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Abstract—The enantioselective synthesis and determination of the absolute configuration of (+)-dehydro-�-monocyclonerolidol, a
natural product isolated from the liverwort P. subobtusa, has been achieved starting from (+)-karahana lactone as an enantiopure
building block. Furthermore, the methodology applied provided a new approach towards the known (+)-�-cyclohomocitral, a key
intermediate in the sequence, and natural (+)-pallescensone.
© 2003 Elsevier Ltd. All rights reserved.

In 1996, Asakawa et al.1 isolated the monocyclofarne-
sane-type sesquiterpenoid (+)-1 (Fig. 1) from the non-
pungent group of liverwort Porella subobtusa. They
characterized its structure as dehydro-�-monocy-
clonerolidol by extensive NMR techniques except for
the absolute configuration which remained unknown.

In this letter we report the first enantioselective synthe-
sis of (+)-1 based on an original approach and starting
from an enantiopure building block for the introduc-
tion and determination of the absolute configuration.
The methodology used also allowed the synthesis of the
known �-cyclohomocitral,2 (+)-3, as a key intermediate
for the target molecule (+)-1, and of natural pallescen-
sone,3 (+)-4 (Fig. 1). Our synthetic plan is outlined in
Scheme 1.

We recently reported4 the synthesis of the required
karahana lactone (+)-2 [(1R,5S)-8,8-dimethyl-2-methyl-
ene-6-oxabicyclo[3.2.1]octan-7-one] and demonstrated
the utility of this enantiopure building block (or its
enantiomer) in the synthesis of natural products.5,6

Reduction of (+)-2 with diisobutylaluminium hydride
(DIBAL) as previously described,5 gave a mixture of
diastereomeric lactols 5 (and the opened aldehydic
form) in 95% yield.7 Exposure of the mixture of crude
products 5 to the �-methoxy substituted ylid obtained
by reacting methoxymethyltriphenyl-phosphonium
chloride8 with n-butyllithium in THF afforded 6 as a
mixture of stereomers in 82% yield.

Barton–McCombie deoxygenation9 of 6 was achieved
via the corresponding xanthate, which was reduced
smoothly with tri-n-butyltin hydride to provide 7 in an
overall yield of 90% for the two steps. Subsequent
hydrolysis at 0°C with 1 M HCl (THF/H2O) gave
�-cyclohomocitral (+)-3, [� ]D25 +31 (CHCl3)/lit.2 [� ]D20

+29.0 (CH2Cl2), in 79% yield.7 The chiral information
was encoded in this key intermediate, the absolute
configuration of which is (S). The aldehyde (S)-3 was
subjected to a Wittig olefination with the commercially
available 2-(triphenyl-phosphoranylidene) propionalde-
hyde to stereoselectively form the carbon chain
extended E-�,�-unsaturated aldehyde (+)-9 as a single
stereomer in 90% yield.7

Finally, a subsequent methylenation of (+)-9 with the
salt-free Wittig reagent prepared from methyltriphenyl-
phosphonium iodide and tert-BuOK yielded the target
molecule (+)-1 in 92% yield. The spectroscopic data (1H

Figure 1. Natural (+)-dehydro-�-monocyclonerolidol, (+)-1, is
represented with the absolute configuration as determined in
this work.
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Scheme 1. Reagents and conditions. (a) DIBAL, toluene, −70°C, 95%; (b) Ph3P+CH2OMeCl−, n-BuLi, THF, rt, 82%; (c) i. NaH,
CS2, MeI, rt, THF; ii. HSnBu3, cat. AIBN, toluene, reflux, 90% (two steps); (d) 1 M HCl/THF: 1/2, rt, THF, 79%; (e)
Ph3P�C(CH3)CHO, toluene, reflux, 90%; (f) Ph3P+MeI−, tert-BuOK, toluene, rt, 92%; (g) 3-bromofuran, n-BuLi, THF, −78°C,
80%; (h) NMO, cat. (n-Pr)4NRuO4, 4 A� MS, CH2Cl2, rt, 70%.

and 13C NMR) of synthetic (+)-1 matched those
reported for natural 11,7 and the specific rotation was
comparable in magnitude and the same in sign, [� ]D25

+10 (CHCl3)/lit.1 [� ]D20 +9.5 (CDCl3), indicating the
synthesis of the natural enantiomer. The (S)-configura-
tion was therefore assigned to natural dehydro-�-mono-
cyclonerolidol (+)-1.

Additionally, (+)-�-cyclohomocitral, (S)-3, was con-
verted into (+)-pallescensone, (S)-4, in two steps
according to published procedures.2,10 Reaction with a
solution of 3-furyllithium in THF afforded the
diastereomeric alcohols 8 in 80% yield, and they were
smoothly oxidized with tetrapropylammonium per-
ruthenate (TPAP)11 to give crystalline pallescensone
(mp 54°C) in 70% yield. The crystalline nature of
pallescensone has never been reported.

In conclusion, an asymmetric synthesis of a new mono-
cyclic sesquiterpenoid isolated from P. subobtusa has
been achieved for the first time, and the absolute
configuration has been determined. The merits of this
approach are high-yielding reaction steps and secured
absolute configuration.
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