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Gram scale synthesis of alpha-cyanoalkylboronic esters via
direct B–B and C–N bond cleavage
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ABSTRACT
A direct metal-free approach for the synthesis of alpha-cyanoalkyl-
boronic esters from bis-diboron ester and azobis-nitrile compound is
reported under ambient temperature and pressure via a free radical
procedure.
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Introduction

Alkylborane or boronate compounds represent an important class of reagents in organic
synthesis of bioactive molecules and functional materials,[1–4] which can be converted to
a variety of useful building blocks by both catalytic and noncatalytic processes.[5–7] The
most common methods to access alkylboranes or boronates are executed by olefin
hydroboration[8–10] or by addition of organometallics to borate ester derivatives[11] (i.e.
pinBOMe). A more general approach has been the Miyaura borylation-type reaction of
alkyl (pseudo)halides,[12,13] and to date, several effective catalyst systems based on palla-
dium,[14] nickel,[15] copper,[16] zinc,[17] manganese,[18] cobalt,[19] platinum,[20] irid-
ium,[21] silver[22] and iron[23] have been reported. Although, these methods have been
successful, they usually require strictly anhydrous conditions, and many of them are
incompatible with polar or protic groups. There are significantly less methods with
metal-free conditions available for the synthesis of alkylboronic esters were
encountered.[24–28]

A strategy was developed by Matteson[29] for the synthesis of alkylboronate esters
through the coupling of a-haloboronates with organo-lithium or organo-magnesium
reagents (Figure 1). To form the desired carbon-carbon bond, this reaction proceeds
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through initial addition of the organometallic nucleophile to the electrophilic boron, fol-
lowed by a 1,2-migration.
In this report, we describe a high yielding access to alpha-cyanoalkylboronic esters

proceeding through B–B and C–N bond cleavage via a free radical procedure.

Results and discussion

Bis-diboron ester 1a and azobis-nitrile 2a were chosen as a substrate for the planned
reaction. On exposure, the reaction mixture with dry toluene under nitrogen atmos-
phere for 3 h delivered the alpha-cyanoalkylboronic esters with a 91% yield with elimin-
ation of nitrogen.

Reaction conditions: 1a (6.0 g, 23.63mmol, 1.0 equiv), 2a (4.07 g, 24.81mmol, 1.05
equiv) and dry toluene (90mL) for 3 h under a nitrogen atmosphere at 110 �C.
With the above reaction conditions in hand, the scopes of the alpha-cyanoalkylbor-

onic esters were investigated and the results are summarized in Table 1.
Reaction conditions: 1 (1.0 equiv), 2 (1.05 equiv) and dry toluene for 3 h under a

nitrogen atmosphere at 110 �C.
A plausible reaction mechanism is proposed in Scheme 1; it may be proposed that

initially, the two N-atom of azobis-molecules coordinate separately with two B-atoms of
bis-diboron ester to form the complex (A). The azobis-stabilized bis-diboron ester inter-
mediate (A) under goes hemolytic cleavage to delivered two molecules of alpha-cyanoal-
kylboronic esters 3.[30]

The alpha-cyanoalkylboronic esters 3a was functionalized with molecular iodine and
bromine in the presence of organo-lithium at 0 �C delivering the tert-halogenated cyan-
ide compounds 4 and 5 respectively with a good yield. (Scheme 2)

Figure 1. Matteson reaction.

2 S. R. SAHOO AND D. SARKAR



Table 1. Substrate scope for synthesis of alpha-cyanoalkylboronic esters.

Scheme 1. Plausible reaction mechanism.

Scheme 2. Product post-functionalization.
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Conclusion

In conclusion, we feel enthusiastic to report a direct way out of preparing a new class
of alpha-cyanoalkylboronic esters proceeding through a concomitant radical initiated
B–B and C–N bond cleavage. The reaction time is less and the overall yields are satis-
factory in all cases. The common hindrances with free radical fragmentation like poly-
merizations are not visible. The present protocol has been generalized and economic.

Experimental

General procedure (A)
A flame dried (backfilled with nitrogen) two necked 100mL round-bottomed flask
(14/19 joint) was equipped with a 1.5 cm teflon-coated magnetic stir bar. Bis-diboron
ester (1.0 equiv) and azobis-nitrile (1.05 equiv) was added, followed by the flask was
charged with dry toluene. The flask was immersed in a pre-heated (110 �C) oil bath
having a condenser with standard joint (14/19 joint) and nitrogen balloon (Figure 1 in
Supporting Information). The mixture was refluxed with stirring for 3 h under nitrogen
atmosphere. The resulting colorless solution was allowed to cool down to room tem-
perature (25 �C) overnight. The crystals were found to settle down (Figures 2 and 3 in
Supporting Information). The setup was then opened and the solvent was decanted out.
The crystals were washed subsequently five times repeatedly with dry hexane
(5� 20mL) and dried in vacuo (0.80mm Hg) for 1 h. The resulting colorless crystalline
solid delivered the title compound 3 (Figure 4 in Supporting Information
for compound 3a).
2-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanenitrile (TMBN) (3a):

According to the general procedure (A), bis-diboron ester (6.0 g, 23.63mmol, 1.0
equiv) and azobis-nitrile (4.07 g, 24.81mmol, 1.05 equiv) and dry toluene (90mL)
were used. The compound was obtained as a colorless crystalline solid and yield
8.39 g (43.01mmol, 91%). It has the following physical properties: mp 229–235 �C;
1H NMR (CDCl3, 400MHz) d¼ 1.27 (s, 12H), 1.56 (s, 6H) ppm; 13C{1H} NMR
(CDCl3, 100MHz) d¼ 23.47, 25.03, 39.37, 83.52, 121.43 ppm; 11B NMR (CDCl3,
128MHz) d¼ 30.48 ppm; IR (Neat Film, KBr): 2985, 2236, 1371, 1289, 1126 cm�1.
HRMS (ESI) calc’d for C10H18BNO2Na [MþNa]þ: 218.1328, Found: 218.1355.
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