium black (0.5 mass eq.) and palladium on carbon (0.5 mass eq.) were added. The mixture was flushed 4 times with H₂ and stirred at room temperature under H₂ atmosphere. After 24 h, the mixture was filtered on a celite pad and the filtrate was concentrated under reduced pressure to give the fully deprotected product as its hydrochloride salt.

General procedure C for dihydroxylation. To a solution of olefin substrate in a 1:1 mixture of acetone/H₂O (0.06 M - v/v) were added citric acid (1.1 eq.), 4-methylmorpholine *N*-oxide (1.2 eq) and OsO₄ (0.2 eq.). The mixture was stirred at room temperature for 18 h when TLC showed total consumption of the starting material. Na₂S₂O₅ (1.2 eq.) was added and the mixture was stirred at room temperature for 1 h. The mixture was extracted 3 times with EtOAc and the combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude residue was purified by flash chromatography.

3,4,6-tri-O-benzyl-galactono-δ-lactam (2b). To a solution of lactam 1b (119 mg, 0.22 mmol) in dry CH₂Cl₂ (0.03 M) under Ar atmosphere was added Bu₄NBr (106 mg, 0.33 mmol, 1.5 eq.). The solution was cooled to -78 °C and a 1M solution of BCl₃ in CH₂Cl₂ (420 μ L, 0.44 mmol, 2 eq.) was added dropwise over a 30 min period. The mixture was stirred from -78 °C to 0 °C overnight when TLC analysis showed no trace of the starting material. The mixture was quenched with a saturated solution of Na₂CO₃ and the aqueous layer was extracted three times with CH2Cl2. The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude residue was purified by flash chromatography (RediSep[®] 4 g, petroleum ether/EtOAc 35:65) to give compound 2b (91 mg, 0.21 mmol, 93%) as a white waxy solid. Rf = 0.29 (PE/EtOAc 35:65); $[\alpha]_D^{20}$ = +25.3 (c 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.25 (m, 15H, CH-Ar), 6.18 (br. s, 1H, NH), 4.99 (d, J = 11.5 Hz, 1H, OCHH-Ph), 4.93 (d, J = 12,1 Hz, 1H, OCHH-Ph), 4.76 (d, J = 12.1 Hz, 1H, OCHH-Ph), 4.61-4.57 (m, 2H, OCHH-Ph, H-2), 4.47 (ABq, J = 11.7 Hz, 2H, OCH2-Ph), 3.99 (br. s, 1H, H-4), 3.75 (dd, J = 9.9 Hz, J = 1.8 Hz, 1H, H-3), 3.59-3.53 (m, 2H, H-6a, H-5), 3.43-3.40 (m, 1H, H-6b); ¹³C NMR (100 MHz, CDCl₃): δ 172.4 (C-1), 138.3, 138.0, 137.4 (CV-Ar), 128.7-127.8 (CH-Ar), 81.0 (C-3), 74.5, 73.7 (OCH2-Ph), 73.4 (C-4), 73.1 (OCH2-Ph), 70.4 (C-2), 70.4 (C-6), 54.2 (C-5); HRMS (ESI+) calcld for C₂₇H₂₉NaNO₅ [M+Na]⁺: 470.1938, found: 470.1947.

3,4,6-tri-O-benzyl-2-O-[(*tert***-butyl)dimethylsilyl]-D-glucono-\delta-lactam (3).** To a solution of compound **2a** (1.97 g, 4.44 mmol) in dry CH₂Cl₂ (44 mL) under Ar atmosphere was added pyridine (1.6 mL, 19.99 mmol, 4.5 eq.) The mixture was cooled to 0 °C and TBDMSOTf (1.5 mL, 6.66 mmol, 1.5 eq.) was added. The mixture was stirred for 1 h at room temperature and quenched with H₂O (80 mL). The mixture was extracted with CH₂Cl₂ (3x40 mL) and the combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude residue was purified by flash chromatography (RediSep[®] 24 g, petroleum ether/EtOAc 100:0 to 70:30), affording compound **3** (2.30 g,

4.09 mmol, 92%) as a colorless oil. Analytical data were in agreement with literature.²⁸ DOI: 10.1039/C9OB01402K

α-C-allyl-3,4,6-tri-O-benzyl-2-O-[(tert-butyl)dimethylsilyl]-1-deoxynojirimycin (4). Compound 3 (2.30 g, 4.09 mmol) and Cp₂ZrCl₂ (3.59 g, 12.28 mmol, 3 eq.) were dissolved in freshly distilled THF (82 mL) under Ar atmosphere at room temperature. A 1 M solution of LiAlH(OBu-t)₃ in THF (12.28 mL, 12.28 mmol, 3 eq.) was rapidly added and the mixture was stirred at room temperature. After 30 min, the solution became clear, indicating the end of the reduction. The mixture was cooled to -25 °C and Yb(OTf)₃ (2.54 g, 4.09 mmol, 1 eq.) and AllSnBu₃ (3.8 mL, 12.28 mmol, 3 eq.) were added. The mixture was stirred for 18 h at room temperature then concentrated under reduced pressure. The crude residue was purified by flash chromatography on a silica gel containing 10% of K₂CO₃ (petroleum ether/EtOAc 90:10), affording compound 4 (1.59 g, 2.70 mmol, 66%) as a yellow oil. Rf = 0.35 (PE/EtOAc 90:10); $[\alpha]_{D}^{20}$ = +22.0 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.10 (m, 20H, CH-Ar), 5.82-5.72 (m, 1H, H-2'), 5.13-5.09 (m, 2H, H-3'), 4.91 (d, J = 11.4 Hz, 1H, OCHH-Ph), 4.80-4.77 (m, 2H, OCHH-Ph), 4.51 (d, J = 11.9 Hz, 1H, OCHH-Ph), 4.43 (d, J = 11.2 Hz, 2H, OCHH-Ph), 3.88 (dd, J = 9.2 Hz, J = 5.6 Hz, 1H, H-2), 3.64 (dd, J = 9.2 Hz, J = 2.6 Hz, 1H, H-6a), 3.56 (t, J = 9.1 Hz, 1H, H-3), 3.51 (dd, J = 9.1 Hz, J = 6.4 Hz, 1H, H-6b), 3.36 (t, J = 9.4 Hz, 1H, H-4), 3.06-3.01 (m, 2H, H-5, H-1), 2.56-2.49 (m, 1H, H-1'a), 2.34-2.26 (m, 1H, H-1'b), 0.91 (s, 9H, C(CH₃)₃), 0.08 (s, 3H, SiCH₃), 0.06 (s, 3H, SiCH₃); ¹³C NMR (100 MHz, CDCl₃): δ 139.2, 138.4, 138.3 (C^V-Ar), 136.1 (C-2'), 128.5-127.4 (CH-Ar), 117.6 (C-3'), 84.1 (C-3), 80.6 (C-4), 75.5, 75.3 (OCH2-Ph), 74.8 (C-2), 73.3 (OCH2-Ph), 70.6 (C-6), 57.0 (C-1), 52.8 (C-5), 29.4 (C-1'), 26.1 (C(CH3)3), 18.1 (C(CH3)3), -4.4 (SiCH3), -4.5 (SiCH3); HRMS (ESI+) calcld for C₃₆H₄₉NO₄Si [M+H]⁺: 588.8733, found: 588.8731.

α-C-allyl-3,4,6-tri-O-benzyl-1-deoxynojirimycin (5). To a solution of compound 4 (1.59 g, 2.71 mmol) in dry THF (45 mL) under Ar atmosphere was added a TBAF solution (1 M/THF, 4.1 mL, 4.06 mmol, 1.5 eq.) at room temperature. The mixture was stirred overnight at room temperature and quenched with H₂O (90 mL). The mixture was extracted with EtOAc (3x45 mL) and the combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. Flash chromatography (RediSep[®] 24 g, petroleum ether/EtOAc 90:10 to 60:40) afforded compound 5 (948 mg, 2.00 mmol, 74%) as a white solid. Analytical data were in agreement with literature.³¹

α-*C*-allyl-3,4,6-tri-*O*-benzyl-*N*-benzyl-1-deoxynojirimycin (6). To a solution a compound **5** (948 mg, 2.00 mmol) in a 1:1 mixture of EtOAc/H₂O (40 mL) were added benzyl bromide (476 μL, 4.00 mmol, 2 eq.) and KHCO₃ (2.00 g, 20.02 mmol, 10 eq.). The mixture was stirred at 80 °C for 24 h and quenched with H₂O (80 mL). The mixture was extracted with Et₂O (3x40 mL), the combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. Flash chromatography (RediSep^{*} 12 g, petroleum ether/EtOAc 95:05 to 90:10) afforded compound **6** as a yellow oil (835 mg, 1.48 mmol, 74%). Analytical data were in agreement with literature.³¹

α-*C*-allyl-3,4,6-tri-*O*-benzyl-*N*-benzyl-2-keto-1-deoxynojirimycin (7). To a solution of DMSO (1.14 mL, 16.02 mmol, 5 eq), Et₃N (2.25 mL, 16.02 mmol, 5 eq.) and phenyl dichlorophosphate (1.44 mL, 9.61 mmol, 3 eq) in dry CH₂Cl₂ (32 mL) at -10 °C under Ar atmosphere was added a solution of compound **5** (1.80 g, 3.20 mmol) in dry CH₂Cl₂ (32 mL) at -10 °C. The mixture was allowed to warm up to room temperature and after 2 h stirring, the mixture was quenched with water (100 mL) and extracted with CH₂Cl₂ (3x50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Flash chromatography (RediSep[°] 24 g, petroleum ether/EtOAc 90:10) afforded compound **7** (1.63 g, 91%) as a yellow oil. Rf =

ARTICLE

0.44 (PE/EtOAc 90 :10); $[\alpha]_{D}^{20} = -6.2$ (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.19 (m, 20H, *CH*-Ar), 5.78-5.68 (m, 1H, H-2'), 5.04-5.00 (m, 2H, H-3'), 4.88 (d, *J* = 11.5 Hz, 1H, O*CH*H-Ph), 4.65 (d, *J* = 11.3 Hz, 1H, O*CH*H-Ph), 4.54-5.47 (m, 3H, O*CH*H-Ph, H-3), 4.43 (s, 2H, O*CH*H-Ph), 3.96 (d, *J* = 14.3 Hz, 1H, N*CH*H-Ph), 3.88 (dd, *J* = 7.3 Hz, *J* = 5.1 Hz, 1 H, H-4), 3.83 (d, *J* = 14.3 Hz, N*CH*H-Ph), 3.68 (dd, *J* = 10.0 Hz, *J* = 5.3 Hz, 1H, H-6a), 3.57 (dd, *J* = 10.0 Hz, *J* = 4.7 Hz, 1H, H-6b), 3.41-3.37 (m, 2H, H-5, H-1), 2.60-2.44 (m, 2H, H-1'a, H-1'b); ¹³C NMR (100 MHz, CDCl₃): δ 208.1 (C-2), 138.9, 138.3, 137.9, 137.8 (C^V-Ar), 132.9 (C-2'), 128.5-127.1 (*CH*-Ar), 118.1 (C-3'), 86.0 (C-3), 81.7 (C-4), 73.4, 73.3, 72.9 (O*CH*₂-Ph), 67.5 (C-6), 67.0 (C-1), 58.4 (C-5), 52.7 (N*CH*₂-Ph), 34.4 (C-1'); HRMS (ESI+) calcld for C₃₇H₄₀NaNO₄ [M+Na]⁺: 584.2771, found: 584.2779.

 α -C-allyl-2-C-allyl-3,4,6-tri-O-benzyl-N-benzyl-1-deoxymannojirimycin (8a) and α -*C*-allyl-2-*C*-allyl-3,4,6-tri-*O*-benzyl-*N*-benzyl-1-deoxynojirimycin (8b). Compound 7 (1.00 g, 1.78 mmol) was dissolved in a 2:1 mixture of dry toluene/CH₂Cl₂ (24 mL) under Ar atmosphere. The mixture was cooled to -78 °C and a solution of AllMgBr (1M/THF, 4.6 mL, 4.63 mmol, 2.6 eq.) was added dropwise. The mixture was stirred for 2 h at -78 °C and quenched with a saturated aqueous solution of NH₄Cl (30 mL). The organic layer was extracted with Et₂O (3x15 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Flash chromatography (RediSep® 12 g, petroleum ether/EtOAc 95:05) afforded compound 8a (yellow oil, 419 mg, 39%) and 8b (yellow oil, 419 mg, 39%). Analytical data for 8a: Rf = 0.31 (PE/EtOAc 95:05); $[\alpha]_{D}^{20}$ = -32.0 (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.14 (m, 20H, CH-Ar), 5.81-5.64 (m, 2H, H-2', H-2"), 5.08-4.95 (m, 2H, H-3'), 4.93-4.88 (m, 3H, OCHH-Ph, H-3"), 4.80 (d, J = 10.9 Hz, 1H, OCHH-Ph), 4.63 (d, J = 11.1 Hz, 1H, OCHH-Ph), 4.48 (d, J = 10.9 Hz, 1H, OCHH-Ph), 4.22 (ABq, J = 16.1 Hz, 2H, OCHH-Ph), 4.08 (d, J = 13.9 Hz, 1H, NCHH-Ph), 3.98 (t, J = 9.1 Hz, 1H, H-4), 3.78-3.64 (m, 3H, NCHH-Ph, H-6a, H-6b), 3.47 (d, J = 8.7 Hz, 1H, H-3), 3.39 (broad s, 1H, OH), 2.96-2.94 (m, 1H, H-5), 2.81 (dd, J = 7.6 Hz, J = 4.6 Hz, 1H, H-1), 2.71-2.66 (m, 1H, H-1"a), 2.52-2.44 (m, 1H, H-1'a), 2.22-2.10 (m, 1H, H-1'b), 1.89-1.83 (m, 1H, H-1"b); ^{13}C NMR (100 MHz, CDCl_3): δ 140.2, 138.6, 138.4, 138.2 (CV-Ar), 137.8 (C-2'), 133.7 (C-2"), 128.8-127.0 (CH-Ar), 117.5 (C-3"), 116.1 (C-3'), 84.0 (C-3), 78.4 (C-4), 75.6 (C-2), 75.5, 75.3, 73.0 (OCH2-Ph), 67.0 (C-6), 62.4 (C-1), 59.5 (C-5), 53.6 (NCH2-Ph), 38.2 (C-1"), 29.3 (C-1'); HRMS (ESI+) calcld for C₄₀H₄₆NO₄ [M+H]⁺: 604.3421, found: 604.3438. Analytical data for **8b**: Rf = 0.38 (PE/EtOAc 95:05); $[\alpha]_D^{20}$ = -26.7 (c 0.6, CHCl₃); ¹H NMR (400 MHz, acetone-d6): δ 7.42-7.22 (m, 20H, CH-Ar), 6.04-5.93 (m, 1H, H-2'), 5.59-5.49 (m, 1H, H-2"), 5.14-4.94 (m, 2H, H-3'), 4.90-4.80 (m, 5H, OCHH-Ph, H-3"), 4.55 (d, J = 11.1 Hz, 1H, OCHH-Ph), 4.35 (s, 2H, OCHH-Ph), 4.17 (d, J = 13.9 Hz, 1H, NCHH-Ph), 3.84-3.76 (m, 3H, H-6a, H-6b, H-4), 3.74-3.69 (m, 2H, NCHH-Ph, H-3), 3.23 (br. s, 1H, OH), 2.99-2.97 (m, 1H, H-5), 2.91-2.89 (m, 1H, H-1), 2.68-2.61 (m, 3H, H-1'a, H-1"), 2.53-2.49 (m, 1H, H1'b); ¹³C NMR (100 MHz, acetone-d6): δ 141.6 (C^V -Ar), 140.8 (C-2'), 140.3, 139.7, 139.5 (CIV-Ar), 135.1 (C-2"), 130.0-127.3 (CH-Ar), 118.4 (C-3"), 115.1 (C-3'), 85.6 (C-3), 78.6 (C-4), 76-6 (C-2), 75.4, 75.0, 73.3 (OCH2-Ph), 68.5 (C-6), 62.0 (C-1), 60.4 (C-5), 53.6 (NCH2-Ph), 38.3 (C-1"), 28.8 (C-1'); HRMS (ESI+) calcld for C40H46NaNO4 [M+Na]+: 626.3241, found: 626.3258.

(2R,3R,4S,4aR,8aR)-1-benzyl-3,4-bis(benzyloxy)-2-(benzyloxymethyl)-

1,3,4,5,8,8a-hexahydroquinolin-4a(2*H***)-ol (9a).** Compound **9a** was synthesized according to procedure A from **8a** (400 mg, 0.66 mmol). Flash chromatography (RediSep[®] 12 g, petroleum ether/EtOAc 85:15) afforded compound **9a** (339 mg, 89%) as a brown oil. R*f* = 0.14 (PE/EtOAc 90:10); $[\alpha]_{D}^{20}$ = -0.95 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.20 (m, 20H, *CH*-Ar), 5.54-5.51 (m, 1H, H-7), 5.31-5.27 (m, 1H, H-6), 4.89 (dd, *J* = 11.1, 8.0 Hz, 2H,

Journal Name

OCHH-Ph), 4.59 (d, *J* = 11.4 Hz, 1H, OCHH-Ph), 4.50 (d, *J* = 10.9 Hz, 1H, OCHH-Ph), 4.36 (m, 2H, OCHH-Ph), 4.16 (d, *J* = 13.4 Hz, 1H, NCHH-Ph), 3.99 (G) 40.95 Hz, 1H, H-3), 3.76 (m, 2H, *CH*₂-OBn), 3.61 (d, *J* = 9.3 Hz, 1H, H-4), 3.54 (s, 1H, OH), 3.42 (d, *J* = 13.3 Hz, 1H, NCHH-Ph), 2.96-2.80 (m, 2H, H-8a, H-2), 2.59 (dd, *J* = 17.7, 5.4 Hz, 1H, H-5), 2.29-2.12 (m, 2H, H-7), 1.87-1.82 (m, 1H, H-5); 13 C NMR (100 MHz, CDCl₃): δ 139.2, 138.5, 138.2 (C^V-Ar), 128.7-127.3 (*CH*-Ar), 124.8 (C-6), 124.2 (C-7), 80.37 (C-4), 78.6 (C-3), 75.6, 75.6, 73.1 (OCH₂-Ph), 71.0 (C-4a), 67.3 (*CH*₂-OBn), 60.1 (C-2), 58.9 (C-8a), 52.7 (NCH₂-Ph), 33.2 (C-5), 20.1 (C-8); HRMS (ESI+) calcld for C₃₈H₄₂NO₄ [M+H]⁺: 576.3130, found: 576.3108.

(2R,3R,4S,4aS,8aR)-1-benzyl-3,4-bis(benzyloxy)-2-(benzyloxymethyl)-

1,3,4,5,8,8a-hexahydroquinolin-4a(2H)-ol (9b). Compound 9b was synthesized according to procedure A from 8b (400 mg, 0.66 mmol). Flash chromatography (RediSep° 12 g, petroleum ether/EtOAc 90:10) afforded compound **9b** (339 mg, 89%) as a brown oil. Rf = 0.40 (PE/EtOAc 90:10); $[\alpha]_{D}^{20}$ = -75.0 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.18 (m, 20H, CH-Ar), 5.62-5.56 (m, 2H, H-6+H-7), 4.52 (d, J = 11.4 Hz, 1H, OCHH-Ph), 4.42 (d, J = 11.4 Hz, 1H, OCHH-Ph), 4.38-4.28 (m, 4H, OCHH-Ph), 4.20 (d, J = 2.4 Hz, 1H, OH), 4.04 (d, J = 14.1 Hz, NCHH-Ph), 3.92 (dd, J = 9.5 Hz, J = 5.5 Hz, 1H, CHH-OBn), 3.85 (t, J = 2.3 Hz, 1H, H-3), 3.80 (dd, J = 9.4 Hz, J = 7.5 Hz, 1H, CHH-OBn), 3.69 (d, J = 14.1 Hz, NCHH-Ph), 3.46 (broad s, 1H, H-4), 3.37-3.33 (m, 1H, H-2), 3.23 (dd, J = 10.4 Hz, J = 5.9 Hz, 1H, H-8a), 2.73-2.68 (m, 1H, H-5), 2.28-2.11 (m, 2H, H-8), 1.96-1.92 (m, 1H, H-5); ¹³C NMR (100 MHz, CDCl₃): δ 141.0, 138.6, 138.0, 137.8 (CV-Ar), 128.5-126.8 (CH-Ar), 123.9, 123.7 (C-6, C-7), 78.7 (C-4), 73.5 (C-3), 73.1, 73.0, 70.9 (OCH2-Ph), 70.5 (C-4a), 65.5 (CH2-OBn), 56.7 (C-2), 52.8 (C-8a), 51.7 (OCH2-Ph), 32.9 (C-5), 27.8 (C-8); HRMS (ESI+) calcld for C38H42NO4 [M+H]⁺: 576.3108, found: 576.3131.

(2R,3R,4S,4aR,8aR)-2-(hydroxymethyl)octahydroquinoline-3,4,4a(2H)-triol

hydrochloride (10a). Application of procedure B to compound 9a (60 mg, 0.10 mmol) afforded compound 10a (26 mg, 99%, hydrochloride salt) as a colorless oil. $[α]_D^{20}$ = 14.0 (*c* 1.0, MeOH); ¹H NMR (400 MHz, methanol-d4): δ 3.93 (dd, *J* = 11.7 Hz, 1H, *CH*H-OH), 3.84-3.76 (m, 3H, *CH*H-OH, H-4, H-3), 3.28-3.27 (m, 1H, H-8a), 3.25-3.21 (m, 1H, H-2), 2.31-2.28, 1.92-1.80, 1.64-1.62, 1.44-1.35, 1.29-1.23 (m, 8H, H-5, H-6, H-7, H-8); ¹³C NMR (100 MHz, methanol-d4): δ 72.8 (C-4a), 70.9 (C-4), 68-7 (C-3), 62.2 (C-8a), 59.5 (*CH*₂-OH), 57.4 (C-2), 34.7, 25.7, 25.4, 23.1 (C-5, C-6, C-7, C-8); HRMS (ESI+) calcld for C₁₀H₁₉NO₄: [M+H]⁺: 218.1387, found: 218.1399.

(2R,3R,4S,4aS,8aR)-2-(hydroxymethyl)octahydroquinoline-3,4,4a(2H)-triol

hydrochloride (10b). Application of procedure B to compound **9b** (60 mg, 0.10 mmol) afforded compound **10b** (26 mg, 99%, hydrochloride salt) as a white waxy solid. $[\alpha]_{D}^{20}$ = 45.0 (*c* 1.0, MeOH); ¹H NMR (400 MHz, methanol-d4): δ 4.17 (dd, *J* = 11.9, 10.5 Hz, 1H, *CH*H-OH), 3.88 (d, *J* = 1.3 Hz, 1H, H-3), 3.78 (dd, *J* = 12.3, 4.7 Hz, 1H, *CH*H-OH), 3.55 (dd, *J* = 10.0, 4.4 Hz, 1H, H-2), 3.50 (d, *J* = 2.4 Hz, 1H, H-4), 3.42-3.38 (m, 1H, H-8a), 1.85-1.35 (m, 8H, H-7, H-8, H-9, H-10); ¹³C NMR (100 MHz, methanol-d4): δ 72.1 (C-4a), 71.7 (C-4), 70.2 (C-3), 63.1 (C-2), 58.4 (*CH*₂-OH), 51.9 (C-4a), 34.1, 25.7, 25.3, 20.5 (C-7, C-8, C-9, C-10); HRMS (ESI+) calcld for C₁₀H₁₉NO₄: [M+H]⁺: 218.1387, found: 218.1396.

(2R,3R,4S,4aR,6R,7S,8aR)-1-benzyl-3,4-bis(benzyloxy)-2-

(benzyloxymethyl)octahydro quinolone-4a,6,7(2*H*)-triol (11a) and (2*R*,3*R*,4*S*,4a*R*,6*S*,7*R*,8a*R*)-1-benzyl-3,4-bis(benzyloxy)-2-

(benzyloxymethyl)octahydroquinoline-4a,6,7(2H)-triol (11a'). Compounds 11a and 11a' were synthesized according to procedure C from compound 9a (200 mg, 0.35 mmol). Flash chromatography (RediSep[®] 4 g, petroleum ether/EtOAc 50:50 to 40:60) afforded compound 11a (46 mg, 22%, yellow oil) and 11a' (93 mg, 39%, yellow oil). Analytical data for 11a: Rf = 0.36 (PE/EtOAc

Journal Name

50:50); $[\alpha]_D^{20} = -4.0$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, acetone-d6): δ 7.45-7.21 (m, 20H, CH-Ar), 5.12 (d, J = 11.4 Hz, 1H, OCHH-Ph), 4.91-4.85 (m, 2H, OCHH-Ph), 4.60 (d, J = 11.1 Hz, 1H, OCHH-Ph), 4.39 (s, 2H, OCHH-Ph), 4.30-4.24 (m, 2H, NCHH-Ph, H-4), 3.92 (t, J = 9.7 Hz, 1H, H-3), 3.85-3.81 (m, 3H, CH₂-OBn, H-6), 3.70 (d, J = 13.8 Hz, 1H, NCHH-Ph), 3.49 (dt, J = 11.3 Hz, J = 4.1 Hz, 1H, H-7), 3.28 (br. s, 1H, OH), 3.00 (dt, J = 9.9 Hz, J = 2.3 Hz, 1H, H-2), 2.61 (dd, J = 12.9 Hz, J = 3.7 Hz, 1H, H-8a), 2.50 (dd, J = 14.6 Hz, J = 3.0 Hz, 1H, H-5), 2.03-1.94 (m, 1H, H-8), 1.83-1.78 (m, 1H, H-8), 1.18 (dd, J = 14.6 Hz, J = 3.3 Hz, 1H, H5); ¹³C NMR (100 MHz, acetone-d6): δ 141.6, 140.8, 140.0, 139.4 (C^V-Ar), 129.3-127.4 (CH-Ar), 84.3 (C-4), 79.3 (C-3), 75.4, 74.9, 73.4 (OCH2-Ph), 73.0 (C-4a), 71.5 (C-7), 70.0 (C-6), 68.4 (CH2-OBn), 62.1 (C-8a), 61.0 (C-2), 53.0 (NCH2-Ph), 37.8 (C-5), 24.1 (C-8); HRMS (ESI+) calcld for $C_{38}H_{44}NO_6$: [M+H]⁺: 610.3163, found: 610.3174. Analytical data for **11a'**: Rf = 0.18 (PE/EtOAc 50:50); $\left[\alpha\right]_{D}^{20} = -1.3$ (c 2.0, CHCl₃); ¹H NMR (400 MHz, acetone-d6): δ 7.45-7.18 (m, 20H, *CH*-Ar), 4.93-4.79 (m, 2H, OCHH-Ph), 4.74 (d, J = 11.2 Hz, 1H, OCHH-Ph), 4.58-4.55 (m, 1H, OCHH-Ph), 4.36 (s, 2H, OCHH-Ph), 4.22 (d, J = 14.1 Hz, 1H, NCHH-Ph), 4.02 (br. s, 1H, H-7), 3.96 (t, J = 8.6 Hz, 1H, H-3), 3.87-3.80 (m, 3H, CH₂-OBn, H-6), 3.73-3.66 (m, 2H, NCHH-Ph, H-4), 3.13 (dd, J = 11.7 Hz, J = 3.9 Hz, 1H, H-8a), 2.99 (br. s, 1H, H-2), 2.29 (br. s, 1H, H-5), 2.02-1.97 (m, 1H, H-8), 1.85-1.79 (m, 1H, H-8), 1.66-1.60 (m, 1H, H-5); ¹³C NMR (100 MHz, acetone-d6): δ 141.7, 139.8, 139.4, 139.4 (C^V-Ar), 129.2-127.3 (CH-Ar), 82.3 (C-4), 78.9 (C-3), 75.7, 75.1 (OCH₂-Ph), 73.8 (C-4a), 73.3 (OCH2-Ph), 69.8 (C-7), 69.3 (C-6), 68.2 (CH2-OBn), 60.5 (C-2), 68.2 (C-8a), 52.9 (NCH2-Ph), 36.7 (C-5), 25.1 (C-8); HRMS (ESI+) calcld for C₃₈H₄₄NO₆: [M+H]⁺: 610.3163, found: 610.3180.

(2R,3R,4S,4aR,6R,7S,8aR)-2-(hydroxymethyl)octahydroquinoline-

3,4,4a,6,7(2H)-pentaol hydrochloride (12a). Application of procedure B to compound **11a** (30 mg, 0.05 mmol) afforded compound **12a** (13 mg, quant., hydrochloride salt) as a colorless oil. $[\alpha]_{D}^{20} = +7.7$ (*c* 2.2, MeOH); ¹H NMR (400 MHz, methanol-d4): δ 4.19 (br. d, *J* = 7.9 Hz, 1H, H-4), 4.00-3.97 (m, 2H, CH*H*-OH, H-6), 3.83-3.79 (m, 2H, CH*H*-OH, H-7), 3.74 (t, *J* = 9.7 Hz, 1H, H-3), 3.42 (dd, *J* = 13.2 Hz, *J* = 3.9 Hz, 1H, H-8a), 3.26-3.23 (m, 1H, H-2), 2.57 (dd, *J* = 14.6 Hz, *J* = 3.4 Hz, 1H, H-5), 2.20 (dd, *J* = 24.2 Hz, *J* = 12.0 Hz, 1H, H-8), 1.96-1.90 (m, 1H, H-5), 1.44 (dd, *J* = 14.6 Hz, *J* = 2.9 Hz, 1H, H-8); ¹³C NMR (100 MHz, methanol-d4): δ 74.0 (C-4), 72.0 (C-4a), 70.8 (C-7), 69.6 (C-6), 68.5 (C-3), 59.7 (C-8a), 59.6 (*CH*₂-OH), 58.1 (C-2), 37.9 (C-5), 28.2 (C-8); HRMS (ESI+) calcld for C₁₀H₂₀NO₆: [M+H]⁺: 250.1285, found: 250.1285.

(2R,3R,4S,4aR,6S,7R,8aR)-2-(hydroxymethyl)octahydroquinoline-

3,4,4a,6,7(2H)-pentaol hydrochloride (12a'). Application of procedure B to compound **11a'** (30 mg, 0.05 mmol) afforded compound **12a'** (13 mg, quant., hydrochloride salt) as a colorless oil. $[\alpha]_{D}^{20} = +3.9$ (*c* 1.0, MeOH); ¹H NMR (400 MHz, methanol-d4): δ 4.06 (br. s, 1H, H-6), 3.96 (dd, *J* = 11.6 Hz, *J* = 3.0 Hz, 1H, CH*H*-OH), 3.82-3.77 (m, 2H, CH*H*-OH, H-3), 3.74-3.66 (m, 2H, H-8a, H-7), 3.63 (d, *J* = 9.1 Hz, 1H, H-4), 3.20-3.16 (m, 1H, H-2), 2.34 (dd, *J* = 12.5 Hz, *J* = 4.4 Hz, 1H, H-5), 2.08-2.01 (m, 2H, H-5), 1.76 (t, *J* = 12.4 Hz, 1H, H-8); ¹³C NMR (100 MHz, methanol-d4): δ 72.7 (C-4a), 71.7 (C-4), 69.3 (C-6), 68.9 (C-7), 68.6 (C-3), 59.6 (*CH*₂-OH), 57.6 (C-2), 57.1 (C-8a), 36.1 (C-5), 29.9 (C-8); HRMS (ESI+) calcld for C₁₀H₂₀NO₆: [M+H]⁺: 250.1285, found: 250.1285.

(2R,3R,4S,4aS,6R,7S,8aR)-1-benzyl-3,4-bis(benzyloxy)-2-

(benzyloxymethyl)octahydro quinolone-4a,6,7(2*H*)-triol (11b) and (2*R*,3*R*,4*S*,4a*S*,6*S*,7*R*,8a*R*)-1-benzyl-3,4-bis(benzyloxy)-2-

(benzyloxymethyl)octahydroquinoline-4a,6,7(2H)-triol (11b'). Compounds 11b and 11b' were synthesized according to procedure C from compound 9b (200 mg, 0.35 mmol). Flash chromatography (RediSep[®] 4 g, petroleum ether/EtOAc 60:40 to 50:50) afforded compounds 11b (40 mg, 19%, yellow

ARTICLE

oil) and 11b' (74 mg, 35%, yellow oil). Analytical data for 11b; Rf = 0.14 $(PE/EtOAc 60:40); [\alpha]_{D}^{20} = -46.0 (c 1.0, CHCl_3); {}^{1}H WMR (400 WH2; CDCl_3)? 6$ 7.36-7.17 (m, 20H, CH-Ar), 4.48-4.45 (m, 2H, OH-4a, OCHH-Ph), 4.40 (d, J = 12.1 Hz, 1H, OCHH-Ph), 4.36-4.30 (m, 3H, OCHH-Ph), 4.24 (d, J = 11.8 Hz, OCHH-Ph), 4.16 (d, J = 10.0 Hz, OH-6), 4.09 (d, J = 13.8 Hz, 1H, NCHH-Ph), 3.89-3.84 (m, 2H, CHH-OBn, H-6), 3.80 (t, J = 2.1 Hz, 1H, H-3), 3.77-3.70 (m, 2H, NCHH-Ph, CHH-OBn), 3.54-3.52 (m, 1H, H-7), 3.41 (br. s, 1H, H-4), 3.32 (t, J = 6.7 Hz, 1H, H-2), 3.04 (dd, J = 12.2 Hz, J = 4.1 Hz, 1H, H-8a), 2.56 (br. s, 1H, OH-7), 2.03 (dt, J = 11.8 Hz, J = 4.2 Hz, 1H, H-8), 1.91-1.90 (m, 2H, H-5), 1.64 (dd, J = 24.0 Hz, J = 12.0 Hz, 1H, H-8); ¹³C NMR (100 MHz, CDCl₃): δ 140.4, 138.4, 137.7, 137.4 (CV-Ar), 128.6-127.0 (CH-Ar), 78.4 (C-4), 73.2 (C-3), 73.1 (C-4a), 73.0, 72.8, 71.1 (OCH2-Ph), 70.8 (C-7), 70.2 (C-6), 65.1 (CH2-OBn), 56.8 (C-2), 54.0 (C-8a), 52.1 (NCH2-Ph), 34.6 (C-5), 29.9 (C-8); HRMS (ESI+) calcld for C38H44NO6: [M+H]⁺: 610.3163, found: 610.3169. Analytical data for 11b': Rf = 0.08 (PE/EtOAc 60:40); $[\alpha]_D^{20} = -24.0$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.18 (m, 20H, CH-Ar), 4.49 (d, J = 11.6 Hz, 1H, OCHH-Ph), 4.41 (d, J = 11.6 Hz, 1H, OCHH-Ph), 4.34-4.32 (m, 3H, OCHH-Ph), 4.29 (d, J = 11.8 Hz, 1H, OCHH-Ph), 4.15 (br. s, 1H, OH), 4.07-3.99 (m, 3H, NCHH-Ph, H-7, H-6), 3.85 (d, J = 6.7 Hz, 2H, CH2-OBn), 3.81 (t, J = 2.1 Hz, 1H, H-3), 3.71 (d, J = 14.1 Hz, 1H, NCHH-Ph), 3.39-3.35 (m, 2H, H-8a, H-4), 3.31 (t, J = 6.6 Hz, 1H, H-2), 2.18 (t, J = 12.3 Hz, 1H, H-5), 2.06-2.03 (m, 1H, H-8), 1.70-1.64 (m, 1H, H-8), 1.57 (dd, J = 12.8 Hz, J = 4.3 Hz, 1H, H-5); ¹³C NMR (100 MHz, CDCl₃): δ 141.1, 138.6, 138.0, 137.8 (C^V-Ar), 128.6-126.8 (CH-Ar), 79.3 (C-4), 73.5 (C-3), 73.1, 72.8 (OCH2-Ph), 72.4 (C-4a), 71.0 (OCH2-Ph), 69.6 (C-7), 67.7 (C-6), 65.5 (CH2-OBn), 58.1 (C-2), 52.8 (NCH2-Ph), 50.1 (C-8a), 34.5 (C-5), 30.8 (C-8); HRMS (ESI+) calcld for C38H44NO6: [M+H]+: 610.3163, found: 610.3189.

(2R,3R,4S,4aS,6R,7S,8aR)-2-(hydroxymethyl)octahydroquinoline-

3,4,4a,6,7(2H)-pentaol hydrochloride (12b). Application of procedure B to compound **11b** (30 mg, 0.05 mmol) afforded compound **12b** (13 mg, quant., hydrochloride salt) as a colorless oil. $[\alpha]_{D}^{20}$ = +10.4 (*c* 2.3, MeOH); ¹H NMR (400 MHz, methanol-d4): δ 4.16-4.11 (m, 2H, CH*H*-OH, H-6), 3.79-3.73 (m, 3H, CH*H*-OH, H-7, H-3), 3.61 (m, 1H, H-4), 3.57-3.52 (m, 2H, H-8a, H-2), 2.16-2.05 (m, 2H, H-8), 1.97-1.88 (m, 2H, H-5); ¹³C NMR (100 MHz, methanol-d4): δ 73.8 (C-4a), 71.5 (C-6), 70.9 (C-4), 70.5 (C-3), 70.1 (C-7), 63.2 (C-2), 58.4 (*CH*₂-OH), 49.7 (C-8a), 35.9 (C-5), 28.3 (C-8); HRMS (ESI+) calcld for C₁₀H₂₀NO₆: [M+H]⁺: 250.1285, found: 250.1284.

(2R,3R,4S,4aS,6S,7R,8aR)-2-(hydroxymethyl)octahydroquinoline-

3,4,4a,6,7(2H)-pentaol hydrochloride (12b'). Application of procedure B to compound **11b'** (30 mg, 0.05 mmol) afforded compound **12b'** (13 mg, quant., hydrochloride salt) as a colorless oil. $[α]_D^{20} = +21.0$ (*c* 1.0, MeOH); ¹H NMR (400 MHz, methanol-d4): δ 4.14-4.07 (m, 2H, CH*H*-OH, H-6), 3.76-3.67 (m, 3H, CH*H*-OH, H-7, H-3), 3.59 (m, 1H, H-4), 3.55-3.50 (m, 2H, H-8a, H-2), 2.13-2.02 (m, 2H, H-8), 1.91 (qd, *J* = 15.1 Hz, *J* = 2.9 Hz, 2H, H-5); ¹³C NMR (100 MHz, methanol-d4): δ 73.8 (C-4a), 71.5 (C-6), 71.0 (C-4), 70.5 (C-3), 70.1 (C-7), 63.3 (C-2), 58.4 (*CH*₂-OH), 49.7 (C-8a), 35.9 (C-5), 28.3 (C-8); HRMS (ESI+) calcld for C₁₀H₂₀NO₆: [M+H]⁺: 250.1285, found: 250.1295.

α-C-allyl-2-C-vinyl-3,4,6-tri-O-benzyl-N-benzyl-1-deoxymannojirimycin (13a) and α-C-allyl-2-C-vinyl-3,4,6-tri-O-benzyl-N-benzyl-1-deoxynojirimycin (13b). Compound 7 (1.00 g, 1.78 mmol) was dissolved in a 2:1 mixture of dry toluene/CH₂Cl₂ (24 mL) under Ar atmosphere. The mixture was cooled to -78 °C and a solution of vinylMgBr (1M/THF, 4.6 mL, 4.63 mmol, 2.6 eq.) was added dropwise. The mixture was stirred for 2 h at -78 °C and quenched with a saturated aqueous solution of NH₄Cl (30 mL). The organic layer was extracted with Et₂O (3x15 mL) and the combined organic layers were dried over MgSO₄,

Journal Name

ARTICLE

filtered and concentrated under reduced pressure. Flash chromatography (petroleum ether/EtOAc 95:05 to 90:10) afforded compounds 13a (630 mg, 60%, yellow oil) and 13b (157 mg, 15%, yellow oil). Analytical data for 13a: Rf = 0.43 (PE/EtOAc 90:10); $[\alpha]_{D}^{20}$ = -40.0 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.22 (m, 20H, CH-Ar), 5.90 (dd, J = 16.9 Hz, J = 10.7 Hz, 1H, H-1"), 5.80-5.70 (m, 1H, H-2'), 5.56 (dd, J = 17.0 Hz, J = 2.1 Hz, 1H, H-2"a), 5.19 (dd, J = 10.7 Hz, J = 2.1 Hz, 1H, H-2"b), 5.09-5.01 (m, 2H, H-3'), 4.86 (d, J = 11.0 Hz, 1H, OCHH-Ph), 4.80 (d, J = 10.8 Hz, 1H, OCHH-Ph), 4.71 (d, J = 10.8 Hz, 1H, OCHH-Ph), 4.58 (d, J = 10.9 Hz, 1H, OCHH-Ph), 4.36-4.30 (m, 2H, OCHH-Ph), 4.21 (d, J = 13.8 Hz, 1H, NCHH-Ph), 4.06 (t, J = 8.8 Hz, 1H, H-4), 3.86-3.80 (m, 2H, NCHH-Ph, H-6a), 3.76-3.73 (m, 2H, H-6b, H-3), 3.43 (br. s, 1H, OH), 3.04 (dt, J = 9.1 Hz, J = 3.3 Hz, 1H, H-5), 2.79 (t, J = 6.4 Hz, 1H, H-1), 2.55-2.47 (m, 1H, H-1'a), 2.36-2.29 (m, 1H, H-1'b); ¹³C NMR (100 MHz, CDCl₃): δ 140.3 (C^V-Ar), 139.1 (C-1"), 138.6, 138.3, 137.6 (CV-Ar), 137.6 (C-2'), 128.8-126.8 (CH-Ar), 115.8 (C-3'), 115.7 (C-2"), 83.6 (C-3), 77.1 (C-4), 77.0 (C-2), 75.1, 75.0, 72.9 (OCH2-Ph), 67.4 (C-6), 64.9 (C-1), 58.9 (C-5), 53.2 (NCH₂-Ph), 30.2 (C-1'); HRMS (ESI+) calcld for C₃₉H₄₄NO₄: [M+H]⁺: 590.6265, found: 590.6264. Analytical data for 13b: Rf = 0.49 (PE/EtOAc 90:10); $[\alpha]_D^{20} = +4.0$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.14 (m, 20H, CH-Ar), 6.15 (dd, J = 17.1 Hz, J = 11.0 Hz, 1H, H-1"), 5.91-5.81 (m, 1H, H-2'), 5.46 (dd, J = 17.3 Hz, J = 1.6 Hz, 1H, H-2"a), 5.19 (dd, J = 10.9 Hz, J = 2.0 Hz, 1H, H-2"b), 5.01-4.94 (m, 2H, H-3'), 4.55-4.47 (m, 2H, OCHH-Ph), 4.43-4.35 (m, 2H, OCHH-Ph), 4.31-4.25 (m, 2H, OCHH-Ph), 4.15 (d, J = 14.2 Hz, 1H, NCHH-Ph), 3.90 (d, J = 14.2 Hz, 1H, NCHH-Ph), 3.83-3.78 (m, 2H, H-6a, H-4), 3.69 (dd, J = 9.6 Hz, J = 5.1 Hz, 1H, H-6b), 3.52 (d, J = 4.0 Hz, 1H, H-3), 3.22-3.18 (m, 2H, H-5, H-1), 2.47-2.32 (m, 2H, H-1'); $^{13}\!C$ NMR (100 MHz, CDCl_3): δ 141.1 (C^N-Ar), 140.8 (C-1"), 138.6 (C^N-Ar), 138.4 (C-2'), 138.2, 137.8 (C^N-Ar), 128.7-126.8 (CH-Ar), 115.5 (C-3'), 114.5 (C-2"), 82.6 (C-3), 75.9 (C-2), 75.1 (C-4), 73.9, 72.9, 72.2 (OCHz-Ph), 67.8 (C-6), 58.7 (C-1), 57.0 (C-5), 53.1 (NCHz-Ph), 30.9 (C-1'); HRMS (ESI+) calcld for C₃₉H₄₄NO₄: [M+H]⁺: 590.6265, found: 590.6295.

(2R,3R,4S,4aR,7aR)-1-benzyl-3,4-bis(benzyloxy)-2-(benzyloxymethyl)-

1,2,3,4,7,7a-hexahydro-4aH-cyclopenta[b]pyridin-4a-ol (**14a**). Compound **14a** was synthesized according to procedure A from **13a** (400 mg, 0.66 mmol). Flash chromatography (RediSep[®] 12 g, petroleum ether/EtOAc 95:05 to 90:10) afforded compound **14a** (331 mg, 87%) as a brown oil. R*f* = 0.68 (PE/EtOAc 85:10); $[\mathbf{a}]_{\mathbf{D}}^{20}$ = -13.0 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.15 (m, 20H, *CH*-Ar), 5.81-5.76 (m, 2H, H-6, H-5), 4.88 (d, *J* = 11.2 Hz, 1H, OCHH-Ph), 4.65 (d, *J* = 11.2 Hz, 1H, OCHH-Ph), 4.52-4.46 (m, 4H, OCHH-Ph), 3.94-3.90 (m, 2H, CH*H*-OBn, NCHH-Ph), 3.83-3.80 (m, 3H, CH*H*-OBn, H-4, H-3), 3.70 (d, *J* = 14.2 Hz, 1H, NCHH-Ph), 3.42 (t, *J* = 7.3 Hz, 1H, H-7a), 3.19-3.17 (m, 1H, H-2), 3.05 (broad s, 1H, OH), 2.67 (ddd, *J* = 16.2 Hz, *J* = 7.7 Hz, *J* = 1.9 Hz, 1H, H-7), 2.35 (ddd, *J* = 16.2 Hz, *J* = 9.0 Hz, *J* = 4.4 Hz, 1H, H-7); ¹³C NMR (100 MHz, CDCl₃): δ 139.6, 138.8, 138.7, 138.4 (C^V-Ar), 135.7 (C-5), 130.4 (C-6), 128.5-126.5 (*CH*-Ar), 85.2 (C-4), 85.0 (C-4a), 80.5 (C-3), 75.1, 73.3, 71.7 (OCH₂-Ph), 67.0 (C-7a), 66.5 (*CH*₂-OBn), 60.2 (C-2), 54.6 (NCH₂-Ph), 38.1 (C-7); HRNMS (ESI+) calcld for C₃₇H₄₀NO₄: [M+H]⁺: 562.2952, found: 562.2960.

(2R,3R,4S,4aS,7aR)-1-benzyl-3,4-bis(benzyloxy)-2-(benzyloxymethyl)-

1,2,3,4,7,7a-hexahydro-4aH-cyclopenta[b]pyridin-4a-ol (14b). Compound **14b** was synthesized according to procedure A from **13b** (150 mg, 0.25 mmol). Flash chromatography (RediSep[®] 4 g, petroleum ether/EtOAc 95:05 to 90:10) afforded compound **14b** (120 mg, 84%) as a brown oil. Rf = 0.75 (PE/EtOAc 85:15); $[\alpha]_{D}^{20}$ = -46.0 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.19 (m, 20H, *CH*-Ar), 6.05-6.03 (m, 1H, H-6), 6.00 (dd, *J* = 6.0 Hz, *J* = 1.8 Hz, 1H, H-5), 4.49-4.36 (m, 6H, O*CH*H-Ph), 4.26 (broad s, 1H, OH), 3.94-3.89 (m, 5H, N*CH*H-Ph, CH*H*-OBn, H-4, H-3), 3.81 (t, *J* = 8.8 Hz, 1H, CH*H*-OBn), 3.34 (dd, *J* = 8.3 Hz, *J*

= 4.6 Hz, 1H, H-2), 3.28 (dd, *J* = 9.4 Hz, 6.5 Hz, 1H, H-7a), 2.41-235 (m, 1H, Hall), 2.22 (ddd, *J* = 14.3 Hz, *J* = 6.4 Hz, *J* = 2.9 Hz, 1HPP47); ^{G3}C NMR (100⁴ MHz, CDCl₃): δ 139.9, 138.5, 138.1, 137.9 (C^V-Ar), 135.2 (C-6), 134.2 (C-5), 128.5-127.0 (*CH*-Ar), 80.2 (C-4a), 76.6 (C-4), 75.0 (C-3), 73.2, 72.1, 71.2 (*OCH*₂-Ph), 64.8 (*CH*₂-OBn), 60.2 (C-7a), 58.9 (C-2), 54.4 (*NCH*₂-Ph), 32.4 (C-7); HRMS (ESI+) calcld for C₃₇H₄₀NO₄: [M+H]⁺: 562.2952, found: 562.2951.

(2R,3R,4S,4aR,7aR)-2-(hydroxymethyl)octahydro-4aH-

cyclopenta[b]pyridine-3,4,4a-triol hydrochloride (15a). Application of procedure B to compound **14a** (60 mg, 0.10 mmol) afforded compound **15a** (26 mg, quant., hydrochloride salt) as a colorless oil. $[α]_{D}^{20}$ = +29.0 (*c* 1.0, MeOH); ¹H NMR (400 MHz, methanol-d4): δ 3.95 (dd, *J* = 11.8, *J* = 3.4, 1H, CH*H*-OH), 3.87 (dd, *J* = 11.8, *J* = 6.4 Hz, 1H, CH*H*-OH), 3.78 (t, *J* = 16.4 Hz, 6.8 Hz, 1H, H-3), 3.67-3.62 (m, 1H, H-7a), 3.49 (d, *J* = 9.3 Hz, 1H, H-4), 3.29-3.25 (m, 1H, H-2), 2.24-1.60 (m, 6H, H-7, H-6, H-5); ¹³C NMR (100 MHz, methanol-d4): δ 79.8 (C-4), 73.1 (C-4), 67.85 (C-3), 62.3 (C-7a), 59.4 (*CH*₂-OH), 57.7 (C-2), 34.2, 23.7, 19.0 (C-7, C-6, C-5); HRMS (ESI+) calcld for C₁₀H₁₈NO₄: [M+H]⁺: 204.1230, found: 204.1232.

(2R,3R,4S,4aS,7aR)-2-(hydroxymethyl)octahydro-4aH-

cyclopenta[b]pyridine-3,4,4a-triol hydrochloride (15b). Application of procedure B to compound **14b** (60 mg, 0.10 mmol) afforded compound **15b** (26 mg, quant., hydrochloride salt) as a colorless oil. $[α]_{D}^{20}$ = +57.0 (*c* 1.0, MeOH); ¹H NMR (400 MHz, methanol-d4): δ 4.07 (dd, *J* = 12.0 Hz, *J* = 10.6 Hz, 1H, CH*H*-OH), 3.85-3.82 (m, 2H, H-4, H-3), 3.74 (dd, *J* = 12.1 Hz, 4.8 Hz, 1H, CH*H*-OH), 3.61 (dd, *J* = 10.4 Hz, *J* = 4.5 Hz, 1H, H-2), 3.40 (dd, *J* = 10.6 Hz, *J* = 7.7 Hz, 1H, H-7a), 2.09-1.58 (m, 6H, H-7, H-6, H-5); ¹³C NMR (100 MHz, methanol-d4): δ 80.1 (C-4a), 70.8, 70.5 (C-4, C-3), 63.9 (C-2), 58.3 (*CH*₂-OH), 52.7 (C-7a), 31.1, 25.4, 19.1 (C-7, C-6, C-5); HRMS (ESI+) calcld for C₁₀H₁₈NO₄: [M+H]⁺: 204.1230, found: 204.1226.

α -C-allyl-2-acetamido-3,4,6-tri-O-benzyl-N-benzyl-1,2-dideoxy-D-nojirimycin (16) and α -C-allyl-2-acetamido-3,4,6-tri-O-benzyl-N-benzyl-1,2-dideoxy-D-

mannojirimycin (17). To a solution of compound 7 (339 mg, 0.60 mmol) in absolute ethanol (2 mL) under Ar atmosphere were added hydroxylamine hydrochloride (126 mg, 1.81 mmol, 3 eq.) and pyridine (195 µL, 2.41 mmol, 4 eq.) at room temperature. The mixture was stirred for 30 min at 60 °C and the reaction was quenched with H₂O (10 mL). The aqueous layer was extracted EtOAc (3x10 mL) and the combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude residue was directly used in the next step. The crude residue was dissolved in dry THF (2 mL) under Ar atmosphere and a 1 M solution of LiAlH₄ in THF was added (1.8 mL, 1.81 mmol, 3 eq.). The reaction mixture was stirred at 40 °C for 3 h by which time TLC monitoring revealed no trace of the starting material. The reaction was sequentially guenched with EtOAc (20 mL) and a 1 M solution of HCl (2.5 mL). The aqueous layer was neutralized with a saturated aqueous solution of NaHCO₃ (20 mL) and extracted with EtOAc (3x20 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude residue was dissolved in a 2:1 mixture of dry pyridine/Ac₂O (2 mL) under Ar atmosphere at room temperature. After 5 h stirring at room temperature, the mixture was guenched with H₂O (15 mL) and extracted with EtOAc (3x10 mL). The combined organic layers were dried over MgSO4 and concentrated under reduced pressure. Flash chromatography (RediSep® 12 g, petroleum ether/EtOAc 90:10 to 60:40) afforded compounds 16 (29 mg, 8%, brown solid) and 17 (103 mg, 28%, brown oil). Analytical data for compound 16 were in agreement with literature.³¹ Analytical data for compound **17**: Rf = 0.28(PE/EtOAc 60:40); $[\alpha]_{D}^{20}$ = +55.0 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ

PM

Published on 12 July 2019. Downloaded by Nottingham Trent University on 7/12/2019 4:36:41

7.38-7.23 (m, 20H, *CH*-Ar), 6.10 (d, *J* = 9.5 Hz, 1H, NH), 5.67-5.57 (m, 1H, H-2'), 5.06-4.99 (m, 2H, H-3'), 4.92 (d, *J* = 10.8 Hz, 1H, O*CH*H-Ph), 4.78 (d, *J* = 11.1 Hz, 1H, O*CH*H-Ph), 4.49-4.37 (m, 5H, O*CH*H-Ph, H-2), 4.14 (d, *J* = 13.1 Hz, 1H, N*CH*H-Ph), 3.81-3.78 (m, 3H, H-6a, H-6b, H-3), 3.71 (t, *J* = 8.8 Hz, 1H, H-4), 3.46 (d, *J* = 13.1 Hz, 1H, N*CH*H-Ph), 2.88-2.85 (m, 1H, H-5), 2.73-2.68 (m, 1H, H-1), 2.45-2.39 (m, 1H, H-1'a), 2.23-2.15 (m, 1H, H-1'b), 1.88 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 169.6 (CO), 140.0, 138.7, 138.2, 138.2 (C^N-Ar), 134.9 (C-2'), 128.9-127.4 (*CH*-Ar), 117.7 (C-3'), 78.5 (C-3), 76.4 (C-4), 75.3, 73.3, 71.2 (O*CH*₂-Ph), 67.2 (C-6), 59.2 (C-5), 57.8 (C-1), 51.6 (N*CH*₂-Ph), 45.4 (C-2), 27.9 (C-7), 23.8 (CH₃); HRMS (ESI+) calcld for C₃₃H₄₅N₂O₄: [M+H]⁺: 605.3374, found: 605.3381.

(2R,6S)-2-allyl-1-benzyl-4-(benzyloxy)-6-(benzyloxymethyl)-1,6-

dihydropyridin-3(*2H***)-one (19).** Compound **7** (50 mg, 0.09 mmol) was dissolved in a 9:1 mixture of MeOH/Et₃N (8 mL) at room temperature under Ar atmosphere. The mixture was stirred 18 h at room temperature and concentrated under reduced pressure. Flash chromatography (RediSep[®] 4 g, petroleum ether/EtOAc 90/10) afforded compound **19** (37 mg, 0.08 mmol, 91%) as a yellow oil. R*f* = 0.39 (PE/EtOAc 90:10); $[\alpha]_D^{20} = +16.0 (c 1.0, CHCl_3); ¹H NMR (400 MHz, CDCl_3): \delta 7.30-7.14 (m, 15H,$ *CH*-Ar), 5.77-5.67 (m, 2H, H-2', H-5), 5.03-4.95 (m, 2H, H-3'), 4.80 (s, 2H, O*CH*H-Ph), 4.35 (s, 2H,*OCH*H-Ph), 3.74-3.67 (m, 2H, N*CH*H-Ph, H-6), 3.63-3.56 (m, 3H, N*CH*H-Ph,*CHH*-OBn, H-2), 3.45 (dd,*J*= 9.4 Hz,*J*= 7.0 Hz, 1H,*CHH* $-OBn), 2.52-2.40 (m, 2H, H-1'); ¹³C NMR (100 MHz, CDCl_3): <math>\delta$ 193.8 (C-3), 148.5 (C-4), 138.8, 136.0, 136.3 (C^N-Ar), 134.8 (C-2'), 128.7-127.5 (C-3'), 115.5 (C-5), 73.4 (*OCH*₂-Ph), 71.3 (*CH*₂-OBn), 69.9 (*OCH*₂-Ph), 64.5 (C-2), 55.5 (C-6), 51.9 (*NCH*₂-Ph), 30.9 (C-1'); HRMS (ESI+) calcld for C₃₀H₃₂NO₃: [M+H]⁺: 454.2387, found: 454.2384.

Biological Assays. Glycosidase inhibition profiling was performed using appropriate *p*-nitrophenyl glycosides as substrates at the optimum pH of each enzyme. The reaction was stopped by adding 400 mM of Na_2CO_3 . The released *p*-nitrophenol was measured spectrometrically at 400 nm.

Conclusions

In conclusion, a new route to 2-hydroxy-*C*-allyl iminosugars has been developed from sugar lactams exploiting the C-2 regioselective BCl₃-based deprotection and the Schwartz's reagent. The resulting D-gluco configured iminosugar has been oxidized to the corresponding ketone that was further exploited to access new bicyclic iminosugars as well as a 2acetamido derivative. The glycosidase inhibition profile of these glycomimetics has been assessed on a panel of 15 glycosidases. These conformationally locked DNJ and DMJ derivatives showed clearly different glycosidase inhibition profiles from DNJ and DMJ demonstrating the significant role played by the additional ring (size, hydroxylation). Work is now in progress to access similar bicyclic iminosugars with improved efficacy as glycosidase inhibitors.

Conflicts of interest

"There are no conflicts to declare".

Acknowledgements

The authors (QF, JD, YB) acknowledge financial support from the European Union (ERDF) and "Région Nouvelle/Aquitaine". This work was supported in part by a Grant-in-Aid for Scientific Research (C) from the Japanese Society for the Promotion of Science (JSPS KAKENHI Grant Number JP17K08362) (AK).

Notes and references

[‡] The registration number for the crystallographic data of compound **10b** is CCDC 1921458.

1 Hohenschutz, L. D.; Bell, E. A.; Jewess, P. J.; Leworthy, D. P.; Pryce, R. J.; Arnold, E.; Clardy, J. *Phytochemistry* **1981**, *20*, 811.

2 R. J. Nash, A. Kato, C.-Y. Yu and G. W. Fleet, *Future Medicinal Chemistry*, 2011, 3, 1513–1521.

³ P. C. Tyler and B. G. Winchester, in *Iminosugars as Glycosidase Inhibitors*, ed. A. E. Stütz, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 1998, pp. 125–156.

S. G. Pyne, Curr. Org. Synth. 2005, 2, 39-57.

5 R. H. Furneaux, G. J. Gainsford, J. M. Manson and P. C. Tyler, *Tetrahedron*, 1994, **50**, 2131–2160.

6 P. S. Liu, M. S. Kang, P. S. Sunkara, Tetrahedron Lett. 1991, 32, 719-720.

7 J. Boisson, A. Thomasset, E. Racine, P. Cividino, T. Banchelin Sainte-Luce, J.-F. Poisson, J.-B. Behr and S. Py, *Organic Letters*, 2015, **17**, 3662–3665.

8 K. Søndergaard, X. Liang and M. Bols, *Chemistry*, 2001, **7**, 2324–2331; M. I. García-Moreno, J. M. Benito, C. Ortiz Mellet and J. M. García Fernández, *J. Org. Chem.*, 2001, **66**, 7604; P. Díaz Pérez, M. I. García-Moreno, C. Ortiz Mellet and J. M. García Fernández, *Synlett*, 2003, **3**, 341; M. I. García-Moreno, D. Rodríguez-Lucena, C. Ortiz Mellet and J. M. García Fernández, *J. Org. Chem.*, 2004, **69**, 3578. S. Jarosz, K. Tiara and M. A. Potopnyk, *Pure App. Chem.* 2019, <u>doi.org/10.1515/pac-2019-0116</u>

9 N. Asano, H. Kizu, K. Oseki, E. Tomioka, K. Matsui, M. Okamoto and M. Babat, J. Med. Chem. 1995, **38**, 2349-2356.

D. Hendry, L. Hough and A. C. Richardson, *Tetrahedron*, 1988, **44**, 6143-6152.
M. Malik, G. Witkowski, M. Ceborska and S. Jarosz, *Organic Letters*, 2013, **15**, 6214–6217.

12 M. I. Torres-Sánchez, P. Borrachero, F. Cabrera-Escribano, M. Gómez-Guillén, M. Angulo-Álvarez, M. J. Diánez, M. D. Estrada, A. López-Castro and S. Pérez-Garrido, *Tetrahedron: Asymmetry*, 2005, **16**, 3897–3907.

13 S. P. Sanap, S. Ghosh, A. M. Jabgunde, R. V. Pinjari, S. P. Gejji, S. Singh, B. A. Chopade and D. D. Dhavale, *Organic & Biomolecular Chemistry*, 2010, **8**, 3307.

14 F. Marcelo, Y. He, S. A. Yuzwa, L. Nieto, J. Jiménez-Barbero, M. Sollogoub, D. J. Vocadlo, G. D. Davies and Y. Blériot, *Journal of the American Chemical Society*, 2009, **131**, 5390–5392.

M. Mondon, S. Hur, G. Vadlamani, P. Rodrigues, P. Tsybina, A. Oliver, B. L. Mark, D. J. Vocadlo and Y. Blériot, *Chemical Communications*, 2013, **49**, 10983.
H. Li, Y. Zhang, P. Vogel, P. Sinaÿ and Y. Blériot, *Chem. Commun.*, 2007, 183–185.

17 B. Luo, F. Marcelo, J. Désiré, Y. Zhang, M. Sollogoub, A. Kato, I. Adachi, F. J. Cañada, J. Jiménez-Barbero and Y. Blériot, *Journal of Carbohydrate Chemistry*, 2011, **30**, 641–654.

18 J. Yin and T. Linker, Organic & Biomolecular Chemistry, 2012, 10, 2351.

19 Y. D. Vankar and T. Linker, *European Journal of Organic Chemistry*, 2015, **2015**, 7633–7642; F. Cardona, G. D'Orazio, A. M. S. Silva, F. Nicotra, B. La Ferla, *Eur. J. Org. Chem.* 2014, **2014**, 2549-2556; V. R. Doddi, P. K. Kancharla, Y. S. Reddy, A. Kumar, Y. D. Vankar, *Carbohydr. Res.* 2009, **344**, 606-612.

20 L. Sernissi, M. Petrović, D. Scarpi, A. Guarna, A. Trabocchi, F. Bianchini and E. G. Occhiato, *Chemistry - A European Journal*, 2014, **20**, 11187–11203; A. Boto, D. Hernandez and R. Hernandez, *J. Org. Chem*. 2008, **73**, 5287-5297.

21 J. Désiré and M. Shipman, Synlett, 2001, 2001, 1332–1334.

22 R. Hensienne, D. Hazelard and P. Compain, Arkivoc, 2019, 2019, 4–43.

23 C. Maaliki, C. Gauthier, O. Massinon, R. Sagar, S. P. Vincent and Y. Blériot in *Carbohydrate Chemistry: Chemical and Biological Approaches*, Royal Society of Chemistry, Cambridge, 2017, vol. 43. p 418-444.

24 P. Szcześniak, S. Stecko, O. Staszewska-Krajewska and B. Furman, *Tetrahedron*, 2014, **70**, 1880–1888.

25 M. M. Więcław and S. Stecko, European Journal of Organic Chemistry, 2018, 2018, 6601–6623.

26 F. Stauffert, M. Lepage, M. Pichon, D. Hazelard, A. Bodlenner and P. Compain, *Synthesis*, 2016, **48**, 1177–1180.

- 27 T. Granier and A. Vasella, *Helvetica Chimica Acta*, 1998, **81**, 865–880.
- 28 M. Terinek and A. Vasella, *Tetrahedron: Asymmetry*, 2005, **16**, 449–469
- 29 L. Ayala, C. G. Lucero, J. A. C. Romero, S. A. Tabacco and K. A. Woerpel, *Journal of the American Chemical Society*, 2003, **125**, 15521–15528.
- 30 Y. Zhao and V. Snieckus, Organic Letters, 2014, 16, 390-393.

Published on 12 July 2019. Downloaded by Nottingham Trent University on 7/12/2019 4:36:41 PM.

31 Q. Foucart, J. Marrot, J. Désiré and Y. Blériot, Organic Letters, 2019, 21, 4821-4825.

32 P. Compain, O. R. Martin, C. Boucheron, G. Godin, L. Yu, K. Ikeda and N. Asano, *ChemBioChem*, 2006, **7**, 1356–1359.

33 C. Hedberg, M. Estrup, E. Z. Eikeland and H. H. Jensen, *The Journal of Organic Chemistry*, 2018, **83**, 2154–2165.

34 D. Hazelard, R. Hensienne, J.-B. Behr and P. Compain, Springer Berlin Heidelberg, Berlin, Heidelberg, 2019.

35 W. Zou, Z. Wang, E. Lacroix, S.-H. Wu and H. J. Jennings, *Carbohydrate Research*, 2001, 9.

36 D.-X. Tan, J. You, M.-R. Xu and Y. Wu, *The Journal of Organic Chemistry*, 2016, **81**, 6792–6794.

Page 10 of 10

View Article Online DOI: 10.1039/C9OB01402K

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx