A solution of aldehyde VI (1.2 g, 5 mmoles) in THF (15 ml) was then added dropwise at 20-30°, and the mixture was stirred and heated at  $40-50^{\circ}$  for 3 hr. It was decomposed with ice-cold saturated NH<sub>4</sub>Cl and allowed to stand overnight. Ether and a little H<sub>2</sub>O were added, the ether layer was separated, and the aqueous layer was extracted with ether. The combined ether extracts were dried  $(MgSO_4)$ , the solvent was removed, and the residue was crystallized from petroleum ether, yielding 0.8 g of product.

6-(1-Hydroxy-2-nitroethyl)benzothiazole (VII).—A solution of 6-benzothiazolecarboxaldehyde (V) (3.25 g, 0.02 mole) and MeNO<sub>2</sub> (1.25 g, 0.02 mole) in dry Et<sub>2</sub>O (75 ml) was added to a mixture of 4 ml of 5 N NaOMe in MeOH and ether (10 ml) over a period of 10 min. After being stirred at 28° for 1 hr, the mixture was treated with AcOH (3 ml) in ether (20 ml) and stirred for another 15 min, and NaOAc was filtered off and washed with ether. The residue from the ether solution was a pale yellow solid. It was washed  $(H_2O)$  and dried and weighed 3.85 g.

## Antimalarials. IV.<sup>1</sup> A New Synthesis of $\alpha$ -(2-Pyridyl)- and $\alpha$ -(2-Piperidyl)-2-aryl-4-quinolinemethanols

## D. W. BOYKIN, JR., A. R. PATEL, AND R. E. LUTZ

Cobb Chemical Laboratory, University of Virginia, Charlottesville, Virginia 22901

Received November 14, 1967

New convenient syntheses of  $\alpha$ -(2-pyridyl)- and  $\alpha$ -(2-piperidyl)-2-aryl-4-quinolinemethanols are reported. The key steps involve addition of pyridyllithium to quinoline-4-carboxylic acids and subsequent one-step selective catalytic 8 H hydrogenation of the ketopyridyl system to the  $\alpha$ -piperidylmethanol. All of the  $\alpha$ -piperidylmethanols were highly active against *Plasmodium berghei* in mice but were phototoxic, whereas the  $\alpha$ -pyridyl analogs were considerably less phototoxic but were inactive.

This work is an extension of investigations carried out during the World War II antimalarial effort.<sup>2</sup> Earlier results had shown that 4-quinolylamino alcohols, particularly with a 2-aryl substituent as a deterrent to metabolic inactivation,<sup>3</sup> possessed considerable antiplasmodial activity against avian infections.<sup>2,4,5</sup>

 $\alpha$ -Pyridyl- and  $\alpha$ -Piperidylquinolinemethanols.—In a recent preliminary communication<sup>1a</sup> we have reported new syntheses for the title compounds. We now describe the details of the methods in full and report the antiplasmodial properties of these compounds.

The previous method for preparing  $\alpha$ -piperidylquinolinemethanols was a tedious and cumbersome six-step synthesis starting from quinoline-4-carboxylic acids.<sup>4</sup> The new synthesis which we have developed is a convenient two-step process which also starts from quinoline-4-carboxylic acid (see Scheme I). The initial step involves conversion of the guinoline-4carboxylic acid (I) by 2-pyridyllithium into the 2pyridyl ketone II (Table I). The second step is the selective reduction of the 2-pyridyl and carbonyl groups of II by hydrogenation in acid solution over  $PtO_2$  which produces the  $\alpha$ -piperidylquinolinemethanols (III) (Table III). Recent reports of similar catalytic reductions include the selective reduction of the pyridine nucleus in 2-(2-pyridyl)-1,2-diarylalkanols<sup>6</sup>

(1) (a) Part I: D. W. Boykin, Jr., A. R. Patel, R. E. Lutz, and A. Burger, J. Heterocycl. Chem., 4, 459 (1967). (b) Part III: A. Burger and S. N. Sawhney, J. Med. Chem., 11, 270 (1968). (c) Supported by U. S. Army Medical Research and Development Command, Contract No. DA-49-193-MD-2955, Contribution No. 311 to the Army Research Program on Malaria (Part I, No. 306), A. Burger and R. E. Lutz co-investigators.



(2) R. E. Lutz, et al., J. Am. Chem. Soc., 68, 1813 (1946).
(3) R. T. Williams, "Detoxication Mechanisms," John Wiley and Sons, Inc., New York, N. Y., 1959, p 655.

(4) A. D. Ainley and H. King, Proc. Roy. Soc. (London), B125, 60 (1938); (b) M. M. Rapport, A. E. Senear, J. F. Mead, and J. B. Koepfli, J. Am. Chem. Soc., 68, 2697 (1946); (c) R. F. Brown, et al., ibid., 68, 2705 (1946).

(5) F. Y. Wiselogle, "A Survey of Antimalarial Drugs, 1941-1945," J. W. Edwards, Ann Arbor, Mich., 1946.

(6) J. H. Burckhalter, W. D. Dixon, M. L. Black, R. D. Westland, L. M. Werbel, H. A. DeWald, J. R. Dice, G. Rodney, and D. H. Kaump, J. Med. Chem., 10, 565 (1967).



and reduction of the pyridine portion of a quinoline ring system.7

In the conversion II  $\rightarrow$  III, the selectivity of reduction presumably arises from selective protonation of the  $\alpha$ -pyridyl ring which enhances the susceptibility of that ring toward reduction. The presumption of preferential protonation of the  $\alpha$ -pyridyl ring is based upon steric considerations. Indeed, the hydrobromides of many 2,8-disubstituted quinolines cannot be obtained, presumably because of this effect,<sup>2</sup> which demonstrates the sensitivity of protonation to steric effects by substituents adjacent to the ring nitrogen. The reduction of II probably proceeds stepwise, first by reduction of the carbonyl group which is in conjugation with the imino groups of the pyridyl and quinolyl rings, followed by preferential reduction of the pyridyl ring. In sup-

<sup>(7)</sup> J. G. Cannon, S. A. Lazaris, and T. A. Wunderlich, J. Heterocycl. Chem., 4, 259 (1967).

 $T_{\rm ABLE} \ I^a$  2-Pyridyl 2-Aryl-4-quinolyl Ketones (11)



|          |                 |                   | R                           |               |                                |                                                                      |          |  |  |
|----------|-----------------|-------------------|-----------------------------|---------------|--------------------------------|----------------------------------------------------------------------|----------|--|--|
| No.      | R               | R'                | $\mathbf{R}^{\prime\prime}$ | Mp, °C        | Yield, $\mathbb{N}_{\ell}^{2}$ | Formula                                                              | Analyses |  |  |
| 1        | $CH_3$          | $\mathrm{CH}_3$   | II                          | 143 - 145     | 76                             | $\mathrm{C}_{23}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}$             | С, Н     |  |  |
| $^{2}$   | $CH_3$          | $CH_3$            | $CH_3$                      | 144 - 145     | 81                             | $\mathrm{C}_{24}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}$             | С, Н     |  |  |
| 3        | $CH_3$          | $CH_3$            | $OCH_3$                     | 146 - 147     | 68                             | $\mathrm{C}_{24}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}_{2}$         | С, П     |  |  |
| $4^{b}$  | $CH_3$          | $\mathrm{CH}_3$   | $\mathbf{Cl}$               | 175 - 176     | 65                             | $C_{23}H_{17}ClN_2O$                                                 | С, Н     |  |  |
| 5        | $CH_3$          | $CH_3$            | $\mathbf{F}$                | 140.5 - 142   | 62                             | $\mathrm{C}_{23}\mathrm{H}_{17}\mathrm{FN}_{2}\mathrm{O}$            | С, Н     |  |  |
| 6        | П               | $\mathrm{CF}_3$   | 11                          | 145 - 146.5   | 72                             | $\mathrm{C}_{22}\mathrm{H}_{13}\mathrm{F}_3\mathrm{N}_2\mathrm{O}$   | С,¢ Н    |  |  |
| 7        | П               | $\mathrm{CF}_{3}$ | $\mathrm{CH}_3$             | 162.5 - 163.5 | 74                             | $\mathrm{C}_{23}\mathrm{H}_{15}\mathrm{F}_3\mathrm{N}_2\mathrm{O}$   | С, Н     |  |  |
| 8        | II              | $CF_3$            | $OCH_3$                     | 162 - 163     | 66                             | $\mathrm{C}_{23}\mathrm{H}_{15}\mathrm{F}_3\mathrm{N}_2\mathrm{O}_2$ | С, Н     |  |  |
| 9        | II              | $CF_3$            | Cl                          | 192 - 193     | 85                             | $\mathrm{C}_{22}\mathrm{H}_{12}\mathrm{ClF_3N_2O}$                   | С, Н     |  |  |
| 10       | ΙI              | $CF_3$            | $\mathbf{F}$                | 206 - 207     | 60                             | $\mathrm{C}_{22}\mathrm{H}_{12}\mathrm{F}_4\mathrm{N}_2\mathrm{O}$   | С, Н     |  |  |
| 11       | $CH_3$          | н                 | H                           | 140.5 - 142   | 4.5                            | $\mathrm{C}_{22}\mathrm{H}_{16}\mathrm{N}_2\mathrm{O}$               | С, Н     |  |  |
| 12       | $CH_3$          | н                 | ${ m CH}_3$                 | 142-143       | 60                             | $\mathrm{C}_{23}\mathrm{H}_{18}\mathrm{N}_2\mathrm{O}$               | С, Н, N  |  |  |
| 13       | $CH_3$          | Н                 | $OCH_3$                     | 147 - 148     | .47                            | $\mathrm{C}_{23}\mathrm{H}_{18}\mathbf{N}_{2}\mathrm{O}_{2}$         | С, Н     |  |  |
| 14       | $CH_3$          | П                 | Cl                          | 192.5 - 193   | 50                             | $C_{22}H_{15}ClN_2O$                                                 | С, Н     |  |  |
| 15       | $\mathrm{CH}_3$ | П                 | F                           | 155-156.5     | 49                             | $\mathrm{C}_{22}\mathrm{H}_{15}\mathrm{FN}_{2}\mathrm{O}$            | C, H, N  |  |  |
| 16       | $OCH_3$         | II                | $CH_3$                      | 166 - 167     | 4.5                            | $\mathrm{C}_{23}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}_{2}$         | С, Н     |  |  |
| 17       | IT              | $CH_3$            | H                           | 130.5 - 132.5 | 84                             | $\mathrm{C}_{22}\mathrm{H}_{16}\mathrm{N}_{2}\mathrm{O}$             | С, Ц     |  |  |
| 18       | H               | $CH_3$            | $CH_3$                      | 142.5 - 144   | 59                             | $C_{23}H_{18}N_2O$                                                   | С, Н     |  |  |
| 19       | Η               | ${ m CH}_3$       | $OCH_3$                     | 143-145       | 66                             | $\mathrm{C}_{23}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}_{2}$         | С, П     |  |  |
| 20       | Н               | $CH_3$            | Cl                          | 144-146       | 70                             | $C_{22}H_{15}ClN_2O$                                                 | С, Н     |  |  |
| $21^{d}$ | н               | $CH_3$            | F                           | 141.5-142.5   | $\overline{c}$                 | $\mathrm{C}_{22}\mathrm{H}_{15}\mathrm{FN}_2\mathrm{O}$              |          |  |  |
| 22       | $\mathbf{F}$    | н                 | $ m CH_3$                   | 172 - 174     | 49                             | $\mathrm{C}_{22}\mathrm{H}_{15}\mathrm{FN}_2\mathrm{O}$              | С, П     |  |  |

<sup>a</sup> Unless otherwise noted solvent of recrystallization was EtOH. <sup>b</sup> Recrystallization solvent MeCN. <sup>c</sup>C: calcd, 69.84; found, 69.40. <sup>d</sup> This compound was used directly without analysis.

 $T_{\rm ABLE~II} \\ \alpha_{\rm j} 2\text{-Pyridyl-4-quinolinemethanols}~(\rm IV)$ 



| No. | R               | R'                           | R"                   | Mp, °C          | Yield, | Recrystn               | Formula                                                            | Analyses |
|-----|-----------------|------------------------------|----------------------|-----------------|--------|------------------------|--------------------------------------------------------------------|----------|
| 93  | CH              | CH                           | H                    | 163 - 164.5     | 80     | MeCN-CHCl <sub>a</sub> | $\mathrm{C}_{23}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}$           | C, H, N  |
| 20  | CH <sub>3</sub> | CH <sub>2</sub>              | $\widetilde{CH}_{8}$ | 193194          | 70     | EtOH                   | $C_{24}H_{22}N_2O$                                                 | C, H, N  |
| 25  | $CH_{2}$        | CH                           | $OCH_3$              | 185 - 187       | 90     | EtOH                   | $C_{24}H_{22}N_2O_2$                                               | C, H, N  |
| 26  | CH <sup>3</sup> | CH,                          | Cl                   | 167 - 169       | 87     | EtOH                   | $C_{23}H_{19}CIN_2O$                                               | C, H, N  |
| 27  | CH <sub>2</sub> | $\widetilde{CH}_{2}$         | F                    | 173 - 175       | 87     | EtOH                   | $C_{23}H_{19}FN_2O$                                                | C, H, N  |
| 28  | H H             | $CF_{2}$                     | H                    | 193 - 194.5     | 93     | MeCN                   | $C_{22}H_{15}F_{3}N_{2}O$                                          | C, H, N  |
| 29  | H               | $\overline{CF_3}$            | $CH_3$               | 178 - 179.5     | 85     | EtOH                   | $C_{23}H_{17}F_3N_2O$                                              | C, H, N  |
| 30  | H               | $\widetilde{CF_3}$           | $OCH_3$              | 210-212         | 80     | EtOAc                  | $C_{23}H_{17}F_3N_2O_2$                                            | C, II, N |
| 31  | Ĥ               | $\widetilde{CF}_3$           | Cl                   | 214–216 dec     | 74     | EtOH                   | $\mathrm{C}_{22}\mathrm{H}_{14}\mathrm{ClF_3N_2O}$                 | C, H, N  |
| 32  | II              | $\overline{\mathrm{CF}}_{3}$ | F                    | 178-181         | 95     | EtOH                   | $\mathrm{C}_{22}\mathrm{H}_{14}\mathrm{F}_4\mathrm{N}_2\mathrm{O}$ | С, Н, Х  |
| 33  | $CH_3$          | II                           | 11                   | 180 - 180.5     | 80     | EtOH                   | $C_{22}H_{13}N_2O$                                                 | С, Н, Х  |
| 34  | $CH_3$          | Н                            | $CH_3$               | 176 - 177.5     | 92     | EtOH                   | $C_{23}H_{20}N_2O$                                                 | С, Н, N  |
| 35  | $CH_3$          | II                           | $OCH_3$              | 191 - 192       | 95     | EtOH                   | $\mathrm{C}_{23}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}_{2}$       | С, Н, Х  |
| 36  | $CH_3$          | н                            | Cl                   | 184 - 186       | 85     | EtOH                   | $C_{22}H_{17}CIN_2O$                                               | C, H, N  |
| 37  | $CH_3$          | н                            | $\mathbf{F}$         | 176 - 178       | 70     | EtOH                   | $C_{22}H_{17}FN_2O$                                                | C, H, N  |
| 38  | $OCH_3$         | н                            | $CH_3$               | 178 - 180       | 80     | EtOH                   | $\mathrm{C}_{23}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}_{2}$       | С, Н, N  |
| 39  | н               | $CH_3$                       | H                    | 145 - 147       | 86     | MeCN-CHCl <sub>z</sub> | $\mathrm{C}_{22}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}$           | С, Н, Х  |
| 40  | H               | $CH_3$                       | $CH_3$               | 174 - 175       | 92     | EtOH                   | $\mathrm{C}_{23}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}$           | С, Н     |
| 41  | 11              | $CH_8$                       | $OCH_3$              | 154 - 156       | 90     | MeCN                   | $\mathrm{C}_{23}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}_{2}$       | С, Н     |
| 42  | П               | $CH_3$                       | Cl                   | 174 - 175.5     | 83     | MeCN                   | $\mathrm{C}_{22}\mathrm{H}_{17}\mathrm{ClN}_2\mathrm{O}$           | С, Н     |
| 43  | II              | $CH_3$                       | $\mathbf{F}$         | $139 - 141^{a}$ | 95     | EtOH                   | $\mathrm{C}_{22}\mathrm{H}_{17}\mathrm{FN}_{2}\mathrm{O}$          | С, П     |

"Sinters at 128-130".

Table III<sup>a</sup>  $\alpha$ ,2-Piperidyl-4-quinolinemethanols (III)



|           |              |                 |                 | Mn              | Viald |                                                                        |             | Antimalar | ial act. <sup>b</sup> |
|-----------|--------------|-----------------|-----------------|-----------------|-------|------------------------------------------------------------------------|-------------|-----------|-----------------------|
| No.       | R            | R′              | R''             | °C              | 77 W  | Formula                                                                | Analyses    | mg/kg     | Cures                 |
| 44        | $CH_3$       | $CH_3$          | $CH_3$          | 220-221         | 46    | $C_{24}H_{28}N_2O$                                                     | C, H, N     | 160       | 1                     |
| 45        | $CH_3$       | $CH_3$          | $OCH_3$         | 200 - 201       | 43    | $\mathrm{C}_{24}\mathrm{H}_{28}\mathrm{N}_{2}\mathrm{O}_{2}$           | C. H. N     | 40        | 00                    |
|           |              |                 |                 |                 |       |                                                                        | , ,         | 80        | $2^{d}$               |
| 46        | $CH_3$       | $\mathrm{CH}_3$ | Cl              | 212 - 214       | 19    | $C_{23}H_{25}ClN_2O$                                                   | С, Н, N     | 20        | 1                     |
|           |              |                 |                 |                 |       |                                                                        |             | 40        | 3                     |
| 47        | $CH_3$       | $\mathrm{CH}_3$ | $\mathbf{F}$    | $175 - 177^{e}$ | 29    | $\mathrm{C}_{23}\mathrm{H}_{25}\mathrm{FN}_{2}\mathrm{O}$              | С, Н, N     | 40        | 01                    |
|           |              |                 |                 |                 |       |                                                                        |             | 80        | $^{2}$                |
| <b>48</b> | Н            | $\mathrm{CF}_3$ | Н               | 197 - 198       | 46    | $\mathrm{C}_{22}\mathrm{H}_{21}\mathrm{F}_{3}\mathrm{N}_{2}\mathrm{O}$ | С, Н, N     | 20        | 2                     |
| 49        | H            | $\mathrm{CF}_3$ | $CH_3$          | 195 - 197       | 75    | $C_{23}H_{23}F_3N_2O$                                                  | С, Н, N     | 20        | 09                    |
|           |              |                 |                 |                 |       |                                                                        |             | 40        | $^{2}$                |
| 50        | $\mathbf{H}$ | $CF_3$          | $OCH_3$         | 182 - 184       | 53    | $C_{23}H_{23}F_3N_2O_2$                                                | С, Н, N     | 20        | 1                     |
|           |              |                 |                 |                 |       |                                                                        |             | 40        | 3                     |
| 51        | H            | $\mathrm{CF}_3$ | C1              | 181 - 182       | 38    | $\mathrm{C_{20}H_{20}ClF_{3}N_{2}O}$                                   | С, Н, N     | 20        | <b>5</b>              |
| 52        | $CH_3$       | $\mathbf{H}$    | Н               | $179 - 181^{h}$ | 38    | $\mathrm{C}_{22}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}$               | С, Н, N     | $640^{i}$ | 1                     |
| 53        | $CH_3$       | н               | $\mathrm{CH}_3$ | $214 - 216^{i}$ | 56    | $\mathrm{C}_{23}\mathrm{H}_{26}\mathrm{N}_{2}\mathrm{O}$               | С, Н, N     | 640       | $0^k$                 |
| 54        | $CH_3$       | Н               | $OCH_3$         | 206 - 207       | 58    | $\mathrm{C}_{23}\mathrm{H}_{26}\mathrm{N}_{2}\mathrm{O}_{2}$           | С, Н, N     | 160       | $0^{l}$               |
|           |              |                 |                 |                 |       |                                                                        |             | 320       | 2                     |
| 55        | $CH_3$       | Н               | Cl              | 217 - 219       | 12    | $\mathrm{C}_{22}\mathrm{H}_{23}\mathrm{ClN}_{2}\mathrm{O}$             | H, N; $C^m$ |           |                       |
| 56        | Н            | $CH_3$          | Η               | $188 - 189^{n}$ | 31    | $\mathrm{C}_{22}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}$               | С, Н, N     | 80        | 1                     |
|           |              |                 |                 |                 |       |                                                                        |             | 160       | 3                     |
| 57        | H            | $CH_3$          | $CH_3$          | 175 - 175.5     | 32    | $C_{23}H_{26}N_2O_2$                                                   | С, Н, N     | 80        | 10                    |
|           |              |                 |                 |                 |       |                                                                        |             | 320       | 4                     |
| 58        | н            | $\mathrm{CH}_3$ | Cl              | 169 - 171       | 23    | $\mathrm{C}_{22}\mathrm{H}_{23}\mathrm{ClN}_{2}\mathrm{O}$             | С, Н        | 20        | 2                     |
| 59        | Н            | $CH_3$          | $\mathbf{F}$    | 182.5 - 184     | 26    | $\mathrm{C}_{22}\mathrm{H}_{23}\mathrm{FN}_{2}\mathrm{O}$              | С, Н        | 40        | 2                     |
| -         |              | 1               | ODT 1.1.1       |                 |       |                                                                        | - ,         |           | _                     |

<sup>a</sup> Recrystallization solvent MeCN. <sup>b</sup> Antimalarial test results were supplied through the courtesy of Dr. David P. Jacobus of the Walter Reed Army Institute of Research. Tests were carried out in groups of five mice infected with *Plasmodium berghei*. The drugs were injected in doses of 20, 40, 80, 160, 320, and 640 mg/kg. Unless shown all the animals were cured at higher doses up to the maximum of 640 mg/kg. Enhancement in survival time of treated animals is regarded as evidence of antimalarial activity. A compound is considered to be active if the mean survival time of the treated group is more than double the mean survival time of the control group  $(7.0 \pm 0.5 \text{ days})$ ; it is said to be curative when the animal survives up to 60 days. <sup>e</sup> Active: increased survival time 7 days. <sup>d</sup> Two cures at 160 mg/kg. <sup>e</sup> Softens 140°. <sup>f</sup> Increased survival time 9.6 days. <sup>e</sup> Increased survival time 7.8 days. <sup>h</sup> Lit.<sup>9</sup> 182.5–182.9°. <sup>i</sup> Inactive below this dosage. <sup>i</sup> Softens 150°. <sup>k</sup> Increased survival time 9.6 days. <sup>i</sup> Increased survival time 9.2 days. <sup>m</sup> C: calcd, 72.02; found, 71.47. <sup>n</sup> Lit.<sup>9</sup> 187.8–188.3°. <sup>o</sup> One cure at 160 mg/kg.

port of the suggested steps are the following: (a) in a few cases the hydrogenation was interrupted before completion and the first-stage reduction product, the  $\alpha$ -pyridyl alcohol, was isolated; and (b) reduction of the 2-pyridyl ring of the alcohol **29**<sup>8</sup> proceeded smoothly under the conditions which reduce the ketones II to III.

That the nucleus of the quinoline ring in the ketones II was unaffected by the catalytic reductions was demonstrated by spectral methods. Uv absorption characteristics of 2-arylquinolines were obtained for the reduction products III. The nmr spectra obtained from III were as expected for the type. In our previous report<sup>1a</sup> the spectral data and their interpretations for a typical example of III were presented.

The ultimate validation of the new synthetic scheme as an unambiguous route to compounds of type III rests in the identity of samples of **53** obtained by both the new method and by the older method.<sup>4</sup> Further support comes from the compounds **52** and **56** which were prepared by the new scheme and have physical properties which are in accord with those reported in the

(8) Arabic numbers used are for the compounds listed in the tables.

literature for these compounds synthesized by the older route.<sup>9</sup>

Two apparent exceptions have been observed; compound 15 seemingly undergoes reduction beyond the desired stage III<sup>10</sup> and 19 gave intractable resins. Thus, it is necessary to confirm the structure of each new compound obtained by this new method.

Reductions of the pyridyl ketones II by sodium borohydride produces in good yields the  $\alpha$ -2-pyridylquinolinemethanols IV (Table II). The structure of the resulting compounds is based upon the method of synthesis and their spectral properties which are distinctive and corroborative (cf. ref 1a).

**Biological Activity.**—The compounds of types III and IV were tested for antimalarial activity against *Plasmodium berghei* in mice by the method of Rane.<sup>11</sup> All of the  $\alpha$ -pyridylquinolinemethanols of type IV (Table II) were inactive in this test, but they showed phototoxicity. However, all of the  $\alpha$ -piperidylquino-

(9) E. R. Buchman and D. R. Howton, J. Am. Chem. Soc., 68, 2718 (1946).
(10) This requires further investigation.

(11) T. S. Osdene, P. B. Russell, and L. Rane, J. Med. Chem., 10, 431 (1967).

|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        | TABLE IV <sup>a</sup>                                |                                                       |                                                           |                                                            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ЭСВ                                                                                                                                                                                                                                                                                                                                    | stituted Cinchonin                                   | ic Acus                                               |                                                           |                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        | COOH                                                 |                                                       |                                                           |                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                      | joon                                                 |                                                       |                                                           |                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                     | $\gamma \rightarrow \uparrow$                        |                                                       |                                                           |                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        | OO                                                   |                                                       |                                                           |                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        | $\gamma \approx 10^{\circ}$                          | ≻—R″                                                  |                                                           |                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        | R′                                                   |                                                       |                                                           |                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        | 1                                                    |                                                       |                                                           |                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        | Mp,                                                  | Yield,                                                |                                                           |                                                            |
| R               | $\mathbf{R'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R''                                                                                                                                                                                                                                                                                                                                    | °C                                                   | 70                                                    | Formula                                                   | Analyses                                                   |
| ${ m CH}_3$     | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $CH_3$                                                                                                                                                                                                                                                                                                                                 | 240–244 dec                                          | 90.9                                                  | $\mathrm{C}_{48}\mathrm{H}_{15}\mathrm{NO}_2$             | С, П                                                       |
| $CH_3$          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $OCH_3$                                                                                                                                                                                                                                                                                                                                | $237 - 238^{b}$                                      | 77.3                                                  | $\mathrm{C}_{1\delta}\mathrm{H}_{1\delta}\mathrm{NO}_3$   | С, Н                                                       |
| $CH_3$          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cl                                                                                                                                                                                                                                                                                                                                     | $272-274^{\circ}$                                    | 85.1                                                  | $\mathrm{C}_{17}\mathrm{H}_{12}\mathrm{ClNO}_2$           | С, Н                                                       |
| $CH_3$          | П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbf{F}$                                                                                                                                                                                                                                                                                                                           | 225 - 228                                            | 92.4                                                  | $\mathrm{C}_{17}\mathrm{H}_{12}\mathrm{FNO}_2$            | $C, H^d$                                                   |
| $CH_3$          | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CH_3$                                                                                                                                                                                                                                                                                                                                 | 244 - 246                                            | 75.2                                                  | $\mathrm{C}_{19}\mathrm{H}_{17}\mathrm{NO}_2$             | С, Н                                                       |
| $\mathrm{CH}_3$ | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $OCH_3$                                                                                                                                                                                                                                                                                                                                | $250 - 252^{f}$                                      | 70.2                                                  | $C_{19}H_{47}NO_3$                                        | C, H                                                       |
| $CH_3$          | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                      | 246 - 251                                            | 70.7                                                  | $C_{18}H_{14}FNO_2$                                       | С, П                                                       |
| П               | $\mathrm{CF}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                                                                                                                                                                                                                                                                                                                                      | 260265 dec                                           | 88.3                                                  | $\mathrm{C}_{17}\mathrm{H}_{10}\mathrm{F}_3\mathrm{NO}_2$ | С, Н                                                       |
| Н               | $CF_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CH_3$                                                                                                                                                                                                                                                                                                                                 | 268271 dec                                           | 83.5                                                  | $\mathrm{C}_{18}\mathrm{H}_{12}\mathrm{F}_3\mathrm{NO}_2$ | C, H                                                       |
| Н               | $CF_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $OCH_3$                                                                                                                                                                                                                                                                                                                                | 238-241   dec                                        | 86.1                                                  | $C_{18}H_{12}F_3NO_3$                                     | С, Н                                                       |
| Η               | $CF_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cl                                                                                                                                                                                                                                                                                                                                     | 265 - 275                                            | 94.4                                                  | $C_{17}H_9ClF_3NO_2$                                      | C, H                                                       |
| Π               | $CF_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                      | 257 - 269                                            | 89.5                                                  | $C_{17}H_9F_4NO_2$                                        | C, H                                                       |
| $OCH_3$         | II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $CH_3$                                                                                                                                                                                                                                                                                                                                 | 242 - 245                                            | 75.0                                                  | $C_{18}H_{15}NO_3$                                        | С, Н                                                       |
| $OCH_3$         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $OCH_3$                                                                                                                                                                                                                                                                                                                                | 242 - 245                                            | 89.9                                                  | $C_{18}H_{15}NO_4$                                        | С, П                                                       |
| $OCH_3$         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F                                                                                                                                                                                                                                                                                                                                      | 223-230                                              | 59.4                                                  | $C_{17}H_{12}FNO_3$                                       | С, Н                                                       |
| F               | ΙI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $CH_3$                                                                                                                                                                                                                                                                                                                                 | 274 - 275                                            | 92.5                                                  | $C_{17}H_{12}FNO_2$                                       | С, Н                                                       |
| $\mathbf{F}$    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cl                                                                                                                                                                                                                                                                                                                                     | 253-256                                              | 69.9                                                  | $C_{16}H_9ClFNO_2$                                        | С, П                                                       |
| 11              | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CH_3$                                                                                                                                                                                                                                                                                                                                 | 245 - 249                                            | 78.1                                                  | $C_{18}H_{15}NO_2$                                        | С, П                                                       |
| Н               | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                      | 201 - 206                                            | 83.2                                                  | $\mathrm{C}_{17}\mathrm{H}_{12}\mathrm{FNO}_2$            | С, Н                                                       |
|                 | $\begin{array}{c} \mathbf{R}\\ \mathbf{CH}_3\\ \mathbf{CH}_3\\ \mathbf{CH}_3\\ \mathbf{CH}_3\\ \mathbf{CH}_3\\ \mathbf{CH}_3\\ \mathbf{CH}_3\\ \mathbf{CH}_3\\ \mathbf{CH}_3\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{OCH}_3\\ \mathbf{OCH}_3\\ \mathbf{F}\\ \mathbf{F}\\ \mathbf{H}\\ $ | R         R' $CH_3$ H $CH_3$ H $CH_3$ H $CH_3$ H $CH_3$ H $CH_3$ CH_3 $CH_3$ CH_3 $CH_3$ CH_3 $H$ $CF_3$ $H$ $F$ $H$ $H$ $OCH_3$ $H$ $F$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$     | $\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$ |

<sup>a</sup> Recrystallized from EtOH. <sup>b</sup> T. Kaku [J. Pharm. Soc. Japan, 545, 577 (1927)] reported 230-231°. <sup>c</sup> N. P. Buu-Hoi, R. Royer, N. D. Xuong, and P. Jacquignon [J. Org. Chem., 18, 1209 (1953)]. <sup>d</sup> H: calcd, 4.30; found, 4.95. <sup>c</sup> A. H. Crosby, M.S. Thesis, University of Virginia, 1950, p 11. <sup>d</sup> Lit.<sup>b</sup> 239°.

linemethanols of type III were highly active but all consistently caused serious photosensitization in mice. The antimalarial test data for these compounds are shown in Table III. Of these  $\alpha$ -piperidylquinolinemethanols only two have been tested previously.<sup>5</sup> The "quinine equivalents" of **52** ranged from 0.3 against *P. gallinaceum* in chicks to 10.0 against *P. cathemerium* in ducks, and that of **56** from 0.6 against *P. gallinaceum* in chicks to 8.0 against *P. lophurae* in ducks.

## **Experimental Section**

Melting points were obtained on a Thomas-Hoover or a Fischer-Johns melting point apparatus and are uncorrected. Elemental analyses were performed by Galbraith Laboratories, Inc., and Micro-Tech Laboratories, Inc. Satisfactory uv and ir spectra were recorded for each compound listed in the tables. Nmr spectra were obtained for all compounds of type IV which were soluble in  $\text{CDCl}_3$  or  $\text{DMSO-d}_6$ ; random nmr determinations were made on all the other types. Where analyses are indicated for those elements were within  $\pm 0.4\%$  of the theoretical values.

2-Pyridyl Ketones (II). 2-Pyridyl 2-(p-Tolyl)-6-methyl-4quinolyl Ketone (See Table I).—The pyridyllithium (from 18.0 g of 2-bromopyridine in 100 ml of Et<sub>2</sub>O) was prepared essentially by the published method.<sup>12,13</sup> To the stirred solution of 2-pyridyllithium under N<sub>2</sub> and at  $-60^{\circ}$  was added rapidly (1–2 min) finely ground 6-methyl-2-(p-tolyl)quinoline-4-carboxylic acid (10.0 g) via a powder funnel. The addition of acid was followed after 5 min of stirring by the addition of 100 ml of anhydrous Et<sub>2</sub>O. The reaction mixture was allowed to stir for 3 hr at  $-60^{\circ}$ under N<sub>2</sub>, after which time the Dry Ice bath was removed and the solution was allowed to warm to 0–5°. At this temperature the reaction mixture was hydrolyzed cautiously by adding 100 ml

(12) J. P. Wibant, A. P. De Jonge, H. G. P. Van Der Voort, and P. Ph.
 H. L. Otto, Rec. Trav. Chim., 70, 1043 (1951).

(13) It is important that reactants and solvents are dry. The pyridyllithium solution should be prepared and maintained at a temperature at least below  $-45^{\circ}$  (cf. ref 12). of moist  $Et_2O$  to the stirred solution, followed by 100 ml of H<sub>2</sub>O. The resulting heterogenous mixture was stirred for 2–3 min and the layers were separated. The  $Et_2O$  solution (normally dark red) was evaporated under reduced pressure and the resulting residue was taken up in hot EtOH and allowed to crystallize.

**Piperidylquinolinemethanols** (III).  $\alpha$ -(2-Piperidyl)-2-(p-tolyl)-6-methyl-4-quinolinemethanol (See Table III).—2-Pyridyl 2-(p-tolyl)-6-methyl-4-quinolyl ketone (2 g) was dissolved in ca. 200 ml of hot absolute EtOH to which was added 2 ml of concentrated HCl (37–38%, sp gr 1.19). The EtOH solution was cooled and hydrogenated over 0.2 g of PtO<sub>2</sub> (Englehard) at 3.15 kg/cm<sup>2</sup>. Absorption of H<sub>2</sub> stopped essentially in ca. 1 hr. The catalyst was removed by filtering over Celite and the EtOH solution was concentrated to ca. 30 ml by evaporation under reduced pressure and was poured into a stirred NaHCO<sub>3</sub> solution. The resulting aqueous suspension of the free base was extracted with Et<sub>2</sub>O (ca. 300 ml). The Et<sub>2</sub>O was evaporated and the residue taken up in MeCN (25–40 ml).

Frequently the crude product oils out and/or is quite impure, hence several (six-ten) recrystallizations are required to obtain analytical samples. In a few runs a small amount of MeCNinsoluble, high-melting fibrous material was obtained, which was removed by filtration.

**Pyridylquinolinemethanols (IV).**  $\alpha$ -(2-**Pyridyl**)-2-(*p*-tolyl)-6methyl-4-quinolinemethanol (See Table II).—To a stirred slurry of 2.0 g of the pyridyl ketone 18 in 50 ml of EtOH was added 0.2 g of NaBH<sub>4</sub>. The mixture was stirred at room temperature for 1 hr and poured into 400 ml of H<sub>2</sub>O, and the solid was filtered. Recrystallization was from EtOH.

Ethyl 6-Methyl-2-(p-tolyl)cinchoninate.—6-Methyl-2-(p-tolyl)-4-cinchoninic acid (0.08 mole, 24.18 g) was suspended in 450 ml of absolute EtOH and 20 ml of concentrated H<sub>2</sub>SO<sub>4</sub> was added. The mixture was refluxed for 24 hr, cooled, and then poured onto ice-water and extracted with Et<sub>2</sub>O. The Et<sub>2</sub>O extract was washed (aqueous Na<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>O) and after drying (MgSO<sub>4</sub>) the Et<sub>2</sub>O was removed under reduced pressure. The yield of product was 20 g, mp 74–76°. Anal. (C<sub>20</sub>H<sub>19</sub>NO<sub>2</sub>) C, H, N.

 $\alpha$ -(2-Piperidyl)-2-(p-tolyl)-6-methyl-4-quinolinemethanol.<sup>9,14</sup>

(14) E. R. Buchman, H. Sargent, T. C. Myers, and D. R. Howton, J. Am. Chem. Soc., 68, 2710 (1946).

To a solution of the foregoing ester (0.06 mole, 18.32 g) and ethyl 6-benzamidocaproate<sup>4a</sup> (0.061 mole, 16.06 g) in 50 ml of dry  $C_6H_6$ , NaNH<sub>2</sub> (0.075 mole, 2.93 g) was added. The mixture was heated at 90° with vigorous stirring for 24 hr. After cooling the mixture to 50°, 32 ml of concentrated H<sub>2</sub>SO<sub>4</sub> in 50 ml of H<sub>2</sub>O was added and refluxing was continued for 65 hr. The C<sub>6</sub>H<sub>6</sub> was then distilled off azeotropically and the residue was made alkaline with 30% aqueous NaOH keeping the temperature below  $40^{\circ}$ . The mixture was then extracted with C<sub>6</sub>H<sub>6</sub>. After drving  $(MgSO_4)$  the solvent was removed under reduced pressure. The ir spectrum of the solid residue indicated that the N-benzoyl group was not cleaved. The material was therefore suspended again in a solution of 30 ml of concentrated  $H_2SO_4$  in 50 ml of H<sub>2</sub>O and the mixture was refluxed for 64 hr. After cooling it was made alkaline as before and extracted with C<sub>6</sub>H<sub>6</sub>. The dried  $C_6H_6$  solution upon concentration in vacuo left an oil to which 23 g of 48% HBr was added. Upon standing for a short while a yellow precipitate was obtained and filtered; the yield of 6-[6-methyl-2-(p-tolyl)cinchoninyl]-n-amylamine dihydrobromide was 5.5 g (34% based on recovered acid).<sup>15</sup>

The aqueous alkaline phase was acidified with concentrated HCl and the resulting precipitate was filtered, washed with a little EtOH, and dried. The weight of recovered 6-methyl-2-(p-tolyl)-4-cinchoninic acid from the unreacted ethyl ester was 7.8 g.

The foregoing amine dihydrobromide (0.008 mole, 4 g) was dissolved in hot 18% HBr and treated rapidly with a solution of Br<sub>2</sub> (0.008 mole, 1.28 g) in an equal volume of 48% HBr. The crude product was filtered and dispersed in 40 ml of boiling 95% EtOH, and H<sub>2</sub>O was added until a clear solution resulted. Cool-

(15) This intermediate and the ones which follow en route to 50 were used directly in the next synthetic step without characterization; *cf.* ref 9 and 14.

ing gave a light yellow precipitate. Concentration of the mother liquor yielded some additional product. The total yield of 6-bromo-6-[6-methyl-2-(p-tolyl)cinchoninyl]-*n*-amylamine dihydrobromide was 3.95 g (84%).

The foregoing product (1.5 g) was dissolved in 50 ml of 95% EtOH and 7 ml of 14% aqueous Na<sub>2</sub>CO<sub>3</sub> was added. The mixture was shaken for 1 hr in a stoppered bottle and then hydrogenated over 20 mg of PtO<sub>2</sub> in a Parr hydrogenation apparatus. The reaction mixture was filtered and washed (EtOH, hot CHCl<sub>3</sub>). The solvents were removed *in vacuo*. The residue was dissolved in hot CHCl<sub>3</sub> and filtered. Evaporation of the solvent left a brown residue. This was dissolved in absolute EtOH and the solution was saturated with dry HCl. After standing for a short while, Et<sub>2</sub>O was added and the precipitate was filtered to yield 0.5 g of the hydrochloride. A small amount of this salt was converted into the free base 53.

The ir spectra of the free base **53** and its hydrochloride salt were identical with those of the products obtained by catalytic reductions of the pyridyl ketone.

2-Aryl-4-quinolinecarboxylic Acids (Cinchoninic Acids) (I) (Table IV).—All of the substituted cinchophens required as starting material were synthesized by the Pfitzinger<sup>16</sup> condensation. In general, it was found that better yields were obtained when the mixtures of the appropriate isatins and substituted acetophenones in EtOH-KOH were refluxed for 30 hr; shorter periods of time gave poorer yields.

Acknowledgment.—The authors wish to thank Professor A. Burger for fruitful discussion before and during the course of this work.

(16) W. Pfitzinger, J. Prakt. Chem., 56, 283 (1897).

## Fluorine-Containing 4-Quinolinemethanols as Antimalarials<sup>1</sup>

ANDREW J. SAGGIOMO, KAZUO KATO, AND TOYO KAIYA

Research Institute of Temple University, Philadelphia, Pennsylvania 19144

Received September 30, 1967

Various fluorine-containing  $\alpha$ -dialkylaminomethyl-2-phenyl-4-quinolinemethanol derivatives have been prepared for evaluation against *Plasmodium berghei* in mice. Preliminary biological data indicate the fluorine compounds to be more potent at comparable doses than the corresponding chloro derivatives.  $\alpha$ -Di-*n*-butylaminomethyl-2-(4-chlorophenyl)-7-trifluoromethyl-4-quinolinemethanol when administered to mice in a single subcutaneous dose was curative at 40 mg/kg.

A high degree of antimalarial activity was discovered in the 4-quinolinemethanol series during the World War II program supported by the government. Reviews<sup>2</sup> of this work indicated that the most notable changes in activity in this series were caused by substituent variations in the aromatic rings. A considerable number of the chlorine-substituted  $\alpha$ -dialkylaminomethyl-2-phenyl-4-quinolinemethanols showed pronounced antimalarial action.

In the past two decades pharmacological investigations have revealed that the replacement of chlorine and hydrogen in biologically active compounds by fluorine and fluorine-containing groups has provided in many cases highly potent fluorine-containing therapeutic agents.

We now report the synthesis and potent antimalarial activity of various fluorine-containing 4-quinoline-

(1) This investigation was supported by the U.S. Army Medical Research and Development Command under Contract DA-49-193-MD-2950 and is Contribution No. 290 from the Army Research Program on Malaria.

(2) (a) F. Y. Wiselogle, "A Survey of Antimalarial Drugs. 1941-1945,"
J. W. Edwards, Ann Arbor, Mich., 1946; (b) G. R. Coatney, W. C. Cooper,
N. B. Eddy, and J. Greenberg, "Survey of Antimalarial Agents," Public Health Monograph No. 9, Washington, D. C., 1953.

methanol derivatives. These compounds were prepared as part of a program to develop new and moreeffective agents to combat drug-resistant malarial parasites.

**Chemistry.**—Our synthetic plan essentially paralleled those routes described previously for the preparation of 4-quinolinemethanols.<sup>3,4</sup> The general route to the fluorine-containing 4-quinolinemethanol derivatives commenced with the preparation of the appropriately substituted cinchophens (2-phenylcinchoninic acids). The latter (Table I) were obtained (a) from readily accessible anilines *via* the Sandmeyer isatin synthesis<sup>5,6</sup> and the Pfitzinger reaction<sup>3,7,8</sup> and (b) through the Doebner–Miller reaction<sup>3,9,10</sup> between the appropriate anilines, benzaldehydes, and pyruvic acid.

- (3) R. E. Lutz, et al., J. Am. Chem. Soc., 68, 1813 (1946).
- (4) S. Winstein, et al., ibid., 68, 1831 (1946).
- (5) T. Sandmeyer, Helv. Chim. Acta, 2, 234 (1919).
- (6) R. C. Elderfield in "Heterocyclic Compounds," Vol. 3, R. C. Elderfield, Ed., John Wiley and Sons, Inc., New York, N. Y., 1952, p 208.
- (7) W. Pfitzinger, J. Prakt. Chem., 56, 283 (1897).
- (8) For excellent reviews, see ref 6, Vol. 3, p 222; Vol. 4, p 47.
  (9) O. Doebner, Ann., 242, 265 (1887).
- (10) For a review, see ref 6, Vol. 4, p 25.