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Abstract. We have described a convergent asymmetric synthesis of the polyol fragment of amphotericin B that utilizes a versatile 
dienolate aldol addition reaction of furfural to rapidly assemble the constituent polyol subunit. This strategy allows for the efficient 
synthesis of large quantities of the desired fragment while being inherently flexible to allow the construction of analogs. The 
synthesis of the C1-CI3 fragment of amphotericin requires only eleven steps and proceeds in 28% overall yield. © 1998 Elsevier Science 
Ltd. All rights reserved. 
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Amphotericin B (1) is the drug of choice for antifungal chemotherapy in life-threatening infections. 

However, this prominent member of the polyene-macrolide antibiotics is poorly tolerated and elicits adverse 

symptoms. 1 With a rising number of fungal infections resistant to existing remedies, the necessity for 

developing analogs with fewer undesirable side-effects is increasing. Additionally, synthetic strategies that 

provide access to biologically active models to elucidate the mode of action of these natural products are 

needed. 2 Several total and partial syntheses of 1 have been completed to date. 3 Stereochemical control in the 

syntheses of the polyol subunit have primarily relied on either the use of starting materials from the chiral pool 

or optically active epoxyalcohols prepared with the Sharpless asymmetric epoxidation process. 

Structural analysis of 1 reveals that segment CI-C,3 possesses a repeating stereoregular 1,3-diol motif 
that is interrupted only at C7-C ~. This distinctive feature of the polyol subunit suggests a convergent synthesis 

strategy utilizing fragments 2 and 3 as coupling partners. Importantly, the latent symmetry in these allows for 

the preparation of both from enantiomeric precursors. In this communication we report the implementation of 

such a strategy leading to a convergent and efficient synthesis of the amphotericin C]-Ct3 polyol fragment. 
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We have recently developed a catalytic, enantioselective process utilizing a Tol-BINAP°CuF 2 complex 
generated in situ that effects the aldol addition of dienolate 4 to a broad range of aldehydes in up to 98% yield 
and 95% ee (Eq 1). 4 In particular, the dienolate aldol adduct 6 is an attractive chiral building block for synthesis 
as a consequence of the ready availability of furfural ($ 0.02/gram) and the well-known chemistry of the 

aromatic heterocycle. 5 For example, oxidation of the electron-rich furan ring provides the corresponding 
carboxylic acid. As a test of the utility of adducts such as 6 and a demonstration of the versatility and 

experimental practicality of the aldol process, we embarked on a synthetic study leading to the convergent 
construction of the amphotericin polyol. 

The aldol addition of TMS-dienolate 4 to furfural (5) can be readily conducted on a multi-gram scale 
utilizing as little as 2 reel% catalyst to furnish aldol adduct 6 in 94% ee (Eq 1). We have observed that the 
dienolate adducts bearing the dioxenone moiety have a tendency to be crystalline and allow for ease of 
enantiomeric enrichment. Therefore, a single crystallization from hexanes/ether (1:3) furnished optically pure 
material 6 (>99 % ee by HPLC) in 95% yield. 6 

M'oe'~o "= Me .Me 
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The synthesis of the C8-C13 fragment of amphotericin commenced with the conversion of 6 to the 

corresponding n-butyl ester 7 in 94% yield by heating in n-BuOH (Scheme 1). 7 The desired 1,3-syn-diol was 
installed through a diastereoselective reduction of 7 employing the method of Prasad (NaBH 4, Et2BOMe, THF, 
-78 °C) 8 and protected as an acetonide by treatment with dimethoxypropane and PPTS (89 %, two steps). 

Analysis of the unpurified acetonide by tH NMR spectroscopy revealed that the syn diastereomer had been 
formed exclusively in the reduction of hydroxy keto ester 7. Treatment of the protected diol with LiA1H 4 
afforded a primary alcohol which was subsequently silylated with q3uM%SiCl and imidazole to afford 8 in 98 % 
yield (two steps). Oxidative cleavage of the furan was readily effected upon exposure of 8 to ozone (-78 °C, 

CH2CIJMeOH 1:1 ) to give a carboxylic acid which, without isolation, was esterified upon treatment with 

Me3SiCHN 2 to furnish ester 9. 9 Conversion of ester 9 to the corresponding aldehyde was carried out by 
reduction with LiAIH 4 followed by oxidation with the Dess-Martin periodinane reagent (71%, two steps). 10 
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The enantiomeric furan-dienolate adduct, ent-6, obtained by employing the (R)-ToI-BINAPoCuF 2 
complex under otherwise identical conditions to those described above, was used for the construction of the C L- 
CTpolyol subunit of 1. Following a sequence of transformations analogous to those discussed for 6, acetonide 
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10 was isolated in 81% overall yield from ent-6. Treatment of this substituted furan with ozone followed by 
reduction of the isolated ester with LiA1H 4 provided 11 in 94% yield. This primary alcohol was oxidized to the 
corresponding aldehyde which was transformed without purification to alkyne 2 using the ketophosphonate 
reagent recently described by Bestmann (65%, two steps). 11,12 
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With both fragments in hand, we next examined the coupling of 2 and 3, establishing the fully 

funtionalized backbone of the polyol subunit (Scheme 3). Lithiation of alkyne 2 (n-BuLl, -78 °C, THF) and 
addition to aldehyde 3 at -78 °C in THF produced propargyl alcohol 12a/12b in 85% yield as a 78:22 mixture 
of diastereomers. Hydrogenation of this mixture (PtO 2, H2) afforded the saturated secondary alcohol 13a/13b in 
91% yield. Stereochemical assignment was possible by ~H NMR analysis of 13a/13b and comparison of the 
spectra to that of similarly functionalized polyol fragments that have been reported in other synthetic routes. 
This study revealed that the predominant adduct formed in the alkyne addition step was the unnatural 
diastereomer of the desired amphotericin polyol fragment 12a. Nevertheless, the hydroxyl stereocenter could be 
installed with the requisite stereochemistry by oxidation of the mixture of 13a/13b (Pr4N(RuO4), NMO) and 
subsequent reduction with L-selectride following Nicolaou's procedure. 3a This protocol afforded 13b in 86% 
yield as a single stereoisomer as determined by ~H NMR spectroscopy. 
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In summary, we have described a convergent asymmetric synthesis for the polyol fragment of 
amphotericin B that utilizes a versatile dienolate aldol addition of TMS-dienolate 4 to furfural (5) to rapidly 



7016 

assemble the target molecule 13. This strategy allows for the efficient synthesis of large quantities of the 
desired fragment while being inherently flexible to allow the construction of analogs. Moreover, the synthesis 
of the polyol subunit 13 requires only eleven steps and proceeds in 28% overall yield. 
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