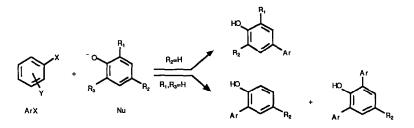
PHENOXIDE AND NAPHTHOXIDE IONS AS NUCLEOPHILES FOR S_{RN}¹ REACTIONS¹ : SYNTHESIS OF BIPHENYL AND PHENYLNAPHTHYL DERIVATIVES

René Beugelmans and Michèle Bois-Choussy*

Institut de Chimie des Substances Naturelles, C.N.R.S. 91198 Gif-sur-Yvette, France.

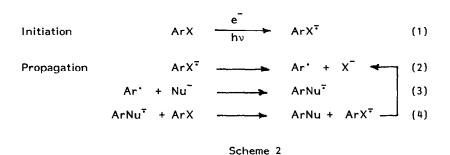
<u>Abstract</u> : Riphenyl or phenylnaphthyl derivatives are obtained by photostimulated S_{RN}^{-1} reactions between the anion of phenols or naphthols and variously substituted haloarenes.


Since more than a decade, the question is pending whether phenoxides can be used as nucleophiles on a reaction with halobenzene via S_{RN}^{1} mechanism. Reactions of halobenzene with the phenoxide ion $C_{6}H_{5}O^{-}$, stimulated either by solvated electrons from alkali metals² or electrolytically³ or by light^{4,5} gave negative results. A photostimulated reaction between iodobenzene and the sodium or potassium salts of p-methylphenol was almost quantitatively recovered.⁶ A very recent paper⁷ reports that electrostimulated S_{RN}^{-1} reactions between di-t-butylphenoxide and o-, m-, or p-chlorobenzonitrile gives hydroxy-biphenyls. This has led us to reinvestigate photostimulated S_{RN}^{-1} reactions between various nucleophiles ArO and diversely substituted ArX as a possible new acess to biaryl derivatives. The results are tabulated (Table).

We first repeated the experiment between iodobenzene and p-methylphenol (Nu₁) which, as reported,⁶ gave a complex reaction mixture from which we could nevertheless isolate the hydroxybiphenyl <u>1</u> (although in a very low yield) and identify <u>2</u>. This same nucleophile Nu₁, when opposed to bromobenzonitrile Ar₂Br, which carries an electron-withdrawing group (E.W.G.), yielded an appreciable amount of the biphenyl <u>3</u>. The p-methoxyphenoxide Nu₂, substituted by a stronger electron donating group (E.D.G.) than methyl, reacted under similar conditions much faster than Nu₁ towards Ar₁Br or Ar₂Br to give <u>5</u> + <u>6</u> (52%) or <u>7</u> (65%). The 2,6-di-<u>t</u>-butylphenoxide Nu₃ which was used for the electrostimulated S_{RN}¹ reactions,⁷ appeared also to be very efficient for photostimulated S_{RN}¹ reactions, and gave <u>8</u> in almost quantitative yield when reacted with Ar₂Br.

Substrate $Ar_n X = YC_6 H_4 X$	phenoxide	Conditions a) Time	Products	¹³ yield b)
Q [×]	-° ()_0%	. <u></u>		Ĵ.
$Ar_1: Y = H; X = I$ $Ar_2: Y = p.CN; X = Br$	^{Nu} 1 ^{Nu} 1	c) 1h c) 2h	$\frac{1}{3}$ $\frac{3\pi}{20\pi}$ $\frac{2}{4}$	traces traces
	⁻⁰ , , , , , , , , , , , , , , , , , , ,			CCH.
Ar_1 : Y = H; X = Br Ar_2 : Y = p.CN; X = Br	^{Nu} 2 ^{Nu} 2	c) 1hc) 2h	<u>5</u> 40% <u>6</u> <u>7</u> 65%	12%
;			HO Y Ar	
$Ar_2: Y = p.CN; X = Br$	Nu 3	c) lh	<u>8</u> 96%	
$Ar_2: Y = p.CN; X = Br$ $Ar_2: Y = p.CN; X = Br$ $Ar_3: Y = o.CN; X = Br$	^{Nu} 3 ^{Nu} 3 ^{Nu} 3	d) 1h c)e) 1h c) 1h	0 <u>8</u> 45% Ar <u>9</u> 88%	Br 39%
Ar ₄ : $Y = o.CONH_2$; $X = Br$ Ar ₅ : $Y = o.COCH_3$; $X = Br$	Nu ₃ Nu ₃	c) 1h c) 1h	<u>10</u> 85% 11 60%	
Ar ₆ : Y = 0.0CH ₃ ; X = Br	Nu ₃	c) 1h	<u>12</u> 78%	
$Ar_2: Y = p.CN; X = Br$	Nu ₄	c) 2h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \underline{13} & 407 \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} $	
			Â ¹ OH	
Ar_2 : Y = p.CN; X = Br	^{Nu} 5	c) 2h	16 85%	

a) General procedure : The phenoxide is generated from the phenol (3 mmol) by t-BuOK (3 mmol), in liquid ammonia (50 ml) at -33°C (dry ice condenser) in a Pyrex vessel and the substrate (1 mmol) is added under argon. After consuption of the substrate, NH₄Cl is added, NH₄ is evaporated and the extraction is carried out by CH₂Cl₂ after addition of water. b) Calculated on the substrate, pure isolated product. c) UV stimulation by a high pressure mercury UV source 550W. d) In the dark. e) +p-DNB-20 mmol%.


The substrate may carry as well an electro-attracting group (CN, CONH, COMe); as an electron-donating one (OMe) ortho to the leaving group^{8,9} to give the corresponding biphenyl derivatives 9 - 12.

Scheme 1

The 1- or 2-naphthol derived nucleophiles also react with p-bromobenzonitrile under S_{RN}^{1} conditions. Whereas 1-naphthol gave a mixture of 2- and 4-phenylnaphthyl derivatives 13 and 14 together with the 2,4-diphenylnaphthyl derivative 15,2-naphtol as expected gave the single product 16.

We have taken the highest yield reaction between Ar_2Br and Nu_3 for mechanistic investigation; no reaction takes place in the dark and a partial but significant inhibition of the photostimulated reaction is obtained by p-dinitrobenzene (p-DNB). These facts are compatible with an S_{RN}^{1} mechanism^{4,10} depicted on Scheme 2 since : i) photostimulation is required to produce ArX^{-} (step 1), ii) p-DNB is easily reduced to a stable p-DNB⁻ by ArX^{-} or $ArNu^{-}$ thus interrupting the chain propagation (steps 2, 3, 4).

The synthetic scope of the photostimulated S_{RN}^{11} is thus considerably extended by the above reported reactions which provide a straightforward access to a variety of biphenyl or phenylnaphthyl derivatives starting from haloarenes and various phenols¹² or naphthols.

References and notes

- S_{RN} 1 reactions n° 22 Previous Report : R. Beugelmans, M. Bois-Choussy and P. Gayral, <u>Europ. J. Med. Chem.</u>, submitted for publication.
- 2. R.A. Rossi and J.F. Bunnet, J. Org. Chem., 39, 3020 (1973).
- C. Amatore, J. Chaussard, J. Pinson, J.M. Savéant and A. Thiébault, <u>J. Am. Chem.</u> Soc., 101, 6012 (1979).
- R.A. Rossi and R.H. de Rossi, "Aromatic Substitution by the S_{RN}1 Mechanism". ACS Monograph 178, ACS Washington (1983).
- 5. R.A. Rossi and A.B. Pierini, J. Org. Chem., 45, 2914 (1980).
- 6. M.F. Semmelhack and T. Bargar, J. Am. Chem. Soc., 102, 7765 (1980).
- 7. N. Alam, C. Amatore, C. Combellas, A. Thiébault and J.N. Verpeaux, <u>Tetrahedron</u> <u>Lett.</u>, <u>49</u>, 6171 (1987). We gratefully thank C.A. and A.T. for kindly communicating their report before publication.
- For a review on the effect of ortho substituents in S_{RN}1 reactions see: J.F. Bunnett, E. Mitchel and C. Galli, <u>Tetrahedron</u>, <u>41</u>, 4119 (1985) where a report on the effect of nitrile⁹ had been omitted.
- 9. R. Beugelmans, M. Bois-Choussy and B. Boudet, Tetrahadron, 38, 3479 (1982).
- 10. J.F. Bunnett, Acc. Chem. Res., 11, 413 (1978).
- 11. For a review: R. Beugelmans, Bull. Soc. Chim. Belg., 93, 547 (1984).
- 12. Heteroaryl halides belonging to the quinoline series are also suitable substrates for S_{pM} reactions with phenoxides: Ref. 1.
- 13. All compounds including those reported in the literature : <u>1</u> : V.A. Koptyug and A.V. Golounin, <u>Zh. Org. Khim.</u>, 2158 (1973), CA <u>80</u>, 36781w (1974); <u>3</u> : D.F. Bowman, F.R. Hewgill and B.R. Kennedy, <u>J. Chem. Soc. (C)</u>, 2274 (1966); <u>5</u> : A. Rieker and K. Schaffer, <u>Ann.</u>, <u>689</u>, 78 (1965) have spectroscopic data (MS, ¹H NMR, ¹³C-NMR for <u>4</u>) in accord with the proposed structure.

(Received in France 22 December 1987)