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ABSTRACT: Life process is amazing and it proceeds against the eternal law of entropy increase through molecular motion and 

takes energy from the environment to build high-order complexity from chaos to achieve evolution with more sophisticated 

architectures. Inspired from the elegance of life process and also to effectively exploit the undeveloped solid-state molecular motion, 

two unique chiral Au(I) complexes were elaborately developed in this study, in which their powders could realize a dramatic 

transformation from non-emissive isolated crystallites to emissive well-defined microcrystals under the stimulation of mechanical 

force. Such an unusual crystallization was presumed to be caused by molecular motions driven by the formation of strong 

aurophilic interactions as well as multiple .D�EEE� and F5F interactions. Such a prominent macroscopic off/on luminescent 

switching could also be achieved through extremely subtle molecular motions in the crystal state and presented a filament sliding 

occurred in a layer-by-layer molecular stacking fashion with no involvement of any crystal phase transition. Additionally, it had 

been demonstrated that the manipulation of the solid-state molecular motions could result in the generation of circularly polarized 

luminescence.

INTRODUCTION

The fundamental law of nature is that the total entropy of an 

isolated system is continually increasing if no work is done by 

external force.1 As a consequence, any system has the 

tendency to be chaotic and disordered. However, life process 

proceeds against this eternal law and it itself is one of negative 

entropy and takes energy from the environment to build 

high-order complexity from chaos.2 In another aspect, mobility 

as one of the inherent properties and a convincing indicator of 

living things, is also negative entropy, whereby life achieves 

evolution towards highly-organized and more sophisticated 

architecture.3 For instance, the precisely directed 

differentiation of pluripotent embryonic stem cells in tissue 

engineering and regenerative medicine is a typical example of 

a gradual evolutionary process towards a highly ordered and 

more refined direction.4 Similar examples are ubiquitous in 

life process. 

Inspired by such extraordinary achievements of 

highly-ordered structures and intriguing molecular motion of 

nature, scientists have devoted enormous efforts to enter the 

molecular world and decipher the inherent mechanism. In 

recent years, great progress has been achieved on this aspect. 

Among these endeavors, the biggest breakthrough is brought 

by the exploration of artificial molecular machines that mostly 

refer to the molecular motion in the solution phase.5 It has 

been recognized that the delicate regulatory control of 

molecular motion in the solution state is quite difficult due to 

the high mobility of molecules and the perturbation from the 

surrounding environmental factors such as the interactions 

from solvent molecules. Consequently, the successfully 

designed molecular machines are usually constituted by 

multiple complicated molecular components with precisely 

defined translational and rotary motion.5 This brings unlimited 

opportunities but also an incredibly big challenge for synthetic 

chemists. In another aspect, solid-state molecular motion is 

relatively less investigated because it is generally accepted that 

the mobility of molecules in the solid state is quite low due to 

strong intermolecular interactions.6 However, there is no doubt 

that the manipulation of molecular motion in the solid state is 

a viable approach to the eventual realization of molecular 

machines in our real-life applications.7 Given these critical 

points, we conjectured that could we in turn effectively exploit 

this solid-state motion and elaborately manipulate it to 

construct desired and ordered structures like nature? 

As a matter of fact, scientists and engineers already attempt 

to realize this point by utilizing external stimuli including light, 

heating, electric and magnetic fields or force.8 Amongst, 

mechanical force is very simple and is preferentially employed 

by researchers to induce solid-state molecular motion due to 
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mass spectroscopy with satisfactory results (Figures S1-S12). 

Both (R,R)-1 and (S,S)-1 exhibited high stability under 

ambient conditions. In addition, they exhibited typical AIE 

properties as anticipated. As presented in Figure 1B and 1C 

and Figure S13, their diluted THF solutions were completely 

non-emissive. However, upon the addition of a poor solvent 

such as water into their respective THF solutions with a 

content 99 vol%, green PL with a maximum at 504 nm was 

observed. According to the images of scanning electron 

microscope (SEM) imaging and patterns of powder X-ray 

diffraction (PXRD) (Figures S14 and 1D), the aggregates 

formed in 99% aqueous solution were obviously crystalline, 

implying their easy crystallization properties.

Mechanical Force Induced Emission, Crystallization and 

Related Mechanism 

As a matter of fact, the pristine powders of (R,R)-1 and 

(S,S)-1 obtained by rapid precipitation of their 

dichloromethane (DCM)/hexane mixtures were first 

investigated and they were all found to be non-emissive. 

Generally, AIE compounds often show strong PL in the 

aggregated state or solid state.14 Thus, the present phenomenon 

seems to be strange and unusual. However, surprisingly, when 

the pristine powder of (R,R)-1 was gently scratched using a 

spatula, bright green PL could be immediately observed under 

365 nm UV with an absolute quantum yield (QY) of 15%. The 

maximum wavelength was detected to be at ~500 nm (Figure 

2A) and the associated lifetime was 12 ms, indicative of 

phosphorescence nature of the light emission (Figure S15). 

Such impressive phenomenon compelled us to make a detailed 

analysis on its powder in different states. According to the 

PXRD patterns in Figure 2B, the pristine powder of (R,R)-1 

exhibited weak diffraction peaks to demonstrate a partially 

crystalline state. Amazingly, after scratching, all the peaks 

were dramatically intensified without any shift and were well 

consistent with those simulated from the single crystal X-ray 

data (details vide infra). These results clearly indicated that the 

mechanical force unexpectedly facilitated the crystallization of 

(R,R)-1 powder. At this point, the results looked even more 

abnormal and enigmatic.
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Figure 2. (A) PL spectra of (R,R)-1 powder in different states. 

�&�S�) = scratched. Inset: photos of (R,R)-1 powder in different 

states taken under 365 nm irradiation. (B) PXRD patterns of 

(R,R)-1 in different states and simulated from crystal structure. 

Accordingly, the morphology of (R,R)-1 powder were 

further carefully investigated in different states by SEM. More 

striking discovery was found as illustrated in Figure 3. The 

pristine powder of (R,R)-1 was composed of numerous 

disordered nano-sized crystallites and a lot of amorphous 

species (Figure 3A-3C). After being scratched, plenty of 

beautiful and well-defined rod-like crystals were formed with 

regular arrangements (Figure 3D-3F). Amplification of the 

image showed that the length of the most notable 

microcrystals in the field of view could reach above 1.5 T� 

(Figure 3F). To further confirm that the scratched powder of 

(R,R)-1 was indeed highly crystalline, in-situ scratching of its 

powder under fluorescence microscope was performed and 

numerous microcrystals appeared in places where the needle 

had passed (Figure S16A and S16C). Such ordered 

microcrystal structures were also verified by transmission 

electron microscopy (TEM) and the corresponding electron 

diffraction of the selected area (Figure S16B and S16D). This 

intriguing phenomenon is by no means an accident. The 

scratched powder of another isomer was also identified. As 

depicted in Figures 3G-3I and S17, (S,S)-1 showed completely 

similar turn-on phosphorescence behavior with a QY of 16% 

and consistent microcrystal formation after scratching.

Given their above unique properties, the following writing 

and erasing application by taking (R,R)-1 as a representative 

was tentatively performed. Figure 4A demonstrated that the 

luminescence of the scratched (R,R)-1 powder became weaker 

after heating to 90 oC for 30 min. When the temperature was 

raised to 100 oC that was far below the melting point of 

(R,R)-1, the emission of the molecule was completely 

quenched. The luminescence was only partially recovered 

when the temperature was naturally lowered to room 

temperature (RT). After being scratched, the molecule emitted 

intensely again. Such a switching could be repeated many 

times without fatigue. The PL spectral change of the scratched 

(R,R)-1 powder with temperature at nitrogen atmosphere 

provide more detailed and further convincing information for 

the above observations (Figure S18). When the above process 

was carefully analyzed, we were confused that why the 

luminescence could not be restored after cooling to RT? 

Considering its easy crystallization in both the aggregated 

state and the solid state, we initially surmised the reason 

should be that heating not only activated the molecular 

motions and promoted non-radiative attenuation, but also 

destroyed the crystalline structure and caused an amorphous 

transition. To validate the above presumption, the PXRD 

patterns of (R,R)-1 powder at different states were collected 

and presented in Figure 4B. Surprisingly, except the peak 

intensity, all the patterns obtained were almost identical and 

suggested their crystalline nature. However, we are even more 

confused and then a question arises: the state obtained by 

cooling from 100 oC to RT was highly crystalline, rather than 

amorphous as we originally envisaged, why it was still 

non-emissive? 

Page 3 of 12

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10 &m 1 &m 1 &m

1 &m5 &m 0.5 &m

1 &m

(R
,R

)-
1

 P
ri

s
ti

n
e

(R
,R

)-
1

 S
c

r*
e

d

(S,S)-1 Pristine (S,S)-1 Scr*ed

A B C

D E F

1 &m1 &m 0.5 &m

G H I

(S,S)-1 Scr*ed

Figure 3. (A-F) SEM images of (R,R)-1 in the pristine state (A-C) and the scratched B�&�S�)C state (D-F). (G-I) SEM images of (S,S)-1 in 

the pristine state (G) and the scratched state (H and I). 
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Figure 4. (A) Photos of (R,R)-1 powder in different states taken under 365 nm irradiation to indicate its mechanochromic and 

temperature-dependent properties. (B) PXRD patterns of (R,R)-1 powder in different states. 

Fortunately, the pristine crystals (Xtals) of these two 

complexes are easily obtained by slow diffusion of poor 

solvent hexane into their respective DCM solution (Tables S1 

and S2). It is especially worth noting that their Xtals 

recrystallized from DCM/hexane mixtures are non-emissive 

(Figure 5A and 5B), which is similar to the sample obtained 

by cooling the scratched powder from 100 oC to RT in terms 

of both the non-luminescent and the crystalline features. For 

clarity, (R,R)-1 was chosen as a representative for further 

investigation. If the above non-emissive Xtals of (R,R)-1 were 

gently scratched by a needle, bright green PL could be 

observed immediately (Figure 5E-5H and video in the 

Supporting Information). As illustrated in Figure 5I, the 

PXRD pattern of the scratched (R,R)-1 crystal was similar to 

that of its pristine Xtals, and both patterns were also identical 

to those of the corresponding powder in the pristine and 
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scratched states. Further combining the questions raised in the 

scratching and heating experiments, it was tentatively 

presumed that appropriate motions of (R,R)-1 molecules might 

occur in the microcrystal-producing process through 

scratching, heating its powder or in the process of scratching 

its crystals. These subtle changes could not result in an 

obvious transformation of crystal phase but could cause a 

macroscopically remarkable and visible off/on switching of 

luminescence. Here it is also worth noting that PXRD can 

provide some structural information but fails to give the 

important one and fine structure due to the random 

accumulation of millions of crystallites in the powder.15 

Another yellow-emissive crystal of (R,R)-1 was also obtained 

from DCM/EtOH mixture (Figure 5C and 5D, Figure S19). 

And its PXRD pattern was strikingly similar to that of the 

non-emissive form (Figure 5I) and all its crystal parameters 

are amazingly very close to those of the non-emissive crystal 

(details vide infra), which further reinforced the idea that 

(R,R)-1 could realize an off/on emission switching without 

changing the crystal phase via subtle molecular motions. 

Considering that if the non-luminescent nature of the 

pristine powders and crystals of (R,R)-1 and (S,S)-1 are 

resulted from the molecular motions, they should emit once 

such motions are restricted. Accordingly, the PL spectra of 

their crystals and the scratched powders were measured at low 

temperature (77 K). Excitedly, obvious yellow PL was 

observed in their originally non-emissive crystals (Figure 5J). 

Regarding their scratched powders, dramatically enhanced and 

red-shifted luminescence was observed at low temperature 

(Figure 5K), which is probably due to the formation of 

stronger aurophilic interactions.10g,16 Additionally, when high 

pressure was applied on the prisitne powders of (R,R)-1 and 

(S,S)-1, their PL was gradually enhanced (Figures 6A, 6B and 

S20). Accompanying the above change was obvious red shifts 

of the wavenumbers corresponding to the typical �B0V.C 

vibration in the Raman spectra (Figures 6C, S20 and S21), 

which implied much stronger intermolecualr interactions 

under high pressure. These observations further rationalize 

that molecular motions can result in a turn-on luminescent 

transition. When the pressure was released, the PL profiles 

could not return to their initial states.17 Thus, it was surmised 

that the formed intermolecular interactions in the present Au(I) 

systems under pressure might be very stable and difficult to 

break even after removal of the applied pressure (Figures 6D 

and S22).
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complexes also showed a similar off/on luminescent switching 

triggered by mechanical force. Such macroscopically 

remarkable changes were mainly originated from very subtle 

molecular motions showing a layer-by-layer filament sliding 

occurred in molecular stackings accompanied with a certain 

extent of compression within molecular layers. Thus, these 

processes do not involve any crystal phase transitions. The 

ground powders of these chiral complexes were also found to 

show CPL signals with _glum_ values of 4 × 10-3. Therefore, the 

present systems well demonstrated that extraordinary 

construction of ordered structures approaching the elegance of 

life process could be realized by simple manipulation of 

solid-state molecular motions. The subtle changes of 

molecular motion could also bring about dramatic 

macroscopic alterations of morphology and photophysical 

properties. It is anticipate that this work provides new insights 

into the exploration of molecular motions in the solid state and 

offers more inspirations to researchers to effectively exploit 

solid-state molecular motions to do meaningful work.
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