

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Autocatalytic Carbonyl Arylation through In-Situ Release of Aryl Nucleophiles from N-Aryl-N'-Silyldiazenes

Authors: Clément Chauvier, Lucie Finck, Elisabeth Irran, and Martin Oestreich

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201916004 Angew. Chem. 10.1002/ange.201916004

Link to VoR: http://dx.doi.org/10.1002/anie.201916004 http://dx.doi.org/10.1002/ange.201916004

WILEY-VCH

COMMUNICATION

WILEY-VCH

Autocatalytic Carbonyl Arylation through In-Situ Release of Aryl Nucleophiles from *N*-Aryl-*N*'-Silyldiazenes

Clément Chauvier⁺, Lucie Finck⁺, Elisabeth Irran, and Martin Oestreich*

Dedicated to Professor Rolf Huisgen on the occasion of his 100th birthday and to Professor Reinhard Brückner on the occasion of his 65th birthday

Abstract: A method for the catalytic generation of functionalized aryl alkali metals is reported. These highly reactive intermediates are liberated from silyl-protected aryl-substituted diazenes by the action of alkali metal silanolates, resulting in desilylation and loss of N₂. Catalytic quantities of those Lewis bases initiate the transfer of the aryl nucleophile from the diazene to carbonyl and carboxyl compounds with superb functional-group tolerance. The aryl alkaline metal can be decorated with electrophilic substituents such as methoxycarbonyl or cyano as well as halogen groups. The synthesis of an unknown cyclophane-like [4]arene macrocycle from a 1,3-bisdiazene combined with a 1,4-dialdehyde underlines the potential of the approach.

Synthetic chemistry without aryl nucleophiles based on lithium, magnesium (Grignard), and zinc is not imaginable anymore.^[1] Usual methods of their preparation include reductive metalation and halogen–metal exchange of aryl halides, and the resulting polar organometallic reagents can be converted into one another by transmetalation. These procedures are not always chemoselective, and the high reactivity of those nucleophiles is often detrimental to their functional-group tolerance. Especially Knochel and co-workers provided viable solutions to these problems, thereby turning polyfunctionalized zinc and Grignard reagents into everyday chemicals.^[2–4]

An alternative to these reactive compounds are easy-tohandle and storable, less polarized aryl pronucleophiles based on silicon, mainly their trimethylsilyl derivatives.^[5] Aside from the fact that these are typically accessed from one of the aforementioned reagents, their fluoride- or alkoxide-promoted activation for any transfer to aldehydes is only applicable to electron-deficient aryl groups attached to the silicon atom,[6] even parent Ph-SiMe₃ does not react^[7,6e] (Scheme 1, Eq. 1). That gap was closed with the more electrophilic Ph-Si(OMe₃) and Bu₄N⁺F⁻ (TBAF) as the Lewis-basic activator (Scheme 1, Eq. 2).^[8] To overcome this limitation, we considered the related activation of N-aryl-N'-silyldiazenes (Ar-N=N-SiR₃) that can be readily synthesized in two steps from aryl hydrazines with no need for aryl halides.^[9] We envisioned that Lewis base activation of Ar-N=N-SiR₃ could unleash a reactive aryl nucleophile equivalent by desilylation and denitrogenation. This conceptual framework was formulated by Bottaro forty years ago (Scheme 1,

[*] Dr. C. Chauvier,^[+] L. Finck,^[+] E. Irran, Prof. Dr. M. Oestreich Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 115, 10623 Berlin (Germany) E-mail: martin.oestreich@tu-berlin.de Homepage: http://www.organometallics.tu-berlin.de

[⁺] These authors contributed equally to this work.

Eq. 3), yet with no demonstration of its synthetic value and using NaOMe as an *overstoichiometric* activator.^[10] This seminal contribution has been largely overlooked and, hence, did not witness any further development. The present work shows how this approach can be turned into a *catalytic* process with excellent functional-group tolerance in both the diazene and the carbonyl compound, including transformations of a difunctional building block (Scheme 1, Eq. 4).

Aryl-substituted silanes as aryl pronucleophiles

FG = EWG and EDG

Scheme 1. Silicon-based aryl pronucleophiles in transition-metal-free 1,2-addition to aldehydes (alcohols after hydrolysis). EWG = electron-withdrawing group; EDG = electron-donating group; FG = functional group; X = aryl substituent; R = alkyl or aryl group. *t*Bu-P4 = 3-*tert*-butylimino-1,1,1,5,5-hexakis(dimethylamino)-3-{[tris(dimethylamino)phosphoranylidene]amino}-1 λ^5 ;3 λ^5 ;5 λ^5 -1,4-triphosphazadiene (Schwesinger base); TBAF = tetrabutylammonium fluoride.

We began our investigation with testing various initiators in the reaction of 4-tolyl-substituted diazene **1a** and benzaldehyde (**2a**) in THF (Table 1). Lithium salts such as the alkoxide *t*BuOLi [pK_a (H₂O) \approx 16.5] and the less basic silanolate Me₃SiOLi^[11] [pK_a (H₂O) \approx 12.7] both initiated the reaction at room temperature, affording the silyl ether **3aa** in high yields within one hour (entries 1 and 2). With the same initiator loading of 10 mol%, improved reaction kinetics were achieved with the sodium and potassium salt of trimethylsilanol, respectively;^[11] full conversion was reached in less than five minutes accompanied by vigorous evolution of N₂ (entries 3 and 4). The same outcome was obtained with 5.0 mol% Me₃SiONa but yields dwindled with 1.0

Supporting information for this article is given via a link at the end of the document.

COMMUNICATION

WILEY-VCH

mol% Me₃SiONa or Me₃SiOK even at prolonged reactions times (entries 5–7). These results emphasize the influence of the alkali metal cation in this reaction. Polar co-solvents such as *N*-methylpyrrolidone (NMP) accelerated the already fast reactions. For completion, we included fluoride sources such as CsF and anhydrous TMAF into our screening. CsF did promote the aryl transfer yet at low reaction rate (entry 8) while essentially no conversion was seen with the poorly soluble ammonium fluoride (entry 9).

Table 1: Selected examples of the optimization.

1 a (1	_N _{≦N} _SiMe ₃ + .2 equiv) 2a (0.	initia (catal TH R ⁻ 10 mmol) – N	tor ytic) F T I ₂	OSiMe ₃
Entry	Initiator	mol%	Time	Yield [%] ^[a]
1	<i>t</i> BuOLi	10	1 h	91
2	Me ₃ SiOLi	10	1 h	> 95
3	Me₃SiONa	10	< 5 min	98 (70) ^[b]
4	Me₃SiOK	10	< 5 min	90
5	Me₃SiONa	5	< 5 min	> 95
6	Me₃SiONa	1	20 h	6
7	Me ₃ SiOK	1	20 h	58
8	CsF	10	20 h	60
9	TMAF	10	20 h	trace

[a] Determined by calibrated GLC analysis with tetracosane as an internal standard. [b] Isolated yield on a 0.40 mmol scale after flash chromatography on silica gel in parentheses. TMAF = tetramethylammonium fluoride.

It is important to note that hydrazine **4a** had never been detected by GLC analysis in those experiments. This would emerge from the addition of the aryl nucleophile across the N=N double bond of the diazene followed by silylation.^[12] This suggests that the aldehyde substrate outcompetes the diazene as the electrophile. The silylated arene **5a**, which formally arises from the silylation of the corresponding aryl anion, did usually form in trace amounts, likely because of the slight excess of the diazene reagent **1a** employed. In turn, compounds **4a** and **5a** were the major products of the alkoxide-initiated degradation of **1a** in the absence of the aldehyde substrate (see the Supporting Information for details).

To demonstrate the scope of the new method, we continued with 10 mol% Me₃SiONa in THF at room temperature as the standard procedure. Diazenes with silyl groups other than Me₃Si were examined (**1b–d**; Table 2, entries 1–3). It was only the Me₂PhSi-substituted derivative **1d** that behaved similarly to **1a**, affording the silyl ether **3da** in 86% yield. Conversely, **1b** with a Et₃Si group and **1c** with a *t*BuMe₂Si group exhibited either low or no conversion of benzaldehyde. However, little re-optimization showed that Me₃SiOK instead of Me₃SiONa promotes the aryl transfer from **1b** to benzaldehyde, and **3ba** was isolated in 76%

yield. The reaction of sterically more hindered 1c required the addition of 18-crown-6, and the "more naked" silanolate and alkoxide intermediate enabled the formation of the silvl ether 3ca in 68% yield. We also prepared a wide range of Me₃Sisubstituted diazenes with functionalized aryl groups (1e-o; Table 2, entries 4–14). Without exception, these reacted in good yields under the standard setup. The successful reaction of electron-rich 1f to silvl ether 3fa closes an important gap (cf. Scheme 1, top). Further notable examples include the aryl transfers from diazenes 1g, 1h, and 1n containing sensitive functional groups (CO₂Me in 3ga, CN in 3ha, and NO₂ in 3na). Even the transfer of aryl nucleophiles containing a bromo or iodo groups as in 1k and 1l (competing halogen-metal exchange) or a fluorine substituent in the ortho-position as in 1m (competing β -elimination/arvne formation) proceeded in high vields. These examples highlight the chemoselectivity of the method and its orthogonality with classical carbonyl arylations. The productive combination of these diazenes and a broad range of aromatic, heteroaromatic, and cinnamic aldehydes 2b-i, is further evidence of this (Figure 1). Enolizable aldehydes were not compatible but α -branched 2-ethylbutyraldehyde (2j) yielded the silvl ether 3aj in 70% yield along with the silvl enol ether in 30% yield. Other aliphatic aldehydes 2k and 2l reacted with high chemoselectivity to furnish 3ak and 3fl in good yields (Figure 1).

Table 2: Scope I: Variation of the silyl and aryl groups of the diazene.

FG		+ -	Me ₃ SiONa (10 mol%) THF BT		€. ≷3
1b-o (1.2 equiv) 2a (0.40 mmol)		$-N_2$	3ba–oa		
Entry	Diazene	SiR₃	FG	Silyl ether	Yield [%] ^[a]
1 ^[a]	1b	SiEt₃	4-Me	3ba	76
2 ^[b]	1c	Si <i>t</i> BuMe ₂	4-Me	3ca	68
3	1d	SiMe ₂ Ph	4-Me	3da	86
4	1e	SiMe ₃	н	3ea	72
5	1f	SiMe ₃	4-OMe	3fa	82
6 ^[a]	1g	SiMe ₃	4-CO ₂ Me	3ga	80
7	1h	SiMe ₃	4-CN	3ha	72
8	1i	SiMe ₃	4-F	3ia	99
9	1j	SiMe ₃	4-Cl	3ja	81
10	1k	SiMe ₃	4-Br	3ka	87
11	11	SiMe ₃	4-1	3la	83
12	1m	SiMe ₃	2-F	3ma	65
13 ^[a]	1n	SiMe ₃	3-NO ₂	3na	67
14	10	SiMe ₃	2,5-Me ₂ , 4-F	3oa	73

[a] Me₃SiOK instead of Me₃SiONa. [b] Me₃SiOK/18-crown-6 (1.0:1.2 molar ratio) instead of Me₃SiONa.

Figure 1. Scope II: Various diazene/aldehyde combinations.^[a] [a] Unless noted otherwise, the reactions were performed on a 0.40 mmol scale with 10 mol% Me₃SiONa in THF at room temperature. [b] Me₃SiOK instead of Me₃SiONa. [c] Formed along with the corresponding silyl enol ether in 30% yield. [d] Yield determined by NMR spectroscopy using CH₂Br₂ as an internal standard. [e] The reaction was performed on a 1.8 mmol scale with 5.0 mol% Me₃SiOK in THF at room temperature.

Less electrophilic ketones were also competent substrates but, as is the case of enolizable acetophenone, deprotonation was the predominant pathway to afford the corresponding silyl enol ether in 60% yield (not shown, see the Supporting Information). Conversely, 6a-d reacted in the planned way with Me₃SiOK as the initiator (Scheme 2, top). No reaction or low conversion were observed with Me₃SiOLi and Me₃SiONa, presumably because of the low reactivity of intermediate tertiary alkoxide and, hence, its inability to maintain catalytic turnover. Unlike the 1,2-selective aryl transfer to *trans*-cinnamaldehyde ($2i \rightarrow 3ai$, Figure 1), the reaction of the aryl nucleophile with trans-chalcone (6c) led to the formation of both the 1,2- (7ac, 65%) and the 1,4-adduct (6%). Moreover, modification of the reaction setup with a higher loading of Me₃SiOK (20 mol%) and slow addition of the diazene (3 equiv) to a solution of a methyl benzoates 8 and THF even allowed for a two-fold aryl transfer to give the tertiary silvl ethers 9 in reasonable yields (Scheme 2, bottom). To the best of our knowledge, this is an unprecedented catalytic arylation of unactivated carboxylic acid derivatives with non-stabilized carbanion equivalents.^[13] We note here that the occurrence of this nucleophilic addition is also diagnostic of the in-situ formation of highly reactive aryl anions.^[14]

Scheme 2. Scope III: Ketones and esters as electrophiles. [a] Formed along with the corresponding 1,4-adduct in 6% yield.

Our next plan was to explore the possibility as to whether the diazene platform would also enable reactions of aryl dinucleophiles.^[15] For this, we synthesized the 1,3-bismetalated benzene equivalent **1p** from 1,3-diaminobenzene in 26% yield over three steps (see the Supporting Information for details and crystallographic characterization^[16]). The bisdiazene **1p** is a storable, crystalline deep blue solid with decent thermal stability (up to 130 °C). The reaction of **1p** and benzaldehyde (**2a**, 1.4 equiv) in the presence of 20 mol% Me₃SiOK afforded diol **10pa** in 65% yield after deprotection with TBAF (Scheme 3, left).

Scheme 3. Scope IV: Equivalent of an aryl bisnucleophile in the reaction with an aldehyde (left) or a dialdehyde (right); molecular structure of a cyclophane-like [4]arene macrocycle (middle, thermal ellipsoids are shown at the 50%

COMMUNICATION

probability level and all hydrogen atoms except the two pointing toward the center are omitted for clarity).

The fact that 10pa had been employed as a precursor of porphinoid macrocycles^[17] inspired us to make use of building block 1p in the practical assembly of otherwise difficult to prepare macrocycles. The idea was to combine 1,3-difunctional 1p and terephthalaldehyde (2m) with its 1,4-substitution pattern, hoping that the alternate 1,3/1,4 motifs of the rings would result in cyclization rather than polymerization to poly(diarylcarbinols). The reaction of 1p and 0.80 equiv 2m initiated with 20 mol% Me₃SiOK led to a complex product mixture of poly- and oligomeric material, from which a tetrameric macrocyclic compound could be identified by HRMS analysis.[18] Defunctionalization of the crude residue, that is removal of the silyl ethers by a reported procedure,^[19] considerably simplified the analysis and allowed for the isolation of the unknown cyclophane-like [4]arene macrocycle 11pm in 10% yield over two steps (Scheme 3, right).[20] This seemingly low yield compares well with others from difficult macrocyclizations involving aromatic precursors lacking preorganization, especially in relatively high concentration (0.1 M).[21] The molecular structure of 11pm was confirmed by X-ray diffraction^[16] (Scheme 3, middle) and shows preference for a chair-like conformation in the solid state whereas a boat-like conformation was computed to be more stable by approximately 0.5 kcal/mol (see the Supporting Information for details). Compound 11pm is the simplest, unfunctionalized member of an emerging class of macrocycles^[22] hybrid currently comprising iust two derivatives.[23]

Although an in-depth mechanistic analysis is still pending, we propose the autocatalytic cycle outlined in Scheme 4. After initiation with either of the three trimethylsilanolate alkali salts the aryl alkali metal will form as a result of desilylation and loss of N_2 . The in-situ-formed aryl nucleophile then adds to the carbonyl compound, forming an alkali metal alkoxide that will in turn engage in the desired degradation of the diazene reagent. This step then propagates the catalytic cycle.

Scheme 4. Proposed autocatalytic cycle. M = alkali metal; R and R' = alkyl or aryl; Ar = aryl.

To summarize, we showed that *N*-aryl-*N*-silyldiazenes constitute a versatile platform from which various highly reactive and, at the same time, functionalized aryl nucleophiles can be released at ambient temperature. The reaction of a related bisdiazene illustrates the potential of the method to formally generate dinucleophiles. These reactive intermediates can be trapped in situ with functionalized carbonyl and carboxyl compounds. Conceptually, these arylation reactions are similar to a Barbier-like setup^[24] where the polar organometallics are generated in situ, thereby avoiding their delicate preparation and handling. However, our method makes use of Me₃SiOM (with M = Li, Na, and K)^[11] as initiations whereas Barbier reactions typically rely on overstoichiometric amounts of reducing metals. Aside from the excellent functional-group tolerance, the new protocol differs from established methods in that it is halide-free, starting from aryl hydrazines rather than aryl halides.

Acknowledgements

C.C. gratefully acknowledges the Alexander von Humboldt Foundation for a postdoctoral fellowship (2018–2019). M.O. is indebted to the Einstein Foundation Berlin for an endowed professorship.

Conflict of interest

The authors declare no conflict of interest.

Keywords: autocatalysis • chemoselectivity • Lewis bases • nucleophilic addition • silicon

- Organometallics in Synthesis: Third Manual (Ed.: M. Schlosser), Wiley, Hoboken, 2013.
- [2] a) A. D. Benischke, M. Ellwart, M. R. Becker, P. Knochel, *Synthesis* 2016, *48*, 1101–1107; b) G. Dagousset, C. François, T. León, R. Blanc, E. Sansiaume-Dagousset, P. Knochel, *Synthesis* 2014, *46*, 3133–3171; c) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. A. Vu, *Angew. Chem. Int. Ed.* 2003, *42*, 4302–4320; *Angew. Chem.* 2003, *115*, 4438–4456.
- W. E. Parham, C. K. Bradsher, Acc. Chem. Res. 1982, 15, 300–305.
 Yoshida and co-workers introduced flow technology as an alternative to batch reactions: a) A. Nagaki, *Tetrahedron Lett.* 2019, 60, 150923; b) A. Nagaki, J.-i. Yoshida, *Top. Curr. Chem.* 2016, 57, 137–175.
- [5] H. J. Reich in *Lewis Base Catalysis in Organic Synthesis* (Eds.: E. Vedejs, S. E. Denmark), Wiley-VCH, Weinheim, **2016**, pp. 233–280.
- [6] a) N. Ishikawa, K.-i. Isobe, Chem. Lett. 1972, 435–436; b) F. Effenberger, W. Spiegler, Angew. Chem. Int. Ed. Engl. 1981, 20, 265–266; Angew. Chem. 1981, 93, 287–288; c) F. Effenberger, W. Spiegler, Chem. Ber. 1985, 118, 3872–3899; d) F. Effenberger, W. Spiegler, Chem. Ber. 1985, 118, 3900–3914; e) M. Ueno, C. Hori, K. Suzawa, M. Ebisawa, Y. Kondo, Eur. J. Org. Chem. 2005, 1965–1968; f) K. Suzawa, M. Ueno, A. E. H. Wheatley, Y. Kondo, Chem. Commun. 2006, 4850–4852; g) M. Das, D. F. O'Shea, J. Org. Chem. 2014, 79, 5595–5607.
- [7] A. S. Pilcher, P. DeShong, J. Org. Chem. **1996**, *61*, 6901–6905.
- [8] R. Lerebours, C. Wolf, J. Am. Chem. Soc. 2006, 128, 13052–13053.
- [9] C. Chauvier, L. Finck, S. Hecht, M. Oestreich, Organometallics 2019, 38, 4679–4686.
- [10] J. C. Bottaro, J. Chem. Soc., Chem. Commun. 1978, 990.
- [11] For a review of trimethylsilanolate alkali salts, see: K. Bürglová, J. Haláč, Synthesis 2018, 50, 1199–1208.
- [12] A. R. Katritzky, J. Wu, S. V. Verin, Synthesis 1995, 651–653.
- [13] For the addition of stabilized heteroaryl anions to lactones, see: A. Ricci, M. Fiorenza, M. A. Grifagni, G. Bartolini, *Tetrahedron Lett.* **1982**, *23*, 5079–5082.
- [14] J. A. Murphy, S.-z. Zhou, D. W. Thomson, F. Schoenebeck, M. Mahesh, S. R. Park, T. Tuttle, L. E. A. Berlouis, *Angew. Chem. Int. Ed.* 2007, *46*, 5178–5183; *Angew. Chem.* 2007, *119*, 5270–5275.
- [15] a) M. Fossatelli, R. den Besten, H. D. Verkruijsse, L. Brandsma, *Recl. Trav. Chim. Pays-Bas* **1994**, *113*, 527–528; b) F. Bickelhaupt, *Angew.*

COMMUNICATION

Chem. Int. Ed. Engl. 1987, 26, 990–1005; Angew. Chem. 1987, 99, 1020–1035.

- [16] CCDC 1971069 (1p) and CCDC 1971057 (11pm) contain the supplementary crystallographic data for this paper. These data can be obained free of charge from The Cambridge Crystallographic Data Centre.
- [17] M. Stępień, L. Latos-Grażyński, Chem. Eur. J. 2001, 7, 5113–5117.
- [18] Larger macrocycles such as the [6]arene derivative were also observed by HRMS but could not be isolated nor characterized after defunctionalization.
- [19] E. J. Stoner, D. A. Cothron, M. K. Balmer, B. A. Roden, *Tetrahedron* 1995, 41, 11043–11062.
- [20] For the synthesis of parent [1,1,1,1]metacyclophane, see: a) J. E. McMurry, J.C. Phelan, *Tetrahedron Lett.* **1991**, *32*, 5655–5658; for the synthesis of parent [1,1,1,1]paracyclophane, see: b) Y. Miyahara, T. Inazu, T. Yoshino, *Tetrahedron Lett.* **1983**, *24*, 5277–5280.
- [21] Examples are provided in the following review: V. Martí-Centelles, M. D. Pandey, M. I. Burguete, S. V. Luis, *Chem. Rev.* 2015, 115, 8736–8834.
- [22] An example of an application of a hybrid macrocycle: D. A. Fowler, A. S. Rathnayake, S. Kennedy, H. Kumari, C. M. Beavers, S. J. Teat, J. L. Atwood, J. Am. Chem. Soc. 2013, 135, 12184–12187.
- [23] a) T. Boinski, A. Cieszkowski, B. Rosa, A. Szumna, J. Org. Chem. 2015, 80, 3488–3495; for a brief discussion of so-called hybrid[n]arenes, see: b) J.-R. Wu, Y.-W. Yang, Chem. Commun. 2019, 55, 1533–1534.
- [24] P. Barbier, Compt. Rend. 1899, 128, 110.

COMMUNICATION

Suggestion for the Entry for the Table of Contents

COMMUNICATION

Under cover of nitrogen. Silylprotected aryl-substituted diazenes act as masked aryl nucleophiles. By initiation with Me_3SiOM (M = Li, Na, and K) aryl transfer to carbonyl and carboxyl groups occurs at ambient temperature. This mild nucleophile generation is compatible with electronwithdrawing and -donating functional groups (FGs).

This article is protected by copyright. All rights reserved.