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Abstract—The reaction of the 3-alkyl-substituted and 3,3-dialkyl-substituted ethyl 2,2-dimethoxycyclopropanecarboxylates 1-3
with m-CPBA in CH,CIl, leads to the formation of the B-hydroxyacid derivatives 4—6 via two related processes involving the
scission of both the C,—C, and C,—~C; bonds and consequently to the degradation of the original cyclopropane carbon skeleton
(extrusion of the C-2 carbon). Cis- and trans-2-ethoxycyclopropanecarboxylic acid ethyl esters 9 and 10, respectively, structurally
related to 1-3, are unreactive under the same conditions. A hypothesis explaining the observed reactivity is formulated. © 2000

Published by Elsevier Science Ltd.

Vicinally substituted donor—acceptor cyclopropanes are
versatile building blocks in organic synthesis since they
are used for the preparation of many types of com-
pounds.! We have recently undertaken a plan aimed at
testing the reactivity of some of these substances, namely
ethyl 2,2-dialkoxycyclopropanecarboxylates, under a va-
riety of oxidising conditions. Previous investigations
from our group have led to the finding that RuO,* and
Pb(OAc),’ are able to oxidatively cleave the reactive
C,—C, bond. We now report that 3-alkyl-substituted and
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3,3-dialkyl substituted 2,2-dimethoxycyclopropanecar-
boxylic acid ethyl esters, e.g. 1-3 (Schemes 1 and 2), react
with m-CPBA* in CH,Cl, to give the methyl carbonate
derivatives 4 and 5 from 1 and 2, respectively, and the
m-chlorobenzoate derivative 6 from 3, through related
degradative processes. It is to be noted that the carbon
skeleton of the reaction products corresponds to that of
the original cyclopropane from which the C-2 carbon
has been extruded and is, in the case of compounds 4 and
5, the carbonyl carbon of the carbonate portion.
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The reactions have been performed by adding the
freshly prepared cyclopropane (typically 300 mg) to a
solution of m-CPBA (1.2 equiv. desiccated overnight
over P,Os) in anhydrous CH,CI, (1 mL) with stirring at
room temperature. The reaction was complete within a
1 h period in the case of 1 and 2 (TLC monitoring) but
required 9 days to proceed to completion for the less
reactive cyclopropane 3. Filtration of the reaction mix-
ture through a short silica gel plug (eluent hexane/Et,0,
95:5) followed by HPLC (hexane/EtOAc, 93:7) afforded
pure samples of compounds 4-6, as well as methyl
m-chlorobenzoate from the oxidations of 1 and 2. All
the isolated substances gave satisfactory spectral data’
in full agreement with the assigned structures. While the
reaction of compounds 1 and 2 with m-CPBA was
shown to be reproducible and rather clean, the oxida-
tion of 3 always produces, in addition to the main
product 6, variable amounts of various side-products
(unidentified). Worth mentioning, however, is that
among these, after a careful HPLC separation of the
reaction mixture, the carbonate derivative correspond-
ing to compounds 4 and 5 could not be identified,
although it would have been obtained if the oxidation
path followed by 3 had been the same as that for 1 and
2.

Definitive confirmation of the structures of diesters 4—6
was provided by synthesis. In particular, methyl car-
bonate 4 was obtained by borohydride reduction of
ethyl acetoacetate (NaBH,/EtOH, 25°C, 15 min, 80%)
followed by treatment of the resulting ethyl 3-hydroxy-
butyrate with methyl chloroformate in pyridine (25°C,
10 min, 90%). Similarly, methyl carbonate 5 was syn-
thesised by reaction of methyl chloroformate with ethyl
3-hydroxyvalerate in pyridine (25°C, 10 min, 95%); the
latter compound was in turn obtained via a Refor-
matsky reaction of ethyl bromoacetate with propanal,
as described.® m-Chlorobenzoate derivative 6 was syn-
thesised by the reaction of m-chlorobenzoic acid chlo-
ride with ethyl 3-hydroxyisovalerate in pyridine (25°C,
24 h, 80%); ethyl 3-hydroxyisovalerate was in turn
synthesised by Reformatsky reaction of ethyl bromoac-
etate with acetone.®

The formation of carbonates 4 and 5 can be explained
through the sequence shown in Scheme 3. In the first
step, the addition of the OH portion of the percar-
boxylic acid to the C,—C, bond of the cyclopropane, in
a manner similar to that observed for other nucleophilic
species (H,O, MeOH etc.), would generate intermediate
7. This species could rearrange in such a way that the
C,—C; bond shifts from C-2 to O-1 with the simulta-
neous expulsion of the m-chlorobenzoate anion and
formation of the stabilised C-2 cation species 8. This
latter would then collapse to the carbonate product via
a S\ 2 displacement at one of the two OMe groups by
the attack of the released m-chlorobenzoate, with for-
mation of methyl m-chlorobenzoate, a species in turn
obtained from the oxidative process. The net result of
the above route is that the C-2 carbon of the original
cyclopropane ring becomes the carbonyl carbon of a
carbonate function linked to the C-3 carbon of a B-hy-
droxyester derivative.

As for the formation of compound 6 from 3, it is likely
that an intermediate analogous to 7, obtained as hy-
pothesised above, could form in the first step through
the addition of m-CPBA across the C,—C, bond
(Scheme 4). We reasoned that, at this stage, the pres-
ence of two methyl groups at C-3 could favour a
fragmentation step that would occur with the expulsion
of dimethylcarbonate (DMC) and the m-chloroben-
zoate anion, as well as the formation of the C-3 tertiary
carbocation. Recombination of the two produced ionic
species would eventually give the diester product 6.

In order to gain evidence supporting the latter mechanis-
tic hypothesis, the reaction of 3 with m-CPBA was
performed in CDCIl;. The advancement of the process
was monitored by periodically recording the proton
spectrum of the reaction mixture. A singlet peak at 6 3.78
attributable to DMC began to be detectable after some
7 h. Unequivocal assignment of the above resonance to
DMC was provided by addition of a trace amount of
pure DMC to the reaction mixture that produced the
enhancement of the sole peak at § 3.78. At this time peaks
diagnostic for diester 6 were also present.
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For a comparative purpose, cis- and trans-2-ethoxycy-
clopropanecarboxylic acid ethyl esters (9 and 10,
Scheme 5) were synthesised as reported’ and subjected
to the same oxidising conditions described above for
1-3; they proved to be unreactive on prolonged treat-
ment (7 days). This result shows that a single alkoxy
group at C-2 is not sufficient to confer to the C,—C,
bond the electronic characteristics that render it reac-
tive toward m-CPBA. Compounds 9 and 10 were also
shown to be unreactive towards RuO, and Pb(OAc),
that, on the contrary, are able to cleave cyclopropanes
1-3, as previously reported.>>

As far as we know this is the first report of the
m-CPBA-induced scission of cyclopropyl compounds.
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