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ABSTRACT: In this report, a unified biomimetic approach to all known macrocyclic lankacidins was presented. By taking 
advantage of the thermolysis of N,O-acetal to generate the requisite N-acyl-1-azahexatriene species, we eventually realized the 
biomimetic Mannich macrocyclization, from which all of the macrocyclic lankacidins can be conquered by orchestrated 
desilylation. The reassignments of the reported structures of isolankacidinol (7 to 10) and the discovery of a recently isolated 
“lankacyclinol” found to be in fact 2,18-bis-epi-lankacyclinol (72), unraveled the previously underappreciated chemical diversity 
exhibited by the enzymatic macrocyclization. In addition, the facile elimination/decarboxylation/protonation process for the 
depletion of C1 under basic conditions resembling a physiological environment may implicate more undiscovered natural products 
with variable C2/C18 stereochemistries (i.e., 62, 73, and 75). The notable aspect provided by a biomimetic strategy is significantly 
reducing the step count compared with the two previous entries to macrocyclic lankacidins.

INTRODUCTION
The preliminary reports of lankacidin antibiotics from 

actinomycete strains date back over sixty years ago when the 
Swiss and Japanese groups independently isolated a nitrogen-
containing crystalline lankacidin C (1) (Figure 1),1 also 
referred to as bundlin A or T-2636 C.2 The complex structure 
as well as absolute configuration of 1 and its coisolated 
monoacetate lankacidin A (2) were established later by X-ray 
crystallographic analysis of their hydrazone derivatives.3 
During a period from 1971 to 1975, Harada and coworkers 
reported several new members (3–7) from the broth cultures of 
Streptomyces rochei var. volubilis,4 which share the parent 17-
membered macrocyclic framework endowed with two 
pentadienyl alcohols and a bridged, fully substituted β-oxo-δ-
lactone with an amide residue adjacent to an all-carbon 
quaternary center. Isolankacidinol (7) was postulated to be a 
C5-epimer of lankacidinol (3) based upon a combination of a 
1D NMR experiment and the negative Cotton effect observed 
in the optical rotatory dispersion (ORD) spectrum of the 
octahydrotriacetate derivative of 7.4d Lankacyclinol (5) and 
congener 6, hypothetically derived from the enzymatic 
eliminative decarboxylation (depleting C1), were also isolated 
by the same team.4a,d In 2018, Wang and coworkers disclosed 
2,18-seco-lankacidinol A (8) and B (9) from Streptomyces sp. 
HS-NF-1178.5 The R-C4 stereochemistry of 9, the only 
naturally 

Figure 1.  Representative Lankacidin Antibiotics.
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occurring nonmacrocyclic lankacidin prior to our 
investigations, was reassigned to S-C4 (as shown in 12) by the 
Seiple group through total synthesis later in the same year.6a 
Very recently, the structure of 8 was also reassigned by us 
through a modular approach to rule out the proposed C18–O 
ether linkage in the original publication.6b

In addition to their structural complexity, lankacidins 
possess an exceedingly broad array of biological activities. 
Several congeners have showed strong antibacterial activities 
against various gram-positive bacteria including multidrug 
resistant clinical strains such as Staphylococcus aureus.7 The 
mode of action was recently revealed through the inhibition of 
protein synthesis by binding at the peptidyl transferase center 
of the eubacterial large ribosomal subunit.8 Sedecamycin (the 
generic name of 2) exhibited significant growth-inhibitory 
potency against Treponema hyodysenteriae, and it was 
approved in 1985 as a veterinary drug for the treatment of 
swine dysentery (SD).9 Moreover, the same compound 
displays a promising in vitro activity against the Trypanosoma 
brucei parasite with an IC50 value of 33 µM, being 66-fold 
more potent than eflornithine, a clinically used drug for late-
stage human African trypanosomiasis.10 Lankacidin C (1) was 
recently identified as one of the top candidates to combat 
Borrelia burgdorferi, thereby holding great promise for better 
Lyme disease therapy.11 Additionally, modest to potent in vitro 
and in vivo antitumor activities have been known for 
decades.5,12 In 2016, mechanistic studies on the cytotoxic 
action demonstrated that the lankacidin antibiotic is a novel 
microtubule-stabilizing agent, which may target the paclitaxel 
binding site.13

Current fermentation to produce lankacidins usually yields a 
complex mixture of congeners. Moreover, available 
semisynthetic modifications of the parent macrocycle were 
severely limited due to its sensitivity to even mildly acidic or 
basic conditions.4a,7c,14 Although a couple of analogs have been 
prepared chemically or enzymatically,15 a de novo, practical 
synthetic route to lankacidins would arguably enable access to 
a greater diversity of small-molecule therapeutic leads with 
improved pharmacological profiles.16 Herein, we described a 
full account17 on the unified synthesis of all known 
macrocyclic lankacidins in only 8–12 steps, permitting access 
to a series of C2/C18 diastereomeric congeners as well as 
revision of the reported structure of isolankacidinol (7). We 
also uncovered that Wang’s lankacyclinol, exhibiting 
cytotoxicity against human adenocarcinoma cells A549 (IC50 = 
28 µg/mL), is actually a 2,18-bis-epimer of 5, a new natural 
product. 

RESULTS AND DISCUSSION
Historical Context and Strategic Considerations. The 
fascinating biological profile in conjunction with the synthetic 
challenge has stimulated numerous synthetic efforts for more 
than three decades.18-20 Representative approaches to construct 
the lactone core prior to our own endeavor are summarized in 
Scheme 1. Thomas’s early model studies involving 1,3-
dipolar cycloaddition followed by methylation provided 
exclusively undesired C2 stereochemistry.18a Later, Thomas 
and Kende independently devised a translactonization strategy 
based on similar L-aspartic acid-derived -lactam 

intermediates where the quaternary stereocenters were 
established by convergent enolate acylation.18b,c By taking 
advantage of the secured relay transformation of a stable 
tricyclic carbamate to the natural product, Kende 
accomplished the first total synthesis of lankacidin C (1) in 
1993.19a This landmark achievement set the stage for the fully 
synthetic entry to the target antibiotic family. Williams and 
coworkers also reported their creative studies towards the 
lactone segment, featuring a regio- and diastereoselective acyl 
nitrene addition to dihydrofuran 22 to furnish cyclic 
hemiacetal 23.20a A series of chemical manipulations provided 
δ-lactone 24 with the C3–OH and the amido appendage 
protected as carbamate. Although further elaboration of 
segment 24 to the lankacidins was not fruitful,20b the 
stereocontrolled -amido ester synthetic methodology 
developed during the process has been successfully utilized by 
the same laboratory to synthesize lankacyclinol (5), allowing 
the C2 configuration to be established.20c 

Scheme 1. Previous Synthetic Approaches to the Lactonic 
Core of the Lankacidin Antibiotics.
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We initially took note from the step-economy issue which 
plagued all the previous strategies. Each route constructed the 
β-oxo-δ-lactone core at a relatively early stage and invariably 
reduced the C3 carbonyl group as a protected alcohol to 
attenuate the sensitive nature of the intermediate. This not only 
gives rise to a heteroatom-rich segment containing five 
contiguous stereocenters, but also maximizes the extraneous 
protecting-group and redox manipulations needed to access 
the target, which in turn dramatically attenuated the synthetic 
efficacy.21 A fundamentally disparate skeleton-forming 
strategy employed by the biosynthetic machinery of nature is 
inspiring.22 In 2005, Arakawa and coworkers disclosed the 

Page 2 of 19

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



isolation of acyclic δ-lactone LC-KA05 (27, Scheme 2A) and 
confirmation of 27 as an essential biosynthetic intermediate.22c 
They 
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Scheme 2. Biosynthesis Proposal (A), Initial feasibility Studies (B), and Retrosynthetic Analysis of Lankacidins (C). 

also identified a multifunctional flavin-dependent amine 
oxidase (LkcE) responsible for the unusual amide oxidation of 
27 at C18, followed by intramolecular C2-enolate trapping of 
the resultant hypothetical iminium species to complete the 
lankacidin macrocycle.

We envisaged a synthetic plan hinging on an unprecedented 
late-stage stereogenic center-forming Mannich 
macrocyclization. While the Mannich reaction was well 
adapted for the construction of five- to seven-membered ring 
systems,23 cyclization leading to macrocycles were much less 
explored.24 This circumstance was further exacerbated by the 
elusive nature of critical diastereocontrol.25 Preliminary 
feasibility studies were undertaken on truncated -ketolactone 
32, which wassynthesized from 3-phenylpropanal in a 3-step 
sequence (Scheme 2B).26 Subjection of 32 to an acid-
catalyzed Mannich reaction with N-Boc benzaldimine 3327 
smoothly afforded a diastereomeric mixture of adducts 35 in 
an 81% yield. Further investigations such as isomer separation 
and N-Boc deprotection under a variety of conditions based on 
this material proved difficult owing to its propensity to 
undergo a retro-Mannich reaction.28 Such a process occurred 
to neat 35 even during the prolonged storage at temperatures 
below –20 °C. With these observations in mind, we 
anticipated that a preinstallation of the O-silyl (S)-lactoyl 
group in the macrocyclization precursor might avoid the 
leverage of late-stage modification to the N-protecting group 
within the strained, energetically unfavorable Mannich adduct. 

Retrosynthetic Analysis. The retrosynthetic disconnection 
began with rupturing the critical C2–C18 bond of our primary 
target lankacidinol (3) to afford a globally protected N-acyl 
azahexatriene surrogate (i.e., 37 or 38)29 (Scheme 2C). We 
anticipate the site-selective desilylations followed by C7-OH 
acetylation or C24-OH oxidation on 36 after the 
macrocyclization event will provide access to other 
macrocyclic members of the family. In turn, formation of the 
C15–C16 bond via Stille coupling would lead to advanced 
vinyl iodide 39 and vinyl stannane (i.e., 40 or 41) with a 
preinstalled N-lactoyl as well as a proper oxidation level at 
C18. This synthetic design would not only provide a 
playground for the Mannich macrocylization or intermolecular 
model studies through facile alteration of different imine 
surrogates, but also facilitate future synthetic studies toward 
other acyclic lankacidin-related metabolites. Accordingly, 39 
can be prepared from 44 by successive union of three building 
blocks (45–47) of similar complexity. The classic carbonyl 
group-based transformations and bond-forming sequence (i.e., 
C12–C13, ∆C8–C9, and then C4–C5) to construct 39 was 
planned to formally emulate the previously proposed chain 
elongation and termination steps in lankacidin biosynthesis.22c

Synthesis of the Truncated Azabutadiene Surrogate 
Fragments. The preparation of the stannylated amido sulfone 
40 from aldehyde 4230 and protected chiral lactamide 4331, at 
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first a seemingly simple transformation, turned out to be a 
daunting challenge. As outlined in Scheme 3, the conventional 
Brønsted acid32 and Lewis acid33 conditions utilizing 
benzenesulfinic acid or its sodium salt only led to various side 
products from protodestannylation, double bond 
isomerization, or desilylation of the starting materials. 
Explorations based on nucleophilic trapping of the preformed 
imine obtained via acylation of a N-metalloimine species were 
also fruitless.34 Thus, an alternative route to initially access 
N,O-acetal 41 was evaluated. Using Manolikakes’s protocol,35 
43 was deprotonated with methylmagnesium chloride and 
subsequently condensated with aldehyde 42 to generate labile 
hemiaminal intermediate, which underwent acid-catalyzed 
transacetalization in methanol to provide 41 (74% from 42) on 
a decagram-scale. However, arylsulfinate displacement under 
protonic acid conditions still occurred with extensive 
destannylation, whereas heating 42 in aqueous sodium 
arylsulfinate at 45 °C for 4 days only led to recycled starting 
material. A mild indirect method inspired by Adamek’s work 
was eventually adopted,36 in which treatment of N,O-acetal 41 
with triphenylphosphonium tetrafluoroborate gave 
phosphonium salt 48 bearing a polar C–P+ bond after solvent 
(including the coproduced methanol) removal under high 
vacuum. Successive exposure of an ethanol-free chloroform 
solution of this material to powdered sodium arylsulfinate 
under sonication cleanly furnished -amido sulfone 40, which 
was discovered to exert a pronounced tendency to undergo 
destannylative sulfonyl migration to afford 49 upon contact 
with silica gel or even during prolonged storage.37

Scheme 3. Various Approaches to Prepare Amido Sulfone 40.
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Preparation of the Precursor for Mannich 
Macrocyclization: The Dead-End. With truncated imine 
equivalent 40 in hand, we went further to construct the linear 
precursor for the macrocyclization. Toward this end, the Stille 
coupling of vinyl iodide 3938 with stannane 40 was explored in 
the presence of bis(acetonitrile)dichloropalladium(II) (20 
mol%) (Table 1, entry 1). However, it only gave rise to 
partially recycled starting materials together with -amido 
sulfone 49 as the only identifiable product. A number of 
conditions were examined but all failed to form the long-chain 
amido sulfone based on these two substrates (for details, see 

SI, Figure S1). Being cognizant of the reluctant 
transmetalation associated with the sterically congested 
stannane might be the source of our frustrations,39a,b we 
modified the structures of two Stille coupling partners. 
Analogous results were observed using a desilylated vinyl 
iodide 39a (entry 2). Also noteworthy is the fact that 
replacement of 40 with 40a bearing a more reactive 
trimethylvinyl stannyl moiety39c under otherwise identical 
conditions (cat. [Pd(CH3CN)2Cl2], DMF, 23 °C) resulted in an 
increase of side product 49 (entry 3).  Although by 
interchanging the tin and iodide substituents of two reaction 
partners, an unstable product with the desired C15–C16 
linkage could be isolated together with the recycled starting 
materials, further spectroscopic elucidation precluded the 
existence of an -amido sulfone structure (entry 4).

Table 1. Attempts of Stille Coupling on Various Substrates.
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a Unless otherwise indicated, reactions were performed with a lactone 
fragment 39 (0.1 mmol) and imine fragment (0.2 mmol) in DMF (0.04 M). 
b Isolated yield. c The coupling product not obtained. d The reaction was 
run at a 0.7 mmol scale with Pd2(dba)3 (20 mol%) and a 64% yield was 
achieved based on recovered lactonic starting material.

N,O-Acetal-based Mannich Chemistry Revisited: A 
Thermal Demethoxylation Approach. The enormous, 
unexpected hurdle in synthesizing 37 via Stille cross-coupling 
compelled us to abandon amido sulfone as the reaction 
partner. A systematic evaluation of both reaction partners was 
thus conducted. Relevant structural moieties including N,S-
acetal, hemiaminal, or phosphonium salt were found to be 
incompatible with the coupling conditions (entries 5–7). It was 
pleasing to discover that the coupling between N,O-acetal 41 
and 39 successfully led to 38, which turned out to be acid-
liable but can be obtained in a 45% yield (entry 8).40 The 
TBDPS protection of the C13 hydroxyl group proved to be 
crucial because the coupling products from vinyl iodides 
bearing TBS protection or no protection on the C13 position 
were too sensitive to permit purification or characterization 
(entries 9 and 10). Screening of further coupling conditions 
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revealed that the use of phosphine ligands had detrimental 
effects on product formation,41 presumably due to the facile 
displacement of the methoxy group in the acetal moiety (for 
details, see SI of ref. 17). Finally, 
tris(dibenzylideneacetone)dipalladium (20 mol%) in DMF at 
23 °C was selected as the optimal condition for the scale-up 
preparation of 38 with an improved yield of 57%.42

Scheme 4. Thermoregulated Mannich Reaction of the 
Intramolecular Model Studies.

OMeBu3Sn

Me HN O

MeTBSO

OCD3

NHR

Isotopic-
labeling

experiment
54 (50% D)

O HN
Me

O O
Me

41

protonic
or Lewis acids

lactone 32

Bu3Sn

HN O

MeTBSO

OMeMe

Sn HN O

MeTBSO

Bu3
Bu3Sn N

H
O

TBSO Me

or other protodestannylation products

+

50 51

solvent 53

toluene
c-hexane

44% (3.8:1.4:1)
93% (2.8:1.5:1)

52

55%
6%

52, dr (C2/C18)
SS : SR : RR

2

18

53

Me H

NR
s-trans-55

Me NR

H

+

lactone 32
solvent, reflux

CD3OH (1 equiv)
c-hexane, 80 °C

sealed tube
41

-MeOH

+MeOH

slow

s-cis-55

irreversible
trapping by
lactone 32

[1,5]-H
shift

fast

slow

ORTEP of the desilylated iodination
product of 2S,18S-52 (CCDC 1523785)

ORTEP of the desilylated iodination
product of 2R,18R-52 (CCDC 1523790)

The long-chain N,O-acetal 38 was the only viable 
macrocyclization precursor for advancement to the 
lankacidins. The next focus is to probe suitable N,O-acetal-
based conditions using an intermolecular variant (Scheme 4).43 
However, the activated N-lactoyl iminium species in situ 
generated from 41 under protonic or Lewis acidic conditions 
severely suffered from either double bond isomerization 
followed by recapture by methanol to produce 50 or 
tautomerization to form trans-enamide 51, and they were 
found to be reluctant to undergo Mannich addition with the 
lactonic nucleophile (for details, see SI of ref. 17).44 To devise 
a workaround, we became keenly aware of the alcohol 
exchange phenomenon of N,O-acetals under pyrolytic 
conditions reported by Ben-Ishai in 1960s.45 This thermal 
demethoxylation of N,O-acetal has been recently resumed to 
prepare some bench-stable C-phenyl-N-acyl imines.46 
However, as a mild method for imine generation, its 
application in a telescoped C–C bond-forming process has 
received little attention from the synthetic community.47 Imine 
55 could be formed as a transient species via a thermal 
depletion of methanol, the conditions of which would not only 
be strictly neutral and substrate-tolerant, but also facilitate the 
nucleophilic addition. At the outset, heating a solution of 41 
and 32 in toluene resulted in the Mannich adducts 52 in a 44% 
yield, alongside a substantial amount of cis-configured 
enamide 53. A survey of solvents revealed that formation of 

53 was suppressed by changing the reaction solvent to 
cyclohexane, allowing 52 to be isolated in a combined yield 
up to 93% favoring a (2S,18S)-configured diastereomer 
(Scheme 4).48 Interestingly, without an external nucleophile, 
N,O-acetal 41 was fully recovered (> 90%) even after 
refluxing in the same solvent overnight. The equilibrative 
formation of N,O-acetal via a N-lactoyl imine was confirmed 
by an isotopic-labeling experiment preformed with d3-
methanol. This imine intermediate, albeit at a low 
concentration, can be irreversibly trapped by lactone 32.48 This 
initial success to assemble an intermolecular model system of 
the lactonic core via N,O-acetal-based Mannich chemistry 
convinced us that the biomimetic macrocyclization strategy 
would be rewarding if an improved stereofacial control to the 
imine could be realized. Additionally, decarboxylation of the 
Mannich adduct under macrocyclic stereocontrol was 
anticipated to be more stereoselective in installing the C2 
stereogenic center present in lankacyclinol.49,50

Explorations on Mannich Macrocyclization. The pivotal 
biomimetic Mannich macrocyclization was thus conducted in 
refluxing cyclohexane at a concentration of 0.5 mM (Table 2, 
entry 1). Three macrocyclized Mannich adducts 36a-c were 
isolated in a combined yield of 46% in a ratio of 6.4:1.0:1.8 
(36a:36b:36c). Extensive NMR analysis revealed that these 
macrocycles were exclusively derived from the -addition 
(C2) of the enolate carbon to the imine (C18). As suggested by 
the presence of a diagnostic NOE interaction between C5-H 
and C2-Me (for comprehensive presentations of their 
individual COSY, NOESY and HMBC correlations, see SI, 
Figure S3), only the major diastereomer 36a has the desired 
stereochemistry at C2. Additionally, the absolute 
configurations of newly established stereocenters at C18 in 
36a and 36b were both inferred to be the (R)-configuration 
based on their successful advancements to lankacyclinol (vide 
infra). The participation of the presumptive N-lactoyl 
azahexatriene species 56 in the Mannich macrocyclization was 
further ascertained by the coproduction of trienic enamide 57 
and dihydropyridine 58. The former compound, isolated in an 
11% yield as an extremely unstable single geometric isomer 
bearing C17–C18 (Z)-alkene, appeared to arise by a 1,5-
sigmatropic hydrogen shift involving the C16-Me of the imine 
s-cis conformer (s represents the C17–C18 single bond). 
Moreover, 57 was found to be stable in refluxing cyclohexane 
for 24 hours, thus supporting an irreversible nature of the N-
lactoyl imine-enamide tautomerism under experimental 
conditions. Additionally, byproduct 58 with unassigned 
stereochemistry at C14 might be derived from the initial trans-
to-cis isomerization of the trisubstituted ∆C16–C17 in the 
intermediary azatriene system followed by a diastereoselective 
6π-azaelectrocyclization51 (~9:1 ds). However, macrocycles 
(i.e., 60) generated by intramolecular nucleophilic capture of 
this ∆C16–C17 isomeric imine were not detected in the 
reaction mixture. The reactive species 56 can otherwise 
undergo hydrolysis by reacting with a trace amount of water 
presented in the reaction system to afford all-trans polyenal 
59, the same compound that may already exist as an 
inseparable contaminant in the starting material 38 (5~15 
wt.%).
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The crucial thermolytic stereogenic center-generating 
macrocyclization warrants some additional discussion. High-
dilution conditions were found to be necessary to ensure a 
practical cyclization efficiency. When performed at a higher 
substrate concentration (5 mM), the reaction was sluggish and 
only 24% conversion of 38 was observed (Table 2, entry 2). 
Attempts to enhance the diastereoselectivity for 36a by 
introducing metal complexation has yet to be effective (entries 
3–6). Utilization of nonpolar solvents with lower boiling 
points such as cyclopentane and n-hexane resulted in either no 
reaction or low conversion accompanied by unidentified side 
products (entries 7 and 8). Intriguingly, a preference for the 

Table 2. Optimization of the Thermoregulated Mannich Macrocyclization

Mannich
macro-

cyclization

Me

TBDPSO

Me

TBSO

O
MeO

OMe

HN
OMe

O

Me
TBSO

O

O
Me

TBSO

O

Me
OTBDPS

Me

NH

O
TBSO

Me
O

TBSO
Me

Me

O O

Me

OTBDPS

NO

OTBSMe

Me
O

O
Me

TBSO

O

Me
OTBDPS

Me Me

0.5 mM in
solvent
reflux

N,O-acetal

2

18

38

2S

18R 18R

2R 2R

18S

14

Me

TBDPSO

Me

TBSO

O
MeO

OMe

N
O

Me
TBSO

2

18

16

17

N-acyl azahexatriene
56

36a 36b 36c

57 58

59

O

cyclohexaneb 1180.7 °C 46 (6.4 : 1.0 : 1.8)22 h 100% 4

cyclohexane
cyclohexane

cyclohexanec

cyclohexane
cyclohexane

7
9

10
7

80.7 °C
80.7 °C

80.7 °C

80.7 °C
80.7 °C

Yb(fod)3 (5 mol%)
Pr(fod)3 (5 mol%)
Er(fod)3 (5 mol%)

Cu(fod)2 (5 mol%)

31 (3.6 : 1.0 : 2.2)
29 (2.9 : 1.0 : 2.3)

14 (7.8 : 1.0 : 4.2)

21 (4.4 : 1.0 : 3.0)
13 (5.8 : 1.0 : 3.3)

20 h
25 h

22 h

22 h
22 h

100%
100%

24%

53%
47%

6
–
6
–

n-hexane
cyclopentane –

–69.0 °C
49.3 °C –

10 (2.7 : 0 : 1.0)60 h
48 h

63%
< 5% –

–

1,2-dichloroethane
tetrachloromethane 8

7
76.8 °C
83.5 °C

17 (1.1 : 0 : 1.0)
20 (1.0 : 0 : 1.2)

22 h
22 h

100%
100%

7
7

benzene

toluene
hexafluorobenzene

12
4
15

80.1 °C

110.6 °C
81.0 °C

22 (2.1 : 1.0 : 2.9)

55 (6.9 : 1.0 : 6.1)
22 (4.2 : 1.0 : 3.8)

24 h

6 h
22 h

100%

100%
100%

–
3
3

ethylcyclohexane 10131.8 °C 36 (3.2 : 1.0 : 2.2)2 h 100% 18

,,-trifluorotoluene
p-xylene

12
25

103.5 °C
138.5 °C

30 (2.3 : 1.0 : 2.4)
45 (5.4 : 1.0 : 4.7)

22 h
2.5 h

100%
100%

8
9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

entrya
boiling pointd

yielde (%)
of 57

yielde (%) of 36
(dr 36a:36b:36c)

solvent additive Time conversione

of 38
yielde (%)

of 58
O HN

Me

TBSO
Me

Me

OTBDPS

O O
Me

O

TBSO
Me

60 (not obtained)

61 (not obtained)
a All reactions were carried out on a 0.03 mmol scale and a concentration of 38 was 0.5 mM unless otherwise noted. b Carried out on a 0.3 mmol
scale. c Carried out on a concentration of 5 mM. d From CRC Handbook of Chemistry and Physics, 91st ed. Haynes, W. M., Ed.; CRC Press: Boca
Raton, FL, 2010. e Conversions of 38 and diastereoselectivities of 36 were calculated after isolation. f Not determined. g Not obtained.

atmospheric

NDf NDf

O HN
Me

TBSO
Me

Me

OTBDPS

O

TBSO Me

O O
Me

O HN
Me

TBSO
Me

Me

OTBDPS

O

TBSO Me

O O
Me

O HN
Me

TBSO
Me

Me

OTBDPS

O

TBSO Me

O O
Me

O

TBSO
Me

Me

OTBDPS

O O

Me
Me

HN
O

TBSO
Me

g

formation of cyclization products with R-configured 
quaternary stereocenters was observed when chlorinated 
aliphatic solvents such as tetrachloromethane and 1,2-
dichloroethane (entries 9 and 10), or aromatic solvents were 
applied (entries 11–15). In particular, upon changing the 
solvent from cyclohexane to toluene, the cyclization occurred 
with an increased efficiency, allowing the macrocycles to be 
isolated in 55% yield in a ratio of 6.9:1.0:6.1 (36a:36b:36c) 
within 6 hours. At refluxing temperatures higher than 130 °C, 
the serviceable yields of Mannich adducts (36% for 
ethylcyclohexane, 45% for p-xylene) were achieved, but 
increased amounts of 57 or 58 were generated. Given the 
molecular complexity rapidly generated as well as the 
operational simplicity observed in this biomimetic 

macrocyclization, the isolated yield of 32% for the desired 
(2S,18R)-diastereomer 36a is remarkable. 

Unified Synthesis of Macrocyclic Lankacidins. By 
procuring enough quantities of 36a, we were poised to finalize 
the synthesis of our preliminary target lankacidinol (3). Global 
deprotection of 36a was not trivial, as it needed to be executed 
to tolerate the fragile β-oxo-δ-lactone as well as the dienylic 
alcohol functionalities. A similar process using bis-TBS-
protected lankacidin C as a substrate was declared by the 
Kende group to be unfruitful with all variants of fluoride-
based protocols.19b Indeed, exposure of 36a with either TBAF 
or tris(dimethylamino)sulfonium difluorotrimethylsilicate 
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(TASF) both resulted in considerable amounts of side products 
from elimination of the C7-hydroxyl group. By using excess 
water as a protic additive in TASF-mediated deprotection,52 
decarboxylation occurred prior to the complete silyl removal, 
affording lankacyclinol and its C2-epimer in a combined yield 
of 75% (Scheme 5). The synthetic 5 proved to be identical in 
all respects to natural (–)-lankacyclinol.4d,21c The high 
selectivity for the 2S-isomer (5/62, 12:1) may be attributed to 
the Re-face selective protonation of the intermediary C3-
enolate with the stereocontrol imparted from the rigid 
conformation of the polyene macrocyclic ring.49 Analysis of 
the major product by X-ray diffraction unambiguously 
confirms the configuration at C18 and provided the first solid 
state topological structure of the decarboxylated lankacidin 
macrocycles. After extensive experimentation (for details, see 
SI of ref. 17), we uncovered a condition to liberate all of the 
hydroxyl groups without disturbing the δ-lactone. In this 
event, prolonged treatment of 36a with 40 wt.% HF in 
acetonitrile at –20 °C gave (–)-lankacidinol (3) in a 51% yield 
exhibiting spectroscopic properties in excellent agreement 
with the literature reports from both Kinashi53 and Wang5. 
Intriguingly, an isomeric substance 63 (Scheme 5, coined as 
neolankacidinol) was also generated from the same reaction 
mixture as a single diastereomer (43%), and the detailed NMR 
studies unveiled a formal C7-hydroxyl 

Scheme 5. Diversification of macrocycle 36a into six natural products of the lankacidin family, In the ORTEP 
representations of acetate 66, the thermal ellipsoids are drawn at 20% probability.
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Scheme 6. Stereochemical Revision of Isolankacidinol, Isolankacyclinol and a Recently Isolated Lankacyclinol, In the 
ORTEP representations of 10, 5, 62, and 74, the thermal ellipsoids are drawn at 20% probability.
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shift took place along the diene chain in a highly 
stereoselective manner (for comprehensive presentations of its 
COSY, NOESY and HMBC correlations, see SI of ref. 17). It 
was quickly discovered that 63 could equilibrate with 3 under 
identical desilylation conditions, thus maximizing the material 
throughput to access the natural product. This process is 
assumed to involve a cationic intermediate 64, which 
undergoes a nonregioselective reversible hydration reaction 
under a macrocyclic stereocontrol.49,54 While numerous reports 
concerning the degradation chemistry of lankacidin antibiotics 
exists,4c,d,7c to the best of our knowledge, the acid-promoted 
hydroxyl transportation reaction within the lankacidin skeleton 
has never been reported in the literature.

Having conquered lankacidinol and lankacyclinol, we 
continued to synthesize other macrocyclic members of the 
same family (Scheme 5). To this end, removal of the TBS 
group at the C7 position of 36a was smoothly realized by 
aqueous HCl in THF (with the final concentration of HCl in 
the reaction system to be ~0.3 M) at 20 °C for 3 hours. It is 
important to note that prolonged reaction time (> 20 h) would 
lead to a complex mixture of products. Acetylation of the 
resultant allylic alcohol 65 delivered acetate 66, the structure 
and absolute stereochemistry of which were unambiguously 
determined by single-crystal X-ray diffraction. Upon 
employing the same condition established for 5, 
transformation of 66 into (–)-lankacyclinol A (6) proceeded 
with an equal efficiency (79%). An intended global 
desilylation of 66 by treatment with aqueous HF in acetonitrile 
at –20 °C resulted in the complete hydrolysis of the C7-
acetate. Another round of experiments identified a 2:1 molar 
mixture of HOAc/TBAF to be an optimal combination for this 
desilylation, being capable of delivering (–)-lankacidinol A (4) 
in an 82% yield. To access the last two targets bearing a 

pyruvoyl substitution at the nitrogen, the C24-hydroxy group 
was selectively liberated from 66 by prolonged exposure to 
aqueous HCl, and subsequently oxidized by Dess–Martin 
periodinane to afford pyruvamide 68 (70% over two steps). 
Removal of the TBDPS group by utilizing HOAc/TBAF in 
THF completed the synthesis of (–)-lankacidin A (2), while (–
)-lankacidin C (1)19 was obtained along with its hydroxyl-
migrated congener 69 (referred to as neolankacidin C) by 
desilylation conducted with aqueous hydrofluoric acid in 
acetonitrile at –20 °C. The spectral data of the synthetic 
natural products (1,2 and 4) were in good agreement with 
literature values.53

Structural Revision of Isolankacidinol and 
Isolankacyclinol. The NOE correlations of C2-Me with C4-H 
and lack of the cross peak between C2-Me with C5-H 
observed in 36b and 36c indicated they possessed the same -
Me configuration at the quaternary carbon C2. However, the 
least predominant isomer 36b (only 5% isolated yield from 
38) attracted our attention in the process of spectral 
comparison with the previously identified 36a, which has -
Me configuration at C2. A large upfield-shift for C5-H proton 
signal (from  4.29 to  3.52) and a downfield-shift for C4-H 
proton signal (from  2.34 to  2.66) were observed, which are 
reported by Harada and coworkers to be diagnostically 
characteristic of isolankacidinol.4d For further clarification, 
36b was desilylated by treatment with HF in aqueous 
acetonitrile at –20 °C for 60 hours and no formal 1,5-hydroxy 
migration product was observed (Scheme 6A). More 
surprisingly, the NMR spectra and optical rotation (observed 
[]D

25 = –189 (c = 0.13, EtOH); lit: []D
25 = –190 (c = 0.53, 

EtOH)4d) for synthetic macrocycle 10 matched those reported 
for isolankacidinol,53,55 which was unfortunately assigned as 
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the C5-epimer of lankacidinol as shown in 7 (Scheme 6B).4d 
The structure and absolute configuration of 10 was further 
unequivocally established by X-ray crystallographic analysis 
(Cu K), allowing a stereochemical revision of the originally 
proposed structure of isolankacidinol (7) to be C2-epimer of 
lankacidinol (10). This result implies that the documented 
conversion from lankacidinol to isolankacidinol might initially 
involve a retro-Mannich reaction to open the 17-membered 
macrocycle rather than the retro-oxa-Michael cleavage of the 
lactonic C5–O bond. In fact, the enone carboxylate 
intermediate 70, as suggested in the original biogenesis 
proposal, by the present view might be especially prone to 
decarboxylation to release lankacyclinol.56 Moreover, the 
natural occurrence of 2-epi-lankacidinol as a minor congener, 
as validated by our work, unraveled for the first time the 
imperfect facial selective nature posed in the enzymatic 
lankacidin macrocycle-forming process. In addition, the highly 
stereoselective decarboxylation event realized from either 
lankacidinol (3) or its C2-epimeric skeleton under abiotic 
conditions also provided valuable insights into the biogenesis 
of 5.

In the same publication,4d a non-naturally-occurring 
substance, isolankacyclinol (71) was obtained as a minor base 
degradation product of isolankacidinol (Scheme 6B), and its 
structure was postulated to be s-trans/cis (s represents enonic 
single bond C3–C4 in the enone portion) isomeric to 
lankacyclinol (5). To probe this unusual isomerism 
phenomenon, the synthetic sample of isolankacidinol (10) was 
subjected to the literature-described conditions (aqueous 2 
wt.% K2CO3 in methanol, 25 °C), two decarboxylated 
compounds were isolated in excellent combined yield 
(67%+12%). The major product was readily identified as 5, 
which is in accordance with the Harada’s result. The minor 
product was assigned as 2-epi-lankacyclinol (62). X-ray 
crystallographic analysis unambiguously confirmed this 
assignment, and further validated both macrocycles (5 and 62) 
existed as enonic s-trans conformers in solid states. Though no 
NMR spectra were provided by Harada for direct comparison, 
it is highly probable that isolankacyclinol and 2-epi-
lankacyclinol might be identical. 

2,18-Bis-epi-Lankacyclinol: A New Natural Product. 
During the investigation of the base degradation chemistry of 
10, we keenly noticed that the 1H and 13C NMR spectra of our 
synthetic lankacyclinol (5) collected in CD3OD differed 
significantly from those of a recently isolated lankacyclinol 
sample.57 This led us to speculate the real structure of the latter 
might be a diastereoisomer of 5 with the opposite C2/C18-
stereochemistry. Thus, the remaining (2R,18S)-diastereomer 
36c was exposed to TASF in wet DMF, smoothly furnishing 
two decarboxylated products in excellent yield with a ratio of 
9:1 for 72/73 (Scheme 6C). To our delight, the predominant 
2,18-syn-isomer bearing a large 3JH,H coupling constant 
between H-2 and H-18 (10.3 Hz) was found to exhibit spectral 
properties identical with those reported by Wang.57 This 
reassignment was further ascertained by single-crystal X-ray 
diffraction conducted with its tris-(4-bromobenzyl ester) 
derivative 74. The syn-selective decarboxylation observed for 
36a-c underscores the powerful stereodirecting influence of 
the rigid macrocyclic conformation.49 The elucidation of the 
existence of 72 in natural environment suggests its non-

decarboxylated variant 75 might be an as-yet-undiscovered 
natural product. Toward this end, 36c was desilylated under 
previously established acidic conditions (aq. HF/CH3CN at –
20 °C) to give 75 in 55% yield, along with its C7-epimer 76 in 
30% yield (for detailed 2D-NMR analysis of 75 and 76, see 
SI, Figure S4). This unexpected scenario as compared with 
those of 36a/b further indicates the sophistication of the 
chemo- and stereoselectivity profiles stemming from the 
C2/C18-configuration-dependent conformational change. 
Upon changing the reagent system to HOAc/TBAF (2:1), 
global desilylation of 36c occurred with no C7-epimerization 
to provide the “missing” natural product 2,18-bis-epi-
lankacidinol (75) in 76% yield.

CONCLUSION
In summary, we have detailed the evolution of a unified 

biomimetic approach to the capacity of all known macrocyclic 
lankacidins in the longest linear 7–12 steps from readily 
available starting materials (such as 44 and 45). By taking 
advantage of the thermolysis chemistry of N,O-acetal to 
generate the requisite N-acyl-1-azahexatriene species, we 
realized the projected stereoselective Mannich 
macrocyclization, from the products of which all the 
macrocyclic lankacidins, including the relatively low-abundant 
and stereochemically unique isolankacidinol can be conquered 
by orchestrated desilylative manipulations. 

Our work not only constitutes, to our knowledge, the first 
example of macrocyclic construction (> 14-membered) via a 
Mannich reaction in the context of complex natural product 
synthesis but also corroborates, for the first time, the chemical 
feasibility of the Arakawa-Kinashi’s biogenetic hypothesis for 
the formation of the lankacidin macrocycle. Moreover, the 
bioinspired strategy-enabled reassignments of the reported 
structure of isolankacidinol (7 to 10), combined with the 
discovery of a recently isolated lankacyclinol to be in fact its 
2,18-bisepimer (72), unraveled a previously underappreciated 
nature of product diversity58 arising from the late-stage 
enzymatic oxidative cyclization in lankacidin biosynthesis. In 
addition, our decarboxylation experiments conducted under 
mild abiotic conditions with moderate to high selectivities not 
only shed light upon the dominant occurrence of 2,18-syn 
isomers (5, 6 and 72) in the natural resources, but at the same 
time strongly implicate that both their precursors (i.e. 75 and 
as-yet-unisolated 36d) and minor C1-depleted congeners (i.e. 
isolankacyclinol 62 and 73) are potentially undiscovered 
natural products. Apart from these benefits, the most notable 
one provided by a biomimetic strategy is the significantly 
reduced step count compared with two previous entries to 
macrocyclic lankacidins.19,20c Collaborative efforts to explore 
new analogues for biological mode-of-action investigations as 
well as to delineate the macrocyclization stereocontrol exerted 
by the active site of the enzyme are continuing and will be 
reported in due course. 

EXPERIMENTAL SECTION
All non-aqueous reactions were conducted in oven-dried glassware 

fitted with rubber septa and magnetically stirred under N2 atmosphere 
unless otherwise noted. Anhydrous solvents were obtained using 
standard drying techniques. All commercial grade reagents were used 
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without further purification unless stated otherwise. Flash 
chromatography was performed on 230-400 mesh silica gel (Silicycle 
flash F60) with the indicated solvent systems. Yields refer to 
chromatographically and spectroscopically homogeneous material. 
Reactions were monitored by thin layer chromatography (TLC) 
supplied by Yantai Jiangyou Silicon Material Company (China). 
NMR spectra were recorded on Varian mercury–400, Bruker AM–
400, and Bruker AV–500 spectrometers and chemical shifts are 
reported in ppm down field from TMS, using residual 1H and 13C 
signals of the solvent (CDCl3:  7.26, 77.16 ppm; CD3OD:  3.31, 
49.00 ppm; DMSO-d6:  2.50, 39.52 ppm; acetone-d6:  2.05, 29.84, 
206.26) as an internal standard. Data are reported as: (s = singlet, br = 
broad, d = doublet, t = triplet, q = quartet, m = multiplet; J = coupling 
constant in Hz, integration.). Optical rotations were measured on a 
Jasco P–1030 digital polarimeter using a 100 mm path-length cell at 
589 nm. High-resolution mass spectra (HRMS) were acquired through 
the National Center for Organic Mass Spectrometry in Shanghai on a 
Thermo Fisher Scientific LTQ FT Ultra mass spectrometer (mass 
analyzer type: Fourier transform ion cyclotron resonance (FT-ICR)) 
with DART (Direct Analysis in Real Time) ionization performed in 
positive mode. Infrared spectra were recorded as thin films on NaCl 
plates on a Perkin–Elmer 983 or Digital FT-IR spectrometer and are 
reported in frequencies of absorption given in reciprocal centimeters 
(cm-1).
    The general procedure and the synthetic procedures and 
characterization data of compounds 31, 32, 35, 38, 39, 41, 42–47, 52, 
53, 59, 62 and 63, as well as the natural product NMR spectra 
comparisons (5 in acetone-d6 and 3 in methanol-d4) have been 
recorded in our previous work,17 and are not reproduced here. 

Synthesis of -amido sulfone 40. To a stirred solution of N,O-
acetal 41 (978 mg, 1.7 mmol, 1.0 equiv) in anhydrous CH2Cl2 (3.4 
mL) was added triphenylphosphonium tetrafluoroborate (595 mg, 1.7 
mmol, 1.0 equiv, predried in vacuo for > 24 hours prior to use to 
remove H2O). Stirring was continued for 1 hour at room temperature 
after which TLC analysis indicated the complete consumption of the 
starting material. The solvent was evaporated under reduced pressure 
and the remaining volatiles were completely removed in vacuum to 
furnish a white, waxy solid. This material was dissolved in anhydrous 
chloroform (3.4 mL) and treated with anhydrous sodium 
benzenesulfinate (360 mg, 2.2 mmol, 1.3 equiv). The resultant 
suspension was sonicated in a bath for 5 min and vigorously stirred 
for additional 10 min at ambient temperature. The reaction mixture 
was then concentrated under reduced pressure and rapidly purified by 
a silica gel column (petroleum ether/EtOAc: 10/1) to afford 40 (626 
mg, 54% yield) as a pale-yellow oil and 1.5 : 1 diastereomeric 
mixture. TLC (petroleum ether / ethyl acetate = 4:1 v/v, KMnO4): Rf 
= 0.50; []  = −8.9 (c = 1.11 in CHCl3); 1H NMR (400 MHz, CDCl3): 

23
 
 
D

δ = 7.93-7.88 (m, 2H), 7.64-7.61 (m, 1H), 7.54-7.49 (m, 2H), 
7.31/7.24* (d, J = 10.2 Hz, 1H), 6.08/6.05* (dd, J = 10.2, 5.6 Hz, 1H), 
5.49 (dq, J = 8.8, 1.6 Hz, 3JSn-H = 30.4 Hz, 1H), 4.10/4.08* (q, J = 6.6 
Hz, 1H), 1.90/1.79* (d, J = 1.6 Hz, 3JSn-H = 20.9 Hz, 3H), 1.51-1.44 (m, 
6H), 1.37-1.25 (m, 9H), 0.98-0.88 (m, 24H), 0.18 (s, 1.1H), 0.13 (s, 
1.1H), 0.09* (s, 1.6H), 0.04* (s, 1.6H) ppm; 13C{1H} NMR (100 MHz, 
CDCl3): δ = 173.1, 173.0, 155.4, 154.9, 136.9 (2 peaks), 134.0, 133.9, 
129.5, 129.4, 129.0, 128.9, 126.2, 125.7, 69.9, 69.6, 65.7, 65.3, 29.0, 
27.4 (2 peaks), 25.8, 21.7, 21.4, 20.7, 20.5, 18.0 (2 peaks), 13.8 (2 
peaks), 9.4, -4.5 (2 peaks), -5.2, -5.5 ppm; IR (thin film): vmax = 3409, 
2955, 2929, 2856, 1699, 1493, 1321, 1150, 1118, 832, 781 cm-1; 
HRMS-DART (m/z): calcd. for C31H58O4NSSi112Sn [M + H]+: 
680.2899, found: 680.2896. 

It was discovered that 40 exerted a pronounced tendency to 
undergo clean conversion to give 49 on contact with silica gel or 
during prolonged storage at room temperature, and should be kept at 
−20 C in a refrigerator. []  = −20.9 (c = 1.19 in CHCl3); 1H NMR 

26
 
 
D

(400 MHz, CDCl3): δ = 8.29/8.27* (d, J = 10.4 Hz, 1H), 7.83-7.80 (m, 
2H), 7.65-7.61 (m, 1H), 7.54-7.50 (m, 2H), 6.66/6.63* (dd, J = 14.4, 
10.4 Hz, 1H), 5.18/5.16* (dd, J = 14.4, 8.4 Hz, 1H), 4.21/4.29* (q, J = 
6.8 Hz, 1H), 3.71/3.70* (dq, J = 8.4, 7.2 Hz, 1H), 1.44/1.43* (d, J = 

7.2 Hz, 3H), 1.35/1.34* (d, J = 6.8 Hz, 3H), 0.93 (s, 9H), 0.12/0.11* (s, 
3H), 0.10 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3): δ = 171.9 
(2 peaks), 136.9 (2 peaks), 133.9 (2 peaks), 129.3 (2 peaks), 129.0 (2 
peaks), 127.8, 127.6, 105.5, 105.2, 69.8, 62.2 (2 peaks), 25.9, 21.8, 
18.2, 18.1, 14.0, 13.8, -4.4 (2 peaks), -5.2, -5.3 ppm; IR (thin film): 
vmax = 3405, 3347, 2954, 2930, 2858, 1698, 1664, 1502, 1447, 1306, 
1261, 1145, 1123, 1086, 970, 833, 783, 729, 691, 592, 552 cm-1; 
HRMS-DART (m/z): calcd. for C19H32O4NSSi [M + H]+: 398.1816, 
found: 398.1815.

N,O-acetal 50. This compound was obtained as a faint yellow oil 
(32 mg, 23% yield) from the achiral phosphoric acid 34-catalyzed 
model Mannich reaction between lactone 32 (0.20 mmol) and N,O-
acetal 41 (0.24 mmol) and exists as a 1.2 : 1 diastereomeric mixture. 
TLC (petroleum ether / ethyl acetate = 20:1 v/v, KMnO4): Rf = 0.36; 
[]  = −11.8 (c = 1.09 in CHCl3); 1H NMR (400 MHz, CDCl3): δ = 

26
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6.96/6.87* (d, J = 10.4 Hz, 1H), 6.00 (m, 1H), 5.40 (m, 1H), 
4.19/4.26* (q, J = 6.8 Hz, 1H), 3.30/3.29* (s, 3H), 1.94/1.96* (d, J = 
1.2 Hz, 3JSn-H = 20.2 Hz, 3H), 1.52-1.44 (m, 6H), 1.41/1.36* (d, J = 
6.8 Hz, 3H), 1.33-1.25 (m, 6H), 0.97-0.87 (m, 24H), 0.12 (s, 3.0H), 
0.10* (s, 1.5H), 0.07* (s, 1.5H) ppm; 13C{1H} NMR (100 MHz, 
CDCl3): δ = 174.3, 174.2, 145.8, 145.6, 136.0 (2 peaks), 80.6, 80.3, 
70.1, 69.9, 54.9 (2 peaks), 29.2 (2 peaks), 27.4, 27.3, 27.2, 25.8, 25.7, 
22.2, 21.8, 18.1, 18.0, 13.7, 10.7, 10.6, -4.6, -4.7, -5.3, -5.4 ppm; IR 
(thin film): vmax = 3416, 2955, 2929, 1695, 1493, 1255, 1118, 1066, 
832, 780 cm-1; HRMS-DART (m/z): calcd. for C25H52O2NSi112Sn [M 
− OCH3]+: 538.2810, found: 538.2807.

Enamide 51. This compound was obtained as a colorless oil (17 
mg, 13% yield) from the achiral phosphoric acid 34-catalyzed model 
Mannich reaction between lactone 32 (0.20 mmol) and N,O-acetal 41 
(0.24 mmol)  TLC (petroleum ether / ethyl acetate = 15:1 v/v, 
KMnO4): Rf = 0.69; []  = −18.3 (c = 1.04 in CHCl3); 1H NMR (400 

24
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MHz, CDCl3): δ = 8.25 (d, J = 10.8 Hz, 1H), 6.86 (dd, J = 14.4 Hz, 
11.2 Hz, 1H), 6.09 (d, J = 14.0 Hz, 3JSn-H = 35.6 Hz, 1H), 5.78 (d, J = 
2.6 Hz, 3JSn-H = 61.6 Hz, 1H), 5.16 (d, J = 2.6 Hz, 3JSn-H = 28.8 Hz, 
1H), 4.26 (q, J = 6.8 Hz, 1H), 1.56-1.48 (m, 6H), 1.40 (d, J = 6.4 Hz, 
3H), 1.35-1.28 (m, 6H), 1.03-1.99 (m, 6H), 0.95 (s, 9H), 0.90-0.86 (m, 
9H), 0.13 (s, 3H), 0.11 (s, 3H) ppm; 13C{1H} NMR (100 MHz, 
CDCl3): δ = 171.5, 148.9, 126.4, 124.4, 121.9, 69.9, 29.2, 27.4, 25.9, 
21.8, 18.2, 13.8, 10.0, -4.4, -5.2 ppm; IR (thin film): vmax = 3413, 
2956, 2929, 2857, 1701, 1643, 1492, 1260, 1118, 960, 897, 832, 781 
cm-1; HRMS-DART (m/z): calcd. for C25H52O2NSi112Sn [M + H]+: 
538.2810, found: 538.2813.

Deuterated N,O-acetal 54 from isotopic labeling experiment. A 
3 mL-pressure vessel equipped with a magnetic stirring bar was 
charged with a solution of N,O-acetal 41 (146 mg, 0.25 mmol, 1.0 
equiv, as an inseparable 1.4 : 1 diastereomeric mixture) in degassed 
cyclohexane (2.5 mL). CD3OH (8.8 mg, 10.1 L, 1.0 equiv, 99.8 
atom % D) was added in one portion. The vial was sealed tightly, 
immersed into a preheated oil bath at 80 C with stirring and kept at 
this temperature for 17 hours. The reaction was cooled to room 
temperature before all volatiles were removed in vacuo. The crude 
material was subjected to 1H NMR analysis and about 1 : 1 D : H 
incorporation with respect to methoxyl groups was observed. [Note]: 
this ratio of deuteration did not change when reaction time was 
prolonged, thus indicating that an equilibrium state had been reached. 
When the above mixture was resubjected to the same conditions over 
several cycles, an analytically-pure sample of 54 (141 mg, 97%) with 
more than 50 : 1 (D : H) incorporation can be obtained as a colorless 
oil and as 1.4 : 1 diastereomeric mixture for characterization purposes. 
TLC (petroleum ether / ethyl acetate = 15:1 v/v, KMnO4): Rf = 0.33; 
[]  = −12.3 (c = 1.29 in CHCl3); 1H NMR (400 MHz, CDCl3): δ = 

24
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6.98/6.90* (d, J = 10.0 Hz, 1H), 5.82/5.80* (dd, J = 9.6, 6.4 Hz, 1H), 
5.54 (dq, J = 6.8, 2.0 Hz, 3JSn-H = 32.4 Hz, 1H), 4.19/4.26* (q, J = 6.8 
Hz, 1H), 1.90/1.90* (d, J = 2.0 Hz, 3JSn-H = 22.4 Hz, 3H), 1.50-1.43 (m, 
6H), 1.41/1.35* (d, J = 6.8 Hz, 3H), 1.33-1.25 (m, 6H), 0.91-0.85 (m, 
24H), 0.10 (s, 3.6H), 0.08* (s, 1.2H), 0.04* (s, 1.2H) ppm; 13C{1H} 
NMR (100 MHz, CDCl3): δ = 174.5, 174.4, 146.4 (2 peaks), 136.9, 
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136.7, 76.3, 75.8, 70.1, 69.9, 54.3 (m), 29.2 (2 peaks), 27.5, 27.4, 25.8, 
22.3, 21.9, 20.4, 18.1 (2 peaks), 13.8 (2 peaks), 9.3, 9.2, -4.6 (2 peaks), 
-5.2, -5.3 ppm; IR (thin film): vmax = 3419, 2956, 2929, 2857, 1693, 
1494, 1464, 1366, 1339, 1254, 1121, 1073, 1031, 978, 875, 834, 781, 
669 cm-1; HRMS-DART (m/z): calcd. for C25H52O2NSi112Sn [M − 
OCD3]+: 538.2810, found: 538.2812.

Biomimetic Mannich macrocyclization (Table 2, entry 1).  A 
solution of 1:1 diastereomeric mixture of N,O-acetal 38 (320 mg, 0.31 
mmol, contaminated by 6 wt.% polyenal 59 as indicated by NMR 
analysis) in cyclohexane (20 mL) was added to a refluxing 
cyclohexane (600 mL) by cannula transfer. The reaction mixture was 
stirred at reflux for 22 hours until complete disappearance of 3.31 
ppm singlet methoxyl group signal as monitored by NMR analysis. 
The solution was cooled to ambient temperature and concentrated to 
give an oily residue, which was purified by preparative TLC (20% 
EtOAc in petroleum ether) to afford macrocycle 36a (92 mg, 32% 
yield), 36b (13 mg, 5% yield), macrocycle 36c (26 mg, 9% yield), 
enamide 57 (32 mg, 11% yield), and dihydropyridine 58 (10 mg, 4% 
yield), both as colorless oils.

Macrocycle 36a. TLC (petroleum ether / ethyl acetate = 4:1 v/v, 
KMnO4): Rf = 0.40; []  = −79.3 (c = 0.76 in CHCl3); 1H NMR (400 
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MHz, CDCl3): δ = 7.78 (d, J = 10.4 Hz, 1H, H-N), 7.68-7.61 (m, 4H, 
H-Ar), 7.42-7.29 (m, 6H, H-Ar), 5.86 (d, J = 15.6 Hz, 1H, HC9), 5.64 
(dd, J = 15.6, 9.4 Hz, 1H, HC8), 5.53 (dd, J = 16.0, 8.4 Hz, 1H, HC14), 
5.47 (t, J = 10.8 Hz, 1H, HC18), 5.24 (d, J = 16.0 Hz, 1H, HC15), 4.99 
(dd, J = 11.2, 5.2 Hz, 1H, HC11), 4.50 (d, J = 10.8 Hz, 1H, HC17), 4.29 
(dt, J = 12.0, 2.8 Hz, 1H, HC5), 4.24 (m, 1H, HC7), 4.20 (q, J = 6.8 Hz, 
1H, HC24), 3.98 (ddd, J = 10.8, 8.4, 4.0 Hz, 1H, HC13), 2.47 (m, 1H, 
HAC12), 2.34 (dq, J = 12.0, 6.8 Hz, 1H, HC4), 2.28-2.21 (m, 2H, HBC12, 
HAC6), 2.08 (m, 1H, HBC6), 1.83 (s, 3H, H3C22), 1.51 (s, 3H, H3C21), 
1.39 (d, J = 6.8 Hz, 3H, H3C25), 1.35 (s, 3H, H3C19), 1.17 (d, J = 6.8 
Hz, 3H, H3C20), 1.04 (s, 9H, SiR), 0.95 (s, 9H, SiR), 0.83 (s, 9H, SiR), 
0.11 (s, 3H, SiR), 0.09 (s, 3H, SiR), 0.01 (s, 3H, SiR), -0.03 (s, 3H, SiR) 
ppm; 13C{1H} NMR (125 MHz, CDCl3): δ = 211.1 (C3=O), 174.1 
(C23=O), 170.3 (C1=O), 138.9 (C16), 137.1 (C9H), 136.4 (C10), 136.0 
(Ar), 135.9 (Ar), 134.5 (Ar), 134.2 (Ar), 133.7 (C15H), 131.5 (C14H), 
130.0 (C8H), 129.7 (2 peaks, Ar), 128.0 (C11H), 127.7 (Ar), 127.6 
(Ar), 124.7 (C17H), 76.3 (C13H), 75.7 (C5H), 71.0 (C7H), 70.3 (C24H), 
57.1 (C2), 51.0 (C18H), 46.4 (C4H), 38.5 (C6H2), 37.9 (C12H2), 27.1 (2 
peaks, SiR), 25.9 (2 peaks, SiR), 22.3 (C25H3), 20.9 (C19H3), 19.3 (SiR), 
18.2 (SiR), 12.9 (C22H3), 12.8 (C21H3), 9.7 (C20H3), -3.7 (SiR), -4.4 
(SiR), -4.6 (SiR), -5.1 (SiR) ppm; IR (thin film): vmax = 3415, 2928, 
2856, 1753, 1710, 1680, 1501, 1471, 1259, 1062, 963, 834, 802, 702 
cm-1; HRMS-DART (m/z): calcd. for C53H82O7NSi3 [M + H]+: 
928.5394, found: 928.5374.

Macrocycle 36b.  TLC (petroleum ether / ethyl acetate = 4:1 v/v, 
KMnO4): Rf = 0.52; []  = −83.3 (c = 0.80 in CHCl3); 1H NMR (500 
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MHz, CDCl3): δ = 7.67-7.59 (m, 4H, H-Ar), 7.49 (d, J = 10.0 Hz, 1H, 
H-N), 7.40-7.29 (m, 6H, H-Ar), 6.02 (d, J = 15.5 Hz, 1H, HC9), 5.60 
(t, J = 10.5 Hz, 1H, HC18), 5.46 (dd, J = 16.0, 7.5 Hz, 1H, HC14), 5.38 
(d, J = 16.0 Hz, 1H, HC15), 5.18 (dd, J = 15.5, 8.0 Hz, 1H, HC8), 4.99 
(m, 1H, HC11), 4.76 (d, J = 10.0 Hz, 1H, HC17), 4.40 (m, 1H, HC7), 
4.22 (q, J = 6.5 Hz, 1H, HC24), 4.11 (m, 1H, HC13), 3.52 (t, J = 10.5 
Hz, 1H, HC5), 2.66 (dq, J = 12.0, 6.5 Hz, 1H, HC4), 2.37-2.33 (m, 2H, 
HAC12, HBC12), 2.01-1.95 (m, 1H, HAC6), 1.81-1.76 (m, 1H, HBC6), 
1.70 (s, 3H, H3C22), 1.48 (s, 3H, H3C21), 1.41 (d, J = 6.5 Hz, 3H, 
H3C25), 1.37 (s, 3H, H3C19), 1.05 (s, 9H, SiR), 1.00 (d, J = 6.5 Hz, 3H, 
H3C20), 0.95 (s, 9H, SiR), 0.86 (s, 9H, SiR), 0.11 (s, 3H, SiR), 0.10 (s, 
3H, SiR), 0.05 (s, 3H, SiR), 0.02 (s, 3H, SiR) ppm; 13C{1H} NMR 
(125 MHz, CDCl3): δ = 204.3 (C3=O), 173.9 (C1=O), 173.8 (C23=O), 
137.4 (C16), 137.3 (C9H), 136.0 (SiR), 135.9 (SiR), 134.4 (C15H), 
134.0 (C10), 133.8 (SiR), 132.6 (C14H), 129.8 (SiR), 129.3 (C11H), 
128.3 (C8H), 127.7 (SiR), 127.6 (SiR), 126.3 (C17H), 77.1 (C5H), 76.1 
(C13H), 70.7 (C7H), 70.2 (C24H), 59.3 (C2), 48.2 (C18H), 44.3 (C4H), 
42.1 (C6H2), 36.8 (C12H2), 27.1 (SiR), 26.0 (SiR), 25.9 (SiR), 22.8 
(C19H3), 22.3 (C25H3), 19.3 (SiR), 18.3 (SiR), 18.2 (SiR), 13.3 (C21H3), 
12.8 (C22H3), 9.7 (C20H3), -4.0 (SiR), -4.5 (SiR), -4.7 (SiR), -5.0 (SiR) 
ppm; IR (thin film): vmax = 3407, 2956, 2929, 2890, 2857, 1746, 1718, 

1683, 1506, 1472, 1460, 1253, 1111, 1074, 963, 835, 779, 702, 507 
cm-1; HRMS-DART (m/z): calcd. for C53H82O7NSi3 [M + H]+: 
928.5394, found: 928.5395.

Macrocycle 36c.  TLC (petroleum ether / ethyl acetate = 4:1 v/v, 
KMnO4): Rf = 0.31; []  = +49.8 (c = 1.13 in CHCl3); 1H NMR (500 
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MHz, CDCl3): δ = 8.06 (d, J = 10.0 Hz, 1H, H-N), 7.70-7.59 (m, 4H, 
H-Ar), 7.42-7.30 (m, 6H, H-Ar), 6.22 (d, J = 15.5 Hz, 1H, HC9), 6.08 
(d, J = 16.0 Hz, 1H, HC15), 5.47 (dd, J = 15.5, 3.5 Hz, 1H, HC14), 5.41 
(dd, J = 15.5, 5.0 Hz, 1H, HC8), 5.39-5.35 (m, 2H, HC18, HC11), 4.99 
(d, J = 10.0 Hz, 1H, HC17), 4.67 (m, 1H, HC13), 4.57 (m, 1H, HC7), 
4.27 (q, J = 6.8 Hz, 1H, HC24), 3.84 (dt, J = 11.5, 5.5 Hz, 1H, HC5), 
2.73 (dq, J = 11.5, 6.5 Hz, 1H, HC4), 2.25-2.19 (m, 1H, HAC12), 2.13-
2.08 (m, 1H, HBC12), 2.02-2.00 (m, 2H, HAC6, HBC6), 1.75 (s, 3H, 
H3C22), 1.56 (s, 3H, H3C21), 1.49 (s, 3H, H3C19), 1.37 (d, J = 6.8 Hz, 
3H, H3C25), 1.12 (d, J = 6.5 Hz, 3H, H3C20), 1.10 (s, 9H, SiR), 0.97 (s, 
9H, SiR), 0.92 (s, 9H, SiR), 0.13 (s, 3H, SiR), 0.11 (s, 3H, SiR), 0.06 (s, 
3H, SiR), 0.06 (s, 3H, SiR) ppm; 13C{1H} NMR (125 MHz, CDCl3): δ 
= 209.6 (C3=O), 174.0 (C23=O), 172.2 (C1=O), 139.0 (C16), 136.0 (2 
peaks, C9H, SiR), 134.9 (C10), 134.4 (SiR), 134.0 (SiR), 133.7 (C15H), 
130.9 (C14H), 129.9 (SiR), 129.7 (SiR), 127.9 (C11H), 127.7 (SiR), 
127.6 (SiR), 126.3 (C8H), 124.3 (C17H), 75.3 (C5H), 72.1 (C13H), 70.2 
(C24H), 70.0 (C7H), 59.1 (C2), 52.0 (C18H), 45.5 (C4H), 42.2 (C6H2), 
34.5 (C12H2), 27.3 (SiR), 26.1 (SiR), 25.9 (SiR), 23.3 (C19H3), 22.0 
(C25H3), 19.5 (SiR), 18.4 (SiR), 18.2 (SiR), 13.2 (C22H3), 13.1 (C21H3), 
9.2 (C20H3), -4.5 (SiR), -4.6 (SiR), -4.7 (SiR), -4.9 (SiR) ppm; IR (thin 
film): vmax = 3415, 2956, 2930, 2890, 2857, 1750, 1713, 1679, 1498, 
1252, 1111, 1077, 969, 833, 779, 702, 504 cm-1; HRMS-DART (m/z): 
calcd. for C53H82O7NSi3 [M + H]+: 928.5394, found: 928.5389.

Long-chain enamide 57. TLC (petroleum ether / ethyl acetate = 
4:1 v/v, KMnO4): Rf = 0.33; []  = −7.5 (c = 1.02 in CHCl3); 1H 
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NMR (400 MHz, CDCl3): δ = 8.72 (d, J = 11.6 Hz, 1H, H-N), 7.67-
7.60 (m, 4H, H-Ar), 7.42-7.26 (m, 6H, H-Ar), 6.87 (dd, J = 11.6, 9.4 
Hz, 1H, HC18), 6.16 (d, J = 16.0 Hz, 1H, HC9), 5.97 (d, J = 15.6 Hz, 
1H, HC15), 5.70 (dd, J = 15.6, 6.4 Hz, 1H, HC14), 5.46 (dd, J = 15.6, 
7.6 Hz, 1H, HC8), 5.42 (t, J = 7.6 Hz, 1H, HC11), 5.18 (d, J = 9.4 Hz, 
1H, HC17), 5.14 (s, 1H, HBC22), 5.06 (s, 1H, HAC22), 4.53 (m, 1H, 
HC7), 4.35-4.23 (m, 3H, HC5, HC13, HC24), 3.46 (q, J = 6.8 Hz, 1H, 
HC2), 2.43-2.35 (m, 2H, HC4, HAC12), 2.30-2.23 (m, 1H, HBC12), 2.06-
1.99 (m, 1H, HAC6), 1.96-1.89 (m, 1H, HBC6), 1.59 (s, 3H, H3C21), 
1.39 (d, J = 6.8 Hz, 3H, H3C25), 1.32 (d, J = 6.4 Hz, 3H, H3C19), 1.18 
(d, J = 7.6 Hz, 3H, H3C20), 1.04 (s, 9H, SiR), 0.89 (s, 9H, SiR), 0.88 (s, 
9H, SiR), 0.10 (s, 3H, SiR), 0.06 (s, 6H, SiR), 0.03 (s, 3H, SiR) ppm; 
13C{1H} NMR (125 MHz, CDCl3): δ = 204.5 (C3=O), 172.0 (C23=O), 
169.7 (C1=O), 140.7 (C16), 136.3 (C9H), 136.1 (SiR), 134.8 (C14H), 
134.7 (C10), 134.3 (SiR), 134.2 (SiR), 131.0 (C15H), 129.8 (SiR), 129.7 
(SiR), 128.9 (C11H), 128.7 (C8H), 127.7 (SiR), 127.6 (SiR), 122.6 
(C18H), 117.2 (C22HAHB), 108.3 (C17H), 76.8 (C5H), 73.7 (C13H), 70.6 
(C7H), 70.0 (C24H), 50.3 (C2H), 46.8 (C4H), 41.3 (C6H2), 37.3 (C12H2), 
27.2 (SiR), 26.0 (SiR), 25.9 (SiR), 21.9 (C25H3), 19.5 (SiR), 18.3 (SiR), 
18.1 (SiR), 12.8 (C21H3), 12.5 (C20H3), 8.1 (C19H3), -4.0 (SiR), -4.6 (2 
peaks, SiR), -5.0 (SiR) ppm; IR (thin film): vmax = 3402, 2955, 2929, 
2857, 1765, 1725, 1699, 1654, 1489, 1390, 1362, 1255, 1112, 1074, 
836, 779, 702 cm-1; HRMS-DART (m/z): calcd. for C53H82O7NSi3 [M 
+ H]+: 928.5394, found: 928.5397.

Long-chain dihydropyridine 58.  TLC (petroleum ether / ethyl 
acetate = 4:1 v/v, KMnO4): Rf = 0.59; []  = +152.4 (c = 0.99 in 
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CHCl3); 1H NMR (400 MHz, CDCl3): δ = 7.67-7.63 (m, 4H, H-Ar), 
7.40-7.32 (m, 6H, H-Ar), 6.82 (d, J = 7.6 Hz, 1H, HC18), 6.04 (d, J = 
15.6 Hz, 1H, HC9), 5.41 (br d, J = 4.4 Hz, 1H, HC15), 5.36 (dd, J = 
15.6, 7.6 Hz, 1H, HC8), 5.27 (t, J = 7.2 Hz, 1H, HC11), 5.09 (d, J = 7.6 
Hz, 1H, HC17), 4.90 (br t, J = 4.4 Hz, 1H, HC14), 4.53 (q, J = 6.8 Hz, 
1H, HC24), 4.47 (m, 1H, HC7), 4.30 (t, J = 9.8 Hz, 1H, HC5), 4.01 (m, 
1H, HC13), 3.62 (q, J = 6.4 Hz, 1H, HC2), 2.34 (dq, J = 10.4, 7.2 Hz, 
1H, HC4), 2.23 (m, 1H, HAC12), 2.03-1.96 (m, 2H, HAC6, HBC12), 1.87 
(dd, J = 8.8, 2.0 Hz, 1H, HBC6), 1.75 (s, 3H, H3C22), 1.44 (s, 3H, 
H3C21), 1.37 (d, J = 6.8 Hz, 3H, H3C25), 1.32 (d, J = 6.8 Hz, 3H, 
H3C19), 1.14 (d, J = 7.2 Hz, 3H, H3C20), 0.98 (s, 9H, SiR), 0.87 (s, 9H, 
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SiR), 0.86 (s, 9H, SiR), 0.05 (s, 3H, SiR), 0.04 (s, 3H, SiR), 0.02 (s, 3H, 
SiR), 0.02 (s, 3H, SiR) ppm; 13C{1H} NMR (125 MHz, CDCl3): δ = 
204.8 (C3=O), 172.4 (C23=O), 169.8 (C1=O), 136.3 (C9H), 136.0 (2 
peaks, SiR), 134.9 (SiR), 134.1 (2 peaks, SiR, C10), 131.1 (C16), 129.7 
(SiR), 129.6 (SiR), 129.1 (C11H), 128.4 (C8H), 127.7 (SiR), 127.5 
(SiR), 125.8 (C18H), 116.2 (C15H), 110.4 (C17H), 76.7 (C5H), 75.9 
(C13H), 71.0 (C24H), 70.7 (C7H), 54.8 (C14H), 50.4 (C2H), 46.7 (C4H), 
41.4 (C6H2), 32.7 (C12H2), 27.0 (SiR), 26.0 (SiR), 25.9 (SiR), 21.2 
(C25H3), 20.7 (C22H3), 19.6 (SiR), 18.3 (2 peaks, SiR), 12.8 (C21H3), 
12.5 (C20H3), 8.1 (C19H3), -3.9 (SiR), -4.6 (SiR), -4.8 (2 peaks, SiR) 
ppm; IR (thin film): vmax = 2955, 2930, 2894, 2857, 1764, 1724, 1659, 
1590, 1471, 1462, 1428, 1390, 1376, 1361, 1258, 1111, 1089, 1005, 
969, 836, 778, 740, 703, 611, 506 cm-1; HRMS-ESI (m/z): calcd. for 
C53H81O7NNaSi3 [M + Na]+: 950.5213, found: 950.5195.

Synthesis of lankacyclinol (5) via desilylation of 36a. Detailed 
protocols leading to 5 (white solid, 20 mg, 69% yield) have been 
reported previously.17 Crystals of lankacyclinol suitable for X-ray 
analysis were grown by slow evaporation at 5 C from methanol. In 
order to make a comparison of our synthetic lankacyclinol with 
Wang’s recently isolated sample,57 NMR spectroscopic data were 
recollected on this natural product using methanol-d4 as a solvent. 
TLC (chloroform / methanol = 10:1 v/v, KMnO4): Rf = 0.25; []  = 
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−353.6 (c = 0.41 in EtOH); 1H NMR (400 MHz, CD3OD): δ = 6.56 
(m, 1H, HC5), 6.04 (d, J = 15.5 Hz, 1H, HC9), 5.74 (d, J = 15.9 Hz, 
1H, HC15), 5.35 (dd, J = 15.3, 8.2 Hz, 1H, HC8), 5.31 (dd, J = 15.9, 
8.0 Hz, 1H, HC14), 5.21 (m, 1H, HC11), 5.13 (t, J = 10.2 Hz, 1H, 
HC17), 5.08 (t, J = 10.1 Hz, 1H, HC18), 4.25 (m, 1H, HC7), 4.11-4.04 
(m, 2H, HC24, HC13), 3.64 (dq, J = 9.9, 7.0 Hz, 1H, HC2), 2.66-2.56 
(m, 2H, HAC6, HBC6), 2.40 (m, 1H, HAC12), 2.27 (m, 1H, HBC12), 1.73 
(s, 3H, H3C20), 1.67 (s, 3H, H3C22), 1.53 (s, 3H, H3C21), 1.35 (d, J = 
6.8 Hz, 3H, H3C25), 0.97 (d, J = 6.8 Hz, 3H, H3C19) ppm; 13C{1H} 
NMR (100 MHz, CD3OD): δ = 205.3 (C3=O), 177.2 (C23=O), 139.6 
(C4), 139.1 (C5H), 137.9 (C9H), 136.7 (C15H), 135.4 (C10), 135.3 (C16), 
131.4 (C17H), 131.3 (C14H), 129.8 (C11H), 129.3 (C8H), 75.2 (C13H), 
73.4 (C7H), 69.3 (C24H), 50.3 (C18H), 44.3 (C2H), 38.5 (C6H2), 37.3 
(C12H2), 21.5 (C25H3), 16.3 (C19H3), 13.1 (C21H3), 12.7 (2 peaks, 
C20H3, C22H3) ppm. IR (thin film): vmax = 3327, 2920, 1656, 1639, 
1545, 1452, 1370, 1264, 1129, 1017, 959 cm-1; HRMS-DART (m/z): 
calcd. for C24H36O5N [M + H]+: 418.2588, found: 418.2582.

Synthesis of lankacidinol (3) via desilylation of 36a. Detailed 
procedures leading to 3 (white solid, 26 mg, 51% yield) have been 
reported previously.17 In order to make a comparison of our synthetic 
lankacidinol with Wang’s recently isolated sample,5,57 NMR 
spectroscopic data were recollected on this natural product using 
DMSO-d6 as a solvent. TLC (chloroform / methanol = 10:1 v/v, 
KMnO4): Rf = 0.18; []  = −215.4 (c = 0.06 in DMF); 1H NMR (400 
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MHz, DMSO-d6): δ = 7.77 (d, J = 10.2 Hz, 1H, H-N), 6.10 (d, J = 
15.4 Hz, 1H, HC9), 5.86 (d, J = 4.7 Hz, 1H, HO-C24), 5.55 (d, J = 15.7 
Hz, 1H, HC15), 5.50 (dd, J = 15.4, 9.4 Hz, 1H, HC8), 5.36 (dd, J = 
15.8, 8.1 Hz, 1H, HC14), 5.32-5.24 (m, 2H, HC11, HC18), 5.04 (d, J = 
4.1 Hz, 1H, HO-C13), 4.84 (d, J = 4.2 Hz, 1H, HO-C7), 4.73 (d, J = 
10.7 Hz, 1H, HC17), 4.68 (m, 1H, HC5), 4.16 (m, 1H, HC7), 3.95 (m, 
1H, HC24), 3.88 (m, 1H, HC13), 2.40 (m, 1H, HC4), 2.22 (m, 2H, 
HAC12, HBC12), 2.11 (m, 1H, HAC6), 1.95 (m, 1H, HBC6), 1.70 (s, 3H, 
H3C22), 1.41 (s, 3H, H3C21), 1.26 (s, 3H, H3C19), 1.24 (d, J = 6.7 Hz, 
3H, H3C25), 1.13 (d, J = 6.6 Hz, 3H, H3C20) ppm; 13C{1H} NMR (100 
MHz, DMSO-d6): δ = 211.2 (C3=O), 173.8 (C23=O), 170.5 (C1=O), 
136.9 (C16), 136.0 (C9H), 135.2 (C10), 132.8 (C15H), 132.1 (C14H), 
130.4 (C8H), 127.7 (C11H), 125.2 (C17H), 75.0 (C5H), 73.0 (C13H), 
68.0 (C7H), 67.3 (C24H), 56.4 (C2), 50.0 (C18H), 45.9 (C4H), 37.3 (2 
peaks, C6H2, C12H2), 21.2 (C25H3), 20.1 (C19H3), 12.4 (C22H3), 12.3 
(C21H3), 9.2 (C20H3) ppm; IR (thin film): vmax = 3438, 3311, 2900, 
1733, 1703, 1641, 1440, 1366, 1274, 1120, 1013, 960 cm-1; HRMS-
DART (m/z): calcd. for C25H36O7N [M + H]+: 462.2486, found: 
462.2487.

Synthesis of allylic alcohol 65.  Hydrochloric acid (approximately 
4 M in water, 2.5 mL) was added to a solution of macrocycle 36a (65 
mg, 0.07 mmol) in THF (40 mL) at 20 C. After stirring for 3 h, the 

reaction mixture was cooled to −20 C and quenched by adding 
saturated NaHCO3 (aq., 40 mL). The resultant slurry was warmed to 
room temperature and extracted with EtOAc (3 x 30 mL). The 
combined organic layers were dried over Na2SO4 and concentrated 
under reduced pressure. The residue was purified by silica gel 
chromatography (petroleum ether/EtOAc: 4/1) to afford allylic 
alcohol 65 (54 mg, 94% yield) as a colorless oil. TLC (petroleum 
ether / ethyl acetate = 1:1 v/v, KMnO4): Rf = 0.36; []  = −279.6 (c = 
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0.18 in CHCl3); 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 10.0 
Hz, 1H), 7.68-7.60 (m, 4H), 7.41-7.28 (m, 6H), 6.01 (d, J = 15.6 Hz, 
1H), 5.73 (dd, J = 15.6, 9.6 Hz, 1H), 5.53 (dd, J = 16.0, 8.4 Hz, 1H), 
5.48 (t, J = 10.4 Hz, 1H), 5.24 (d, J = 16.0 Hz, 1H), 5.04 (dd, J = 11.6, 
4.8 Hz, 1H), 4.51 (d, J = 10.8 Hz, 1H), 4.36 (dt, J = 12.0, 2.8 Hz, 1H), 
4.26 (m, 1H), 4.20 (q, J = 6.8 Hz, 1H), 3.97 (m, 1H), 2.48 (m, 1H), 
2.34-2.17 (m, 4H), 1.84 (d, J = 0.8 Hz, 3H), 1.52 (s, 3H), 1.40 (d, J = 
6.8 Hz, 3H), 1.36 (s, 3H), 1.19 (d, J = 6.4 Hz, 3H), 1.04 (s, 9H), 0.95 
(s, 9H), 0.11 (s, 3H), 0.09 (s, 3H) ppm; 13C{1H} NMR (100 MHz, 
CDCl3): δ = 210.8, 174.2, 170.3, 139.0, 138.6, 136.2, 136.0, 135.9, 
134.4, 134.0, 133.7, 131.5, 129.7 (2 peaks), 129.1, 129.0, 127.7, 127.5, 
124.6, 77.4, 76.2, 75.6, 70.3, 70.2, 57.1, 50.9, 46.4, 37.9, 36.8, 27.0, 
25.9, 22.3, 20.9, 19.3, 18.2, 12.9, 12.8, 9.7, -4.6, -5.1 ppm; IR (thin 
film): vmax = 3406, 2930, 2857, 1751, 1708, 1669, 1506, 1376, 1257, 
1111, 1068, 963, 832, 737, 702 cm-1; HRMS-DART (m/z): calcd. for 
C47H68O7NSi2 [M + H]+: 814.4529, found: 814.4505. 

Synthesis of allylic acetate 66.  To a solution of allylic alcohol 65 
(30.0 mg, 0.037 mmol, 1.0 equiv) and DMAP (2.3 mg, 0.018 mmol, 
0.5 equiv) in CH2Cl2 (1.5 mL) was added dropwise in sequence via 
syringe Et3N (28.5 mg, 40 L, 0.276 mmol, 7.5 equiv) and Ac2O 
(19.3 mg, 18 L, 0.185 mmol, 5.0 equiv). The reaction mixture was 
stirred at room temperature for 20 min and then quenched by adding 
saturated NaHCO3 (aq., 15 mL). The biphasic mixture was extracted 
with CH2Cl2 (3 x 15 mL) and the organic layers were combined, dried 
over Na2SO4 and filtered. The filtrate was concentrated under reduced 
pressure. The residue obtained was purified by silica gel 
chromatography (petroleum ether/EtOAc: 5/1) to provide 66 (29.3 mg, 
93% yield) as a white solid. A single crystal suitable for X-ray 
diffraction analysis was obtained by slow evaporation of a solution of 
66 in CH2Cl2/petroleum ether at room temperature. TLC (petroleum 
ether / ethyl acetate = 1:1 v/v, KMnO4): Rf = 0.79; [] = −138.1 (c = 
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0.97 in CHCl3); 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 10.4 
Hz, 1H), 7.67-7.60 (m, 4H), 7.40-7.28 (m, 6H), 6.13 (d, J = 15.6 Hz, 
1H), 5.64 (dd, J = 15.6, 9.6 Hz, 1H), 5.53 (dd, J = 15.6, 8.0 Hz, 1H), 
5.48 (t, J = 10.4 Hz, 1H), 5.36 (ddd, J = 11.0, 10.2, 5.6 Hz, 1H), 5.26 
(d, J = 15.6 Hz, 1H), 5.07 (dd, J = 11.6, 5.2 Hz, 1H), 4.52 (d, J = 10.8 
Hz, 1H), 4.34 (m, 1H), 4.20 (q, J = 6.8 Hz, 1H), 3.98 (ddd, J = 10.8, 
8.6, 4.0 Hz, 1H), 2.46 (m, 1H), 2.33 (m, 1H), 2.28-2.18 (m, 3H), 2.00 
(s, 3H), 1.84 (s, 3H), 1.51 (s, 3H), 1.40 (d, J = 6.4 Hz, 3H), 1.36 (s, 
3H), 1.24 (d, J = 6.8 Hz, 3H), 1.04 (s, 9H), 0.95 (s, 9H), 0.11 (s, 3H), 
0.09 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3): δ = 210.4, 174.1, 
170.3, 170.2, 141.3, 139.0, 136.0, 135.9 (2 peaks), 134.3, 134.0, 133.6, 
131.5, 130.1, 129.7 (2 peaks), 127.7, 127.5, 124.6, 124.2, 76.1, 75.4, 
71.8, 70.3, 57.1, 51.0, 46.4, 37.9, 34.4, 27.1, 25.9, 22.3, 21.5, 20.9, 
19.3, 18.2, 12.9, 12.6, 9.5, -4.6, -5.1 ppm; IR (thin film): vmax = 3412, 
2957, 2930, 2898, 2857, 1754, 1734, 1711, 1681, 1506, 1472, 1458, 
1364, 1314, 1257, 1240, 1112, 1077, 1015, 963, 859, 796, 703 cm-1; 
HRMS-DART (m/z): calcd. for C49H70O8NSi2 [M + H]+: 856.4634, 
found: 856.4631.

Synthesis of lankacyclinol A (6).  A mixture of allylic acetate 66 
(8.6 mg, 0.01 mmol, 1.0 equiv) and H2O (7.2 mg, 0.40 mmol, 40.0 
equiv) in DMF (2.5 mL) was treated with TASF (42.2 mg, 0.15 mmol, 
15.0 equiv). The resultant solution was stirred for 23 hours at room 
temperature, diluted with EtOAc (10 mL) and cooled to 0 C, during 
which time a mixture of brine (10 mL) and phosphate buffer (aq., pH 
= 7, 10 mL) was added to quench the reaction. The resultant slurry 
was extracted with EtOAc (3 x 20 mL). The organic layers were 
combined, washed with brine (20 mL) and dried over Na2SO4. After 
filtration and concentration under vacuum, the crude product was 
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subjected to flash column chromatography on silica (CHCl3/MeOH: 
9/1) to afford lankacyclinol A (3.6 mg, 79% yield) as a white solid. 
TLC (dichloromethane / methanol = 9:1 v/v, KMnO4): Rf = 0.46; []

 = −180.0 (c = 0.09 in CH2Cl2/CH3OH, 1/3, v/v); 1H NMR (400 
24
 
 
D

MHz, DMSO-d6): δ = 7.62 (d, J = 9.6 Hz, 1H, H-N), 6.48 (dd, J = 
10.2, 5.2 Hz, 1H, HC5), 6.05 (dt, J = 14.8, 4.2 Hz, 1H, HC8), 5.59 (d, 
J = 4.8 Hz, 1H, HO-C24), 5.57 (d, J = 16.0 Hz, 1H, HC15), 5.34-5.28 
(m, 2H, HC7, HC9), 5.25-5.20 (m, 2H, HC11, HC14), 5.13 (d, J = 10.0 
Hz, 1H, HC17), 4.99 (d, J = 4.4 Hz, 1H, HO-C13), 4.83 (app q, J = 10.0 
Hz, 1H, HC18), 3.98 (m, 1H, HC13), 3.92 (m, 1H, HC24), 3.59 (dq, J = 
10.2, 6.8 Hz, 1H, HC2), 2.68 (m, 1H, HAC6), 2.58 (m, 1H, HBC6), 2.33 
(m, 1H, HAC12), 2.13 (m, 1H, HBC12), 2.02 (s, 3H, H3C27), 1.67 (s, 3H, 
H3C20), 1.52 (s, 3H, H3C22), 1.45 (s, 3H, H3C21), 1.21 (d, J = 6.8 Hz, 
3H, H3C25), 0.84 (d, J = 6.4 Hz, 3H, H3C19) ppm; 13C{1H} NMR (100 
MHz, DMSO-d6): δ = 203.3 (C3=O), 173.7 (C23=O), 169.6 (C26=O), 
138.6 (C8H), 138.5 (C4), 136.0 (C10), 134.1 (C15H), 132.9 (C11H), 
132.3 (C16), 131.0 (C14H), 130.7 (C17H), 130.6 (C10), 123.2 (C9H), 
73.3 (C7H), 72.5 (C13H), 67.5 (C24H), 48.2 (C18H), 42.3 (C2H), 36.6 
(C12H2), 33.6 (C6H2), 21.4 (C25H3), 21.1 (C27H3), 15.6 (C19H3), 12.5 
(C21H3), 12.2 (2 peaks, C20H3, C22H3) ppm; IR (thin film): vmax = 3333, 
2922, 2852, 1725, 1652, 1635, 1552, 1455, 1372, 1306, 1259, 1230, 
1129, 1049, 1020, 957, 879, 797 cm-1; HRMS-DART (m/z): calcd. 
for C26H38O6N [M + H]+: 460.2694, found: 460.2693.

Synthesis of lankacidinol A (4).  To a stirred solution of acetic 
acid (120 mg, 120 L, 2.0 mmol) in THF (3.0 mL) at room 
temperature was added TBAF (1.0 mol/L in THF, 1.0 mL, 1.0 mmol). 
After stirring for 10 min, 2.4 mL of the reagent prepared as described 
above was added to a solution of 66 (17.0 mg, 0.02 mmol) in THF 
(2.0 mL). The resulting reaction mixture was stirred at room 
temperature for 48 hours and monitored by TLC. Upon complete 
desilylation, reaction quench was performed by cannulation of the 
reaction mixture into a vigorously stirred, cold saturated NaHCO3 (aq., 
40 mL). The layers were separated and the aqueous layer was 
extracted with EtOAc (3 x 15 mL). The combined organic layers were 
washed with brine (30 mL), dried over Na2SO4, filtered and 
concentrated. The resultant crude residue was purified by preparative 
TLC (CH2Cl2/MeOH, 9/1) to give lankacidinol A (4, 8.3 mg, 82% 
yield) as a white solid. TLC (chloroform / methanol = 10:1 v/v, 
KMnO4): Rf = 0.38; []  = −213.1 (c = 0.29 in EtOH); 1H NMR (400 
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MHz, CDCl3): δ = 7.56 (d, J = 10.0 Hz, 1H, H-N), 6.26 (d, J = 15.2 
Hz, 1H, HC9), 5.70 (dd, J = 15.2, 9.6 Hz, 1H, HC8), 5.59 (d, J = 15.6 
Hz, 1H, HC15), 5.53 (t, J = 10.8 Hz, 1H, HC18), 5.48 (dd, J = 15.6, 8.0 
Hz, 1H, HC14), 5.43 (dt, J = 10.2, 5.2 Hz, 1H, HC7), 5.35 (dd, J = 10.0, 
6.7 Hz, 1H, HC11), 4.67 (d, J = 11.0 Hz, 1H, HC17), 4.40 (dt, J = 12.0, 
3.2 Hz, 1H, HC5), 4.23 (qd, J = 6.6, 4.0 Hz, 1H, HC24), 4.08 (dt, J = 
8.2, 6.4 Hz, 1H, HC13), 2.64 (br d, J = 4.4 Hz, 1H, H-O), 2.47-2.37 (m, 
3H, HC4, HAC12, HBC12), 2.35-2.21 (m, 2H, HAC6, HBC6), 2.03 (s, 3H, 
H3C27), 1.89 (d, J = 0.8 Hz, 3H, H3C22), 1.55 (s, 3H, H3C21), 1.44 (d, J 
= 6.8 Hz, 3H, H3C25), 1.40 (s, 3H, H3C19), 1.30 (d, J = 6.8 Hz, 3H, 
H3C20) ppm; 13C{1H} NMR (100 MHz, CDCl3): δ = 211.4 (C3=O), 
173.9 (C23=O), 170.4 (C26=O), 170.0 (C1=O), 141.2 (C9H), 139.1 
(C16), 136.3 (C10), 134.9 (C15H), 131.1 (C14H), 129.8 (C11H), 125.1 
(C17H), 124.6 (C8H), 75.5 (C5H), 74.7 (C13H), 71.7 (C7H), 68.6 
(C24H), 57.1 (C2), 51.4 (C18H), 46.6 (C4H), 37.0 (C12H2), 34.4 (C6H2), 
21.6 (C25H3), 21.5 (C27H3), 21.0 (C19H3), 13.0 (C22H3), 12.7 (C21H3), 
9.6 (C20H3) ppm; IR (thin film): vmax = 3400, 3341, 2989, 2968, 2923, 
2864, 1747, 1719, 1707, 1637, 1553, 1522, 1457, 1434, 1371, 1316, 
1241, 1130, 1078, 1023, 958, 799 cm-1; HRMS-DART (m/z): calcd. 
for C27H38O8N [M + H]+: 504.2592, found: 504.2590.

Synthesis of desilylation product 67. Hydrochloric acid 
(approximately 4 M in water, 0.16 mL) was added to a solution of 66 
(8.0 mg, 0.009 mmol) in THF (1.4 mL) at room temperature. After 
stirring for 15 hours, the reaction mixture was carefully quenched by 
dropwise addition of saturated NaHCO3 (aq., 10 mL). The resultant 
slurry was diluted with H2O (5 mL) and extracted with EtOAc (3 x 15 
mL). The combined organic layers were dried over Na2SO4 and 
concentrated in vacuo. The crude residue was purified by preparative 
TLC (petroleum ether/EtOAc: 1/2) to give alcohol 67 (5.8 mg, 87% 

yield) as a colorless oil. TLC (petroleum ether / ethyl acetate = 1:1 
v/v, KMnO4): Rf = 0.27; []  = −245.5 (c = 0.21 in CHCl3); 1H NMR 
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(400 MHz, CDCl3): δ = 7.67-7.60 (m, 4H), 7.48 (d, J = 10.0 Hz, 1H), 
7.43-7.31 (m, 6H), 6.14 (d, J = 15.2 Hz, 1H), 5.63 (dd, J = 15.6, 10.0 
Hz, 1H), 5.57 (dd, J = 15.6, 8.6 Hz, 1H), 5.51 (t, J = 10.4 Hz, 1H), 
5.36 (ddd, J = 10.8, 10.0, 5.4 Hz, 1H), 5.27 (d, J = 15.6 Hz, 1H), 5.07 
(dd, J = 11.6, 5.2 Hz, 1H), 4.54 (d, J = 10.8 Hz, 1H), 4.36 (m, 1H), 
4.25 (m, 1H), 3.99 (m, 1H), 2.46 (m, 1H), 2.34 (m, 1H), 2.31-2.17 (m, 
3H), 2.01 (s, 3H), 1.84 (s, 3H), 1.51 (s, 3H), 1.45 (d, J = 6.8 Hz, 3H), 
1.38 (s, 3H), 1.25 (d, J = 6.8 Hz, 3H), 1.04 (s, 9H) ppm; 13C{1H} 
NMR (100 MHz, CDCl3): δ = 211.4, 173.7, 170.3, 170.0, 141.3, 
139.3, 136.0, 135.9 (2 peaks), 134.3, 134.0, 133.4, 131.9, 130.2, 129.8, 
129.7, 127.7, 127.6, 124.2, 76.0, 75.4, 71.8, 68.6, 57.1, 51.3, 46.6, 
37.9, 34.3, 27.1, 21.7, 21.5, 21.1, 19.3, 13.0, 12.6, 9.5 ppm; IR (thin 
film): vmax = 3395, 2961, 2929, 2857, 1754, 1735, 1710, 1659, 1512, 
1454, 1428, 1365, 1313, 1260, 1239, 1111, 1075, 1016, 963, 821, 798, 
741, 704, 613, 507 cm-1; HRMS-ESI (m/z): calcd. for 
C43H55O8NNaSi [M + Na]+: 764.3589, found: 764.3590.

Synthesis of pyruvamide 68. A suspension of 67 (16.3 mg, 0.022 
mmol, 1.0 equiv, azeotropically dried with benzene) and NaHCO3 
(18.9 mg, 0.22 mmol, 10.0 equiv) in dry CH2Cl2 (2.0 mL) was added 
Dess-Martin Periodinane (29.5 mg, 0.066 mmol, 3.0 equiv) in one 
portion. The mixture was vigorously stirred for 10 min at room 
temperature until complete consumption of starting material was 
indicated by TLC. The reaction was quenched with saturated NaHCO3 
(aq., 15 mL) and partitioned between CH2Cl2 (30 mL) and H2O (10 
mL). The organic layer was collected and the aqueous phase was 
extracted with CH2Cl2 (20 mL). The combined organic extract was 
dried over Na2SO4 and concentrated in vacuo. The resultant residue 
was purified by preparative TLC (petroleum ether/EtOAc: 3/1) to 
afford ketoamide 68 (13.1 mg, 80% yield) as a colorless oil. TLC 
(petroleum ether / ethyl acetate = 1:1 v/v, KMnO4): Rf = 0.79; []  = 
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−178.9 (c = 0.69 in CHCl3); 1H NMR (400 MHz, CDCl3): δ = 8.03 (d, 
J = 10.0 Hz, 1H), 7.66-7.59 (m, 4H), 7.43-7.30 (m, 6H), 6.14 (d, J = 
15.4 Hz, 1H), 5.63 (dd, J = 15.4, 9.6 Hz, 1H), 5.58 (dd, J = 16.0, 8.4 
Hz, 1H), 5.42 (t, J = 10.4 Hz, 1H), 5.36 (m, 1H), 5.27 (d, J = 16.0 Hz, 
1H), 5.08 (dd, J = 11.6, 5.2 Hz, 1H), 4.55 (d, J = 10.8 Hz, 1H), 4.37 
(m, 1H), 3.99 (m, 1H), 2.48 (s, 3H), 2.46 (m, 1H), 2.34 (m, 1H), 2.31-
2.17 (m, 3H), 2.01 (s, 3H), 1.86 (s, 3H), 1.51 (s, 3H), 1.36 (s, 3H), 
1.26 (d, J = 6.8 Hz, 3H), 1.04 (s, 9H) ppm; 13C{1H} NMR (100 MHz, 
CDCl3): δ = 210.6, 196.6, 170.2, 169.8, 159.7, 141.1, 139.7, 135.8, 
135.7, 134.2, 133.9, 133.1, 132.1, 130.1, 129.7, 129.6, 127.6, 127.5, 
124.1, 123.4, 75.9, 75.4, 71.6, 56.8, 51.8, 46.4, 37.8, 34.2, 27.0, 24.6, 
21.4, 21.0, 19.2, 12.9, 12.5, 9.4 ppm; IR (thin film): vmax = 3392, 2965, 
2930, 2857, 1753, 1731, 1711, 1689, 1503, 1428, 1360, 1241, 1111, 
1070, 1015, 964, 797, 742, 704, 613, 508 cm-1; HRMS-DART (m/z): 
calcd. for C43H54O8NSi [M + H]+: 740.3613, found: 740.3610.

Dess-Martin oxidation of undried 67 in wet CH2Cl2 at room 
temperature for 1 hour resulted in only 31% yield of 68 and a 
significant amount of the monoepoxide 68a was isolated in 44% yield 
as a colorless oil. []  = −135.0 (c = 0.12 in CHCl3); 1H NMR (400 
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MHz, CDCl3): δ = 7.98 (d, J = 10.0 Hz, 1H, H-N), 7.64-7.57 (m, 4H, 
H-Ar), 7.41-7.30 (m, 6H, H-Ar), 6.02 (dd, J = 15.6, 8.8 Hz, 1H, HC8), 
5.67 (dd, J = 15.6, 8.8 Hz, 1H, HC14), 5.47 (d, J = 15.6 Hz, 1H, HC15), 
5.46 (t, J = 10.4 Hz, 1H, HC18), 5.35 (m, 1H, HC7), 5.28 (d, J = 15.6 
Hz, 1H, HC9), 4.60 (d, J = 11.2 Hz, 1H, HC17), 4.34 (m, 1H, HC5), 
4.12 (ddd, J = 12.0, 8.8, 3.2 Hz, 1H, HC13), 2.50 (s, 3H, H3C25), 2.49 
(m, 1H, HC11), 2.30-2.21 (m, 3H, HC4, HAC6, HAC12), 2.17 (m, 1H, 
HBC6), 2.01 (s, 3H, H3C27), 1.88 (s, 3H, H3C22), 1.60 (m, 1H, HBC12), 
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1.38 (s, 3H, H3C19), 1.25 (d, J = 6.4 Hz, 3H, H3C20), 1.21 (s, 3H, 
H3C21), 1.02 (s, 9H, SiR) ppm; 13C{1H} NMR (125 MHz, CDCl3): δ = 
210.3 (C3=O), 196.6 (C24=O), 170.3 (C1=O), 170.2 (C26=O), 159.9 
(C23=O), 140.9 (C9H), 139.6 (C16), 136.0 (2 peaks, SiR), 135.9 (SiR), 
133.9 (C14H), 132.5 (C15H), 131.3 (C8H), 130.0 (SiR), 129.9 (SiR), 
127.8 (2 peaks, SiR), 127.7 (SiR), 124.4 (C17H), 75.4 (C5H), 73.1 
(C13H), 69.6 (C7H), 63.3 (C11H), 58.9 (C10), 56.9 (C2), 52.4 (C18H), 
46.8 (C4H), 37.3 (C12H2), 34.3 (C6H2), 27.0 (SiR), 24.7 (C25H3), 21.4 
(C27H3), 21.0 (C19H3), 13.7 (C21H3), 13.6 (C22H3), 9.4 (C20H3) ppm; 
IR (thin film): vmax = 3499, 3388, 2960, 2928, 2856, 1743, 1728, 1710, 
1690, 1504, 1461, 1428, 1360, 1313, 1260, 1238, 1109, 1079, 1017, 
966, 800, 758, 704, 613, 508 cm-1; HRMS-DART (m/z): calcd. for 
C43H54O9NSi [M + H]+: 756.3562, found: 756.3548.

Synthesis of lankacidin A (sedecamycin, 2). To a stirred solution 
of acetic acid (194 mg, 0.18 mL, 3.0 mmol) in THF (4.5 mL) at room 
temperature was added TBAF (1.0 mol/L in THF, 1.5 mL, 1.5 mmol). 
After stirring for 10 min, 4.0 mL of the reagent prepared as described 
above was added to a solution of 68 (25.0 mg, 0.034 mmol) in THF 
(14.0 mL). The resulting reaction mixture was stirred at room 
temperature for 56 hours. Upon completion, reaction quench was 
performed by cannulation of the reaction mixture into a vigorously 
stirred, cold saturated NaHCO3 (aq., 60 mL). The layers were 
separated and the aqueous layer was extracted with EtOAc (3 x 30 
mL). The combined organic layers were washed with brine (50 mL), 
dried over Na2SO4, filtered and concentrated. The resultant crude 
residue was purified by preparative TLC (petroleum ether/EtOAc: 1/1) 
to give lankacidin A (2, 14.7 mg, 87% yield) as a white solid. TLC 
(petroleum ether / EtOAc = 1:1 v/v, KMnO4): Rf = 0.35; []  = 
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−243.9 (c = 1.14 in EtOH); 1H NMR (400 MHz, CDCl3): δ = 8.08 (d, 
J = 9.9 Hz, 1H, H-N), 6.27 (d, J = 15.4 Hz, 1H, HC9), 5.70 (dd, J = 
15.4, 9.7 Hz, 1H, HC8), 5.60 (d, J = 15.8 Hz, 1H, HC15), 5.50 (dd, J = 
15.8, 8.2 Hz, 1H, HC14), 5.44 (t, J = 10.2 Hz, 1H, HC18), 5.43 (m, 1H, 
HC7), 5.35 (m, 1H, HC11), 4.68 (d, J = 10.8 Hz, 1H, HC17), 4.41 (dt, J 
= 12.1, 3.4 Hz, 1H, HC5), 4.09 (m, 1H, HC13), 2.47 (s, 3H, H3C25), 
2.44-2.39 (m, 3H, HC4, HAC12, HBC12), 2.35-2.22 (m, 2H, HAC6, 
HBC6), 2.03 (s, 3H, H3C27), 1.91 (s, 3H, H3C22), 1.55 (s, 3H, H3C21), 
1.39 (s, 3H, H3C19), 1.31 (d, J = 6.7 Hz, 3H, H3C20) ppm; 13C{1H} 
NMR (100 MHz, CDCl3): δ = 210.8 (C3=O), 196.7 (C24=O), 170.4 
(C26=O), 169.9 (C1=O), 159.8 (C23=O), 141.1 (C9H), 139.6 (C16), 
136.3 (C10), 134.7 (C15H), 131.4 (C14H), 129.7 (C11H), 124.6 (C8H), 
124.3 (C17H), 75.6 (C5H), 74.7 (C13H), 71.6 (C7H), 56.9 (C2), 51.9 
(C18H), 46.6 (C4H), 37.0 (C12H2), 34.3 (C6H2), 24.7 (C25H3), 21.6 
(C27H3), 21.1 (C19H3), 13.1 (C22H3), 12.7 (C21H3), 9.6 (C20H3) ppm; 
IR (thin film): vmax = 3450, 3387, 2927, 2856, 1730, 1709, 1688, 
1504, 1453, 1360, 1242, 1161, 1138, 1055, 1014, 965, 866, 825, 811, 
799, 738, 675, 626, 583, 547, 534 cm-1; HRMS-DART (m/z): calcd. 
for C27H36O8N [M + H]+: 502.2435, found: 502.2434.

Synthesis of lankacidin C (1). A solution of pyruvamide 68 (9.0 
mg, 0.012 mmol) in acetonitrile (1.5 mL) was cooled to −20 C 
followed by dropwise addition of HF (aq., 40 wt.%, 1.0 mL). The 
resulting cloudy mixture was vigorously stirred at the same 
temperature for 65 hours and monitored by TLC. The reaction was 
quenched by carefully pouring into a vigorously stirred, cold solution 
of saturated NaHCO3 (aq., 80 mL). The slurry was stirred at room 
temperature for further 30 min before it was extracted with EtOAc (5 
x 20 mL). The organic layers were combined and dried over Na2SO4 
and concentrated under reduced pressure. Further purification by 
preparative TLC (CH2Cl2/MeOH, 10/1) gave lankacidin C (1, 2.4 mg, 
44% yield). TLC (dichloromethane / methanol = 10:1 v/v, KMnO4): 
Rf = 0.54; []  = −195.8 (c = 0.08 in EtOH); 1H NMR (500 MHz, 
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CDCl3): δ = 8.07 (d, J = 10.0 Hz, 1H, H-N), 6.14 (d, J = 15.4 Hz, 1H, 
HC9), 5.80 (dd, J = 15.4, 9.5 Hz, 1H, HC8), 5.59 (d, J = 15.9 Hz, 1H, 
HC15), 5.50 (dd, J = 15.9, 8.1 Hz, 1H, HC14), 5.44 (t, J = 10.5 Hz, 1H, 
HC18), 5.32 (dd, J = 9.7, 7.2 Hz, 1H, HC11), 4.67 (d, J = 10.9 Hz, 1H, 
HC17), 4.43 (dt, J = 9.8, 5.9 Hz, 1H, HC5), 4.33 (dt, J = 8.3, 5.5 Hz, 
1H, HC7), 2.47 (s, 3H, H3C25), 2.46 (m, 1H, HAC6), 2.44-2.37 (m, 3H, 
HC4, HAC12, HBC12), 2.28 (m, 1H, HBC6), 1.91 (s, 3H, H3C22), 1.56 (s, 
3H, H3C21), 1.39 (s, 3H, H3C19), 1.26 (d, J = 6.8 Hz, 3H, H3C20) ppm; 

13C{1H} NMR (125 MHz, CDCl3): δ = 211.0 (C3=O), 196.7 (C24=O), 
170.0 (C1=O), 159.9 (C23=O), 139.5 (C16), 138.4 (C9H), 136.5 (C10), 
134.9 (C15H), 131.3 (C14H), 129.4 (C8H), 128.8 (C11H), 124.4 (C17H), 
75.8 (C5H), 74.8 (C13H), 70.1 (C7H), 56.9 (C2), 51.9 (C18H), 46.6 
(C4H), 37.0 (C12H2), 36.9 (C6H2), 24.7 (C25H3), 21.1(C19H3), 13.0 
(C22H3), 12.9 (C21H3), 9.8 (C20H3) ppm; IR (thin film): vmax = 3363, 
2923, 2853, 1743, 1729, 1706, 1679, 1631, 1512, 1461, 1378, 1260, 
1220, 1167, 1134, 1083, 1015, 966, 873, 812 cm-1; HRMS-DART 
(Negative-ion mode) (m/z): calcd. for C25H32O7N [M − H]−: 458.2184, 
found: 458.2178.

Neolankacidin C (69, 2.7 mg, 49% yield) was also isolated as a 
white waxy solid from the above crude product mixture. TLC 
(dichloromethane / methanol = 10:1 v/v, KMnO4): Rf = 0.45; []  = 
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+48.7 (c = 0.22 in EtOH); 1H NMR (500 MHz, CDCl3): δ = 7.59 (d, J 
= 9.6 Hz, 1H, H-N), 6.47 (dd, J = 15.4, 11.0 Hz, 1H, HC8), 5.87 (d, J 
= 11.0 Hz, 1H, HC9), 5.80 (d, J = 15.4 Hz, 1H, HC15), 5.61-5.54 (m, 
2H, HC7, HC14), 5.35 (dd, J = 10.6, 9.7 Hz, 1H, HC18), 4.72 (d, J = 
11.0 Hz, 1H, HC17), 4.28 (dt, J = 11.5, 3.0 Hz, 1H, HC5), 4.13 (dd, J = 
11.0, 4.2 Hz, 1H, HC11), 3.91 (m, 1H, HC13), 2.70 (m, 1H, HAC6), 
2.51 (m, 1H, HC4), 2.45 (s, 3H, H3C25), 2.44 (m, 1H, HBC6), 2.10 (m, 
1H, HAC12), 2.02 (m, 1H, HBC12), 1.88 (s, 3H, H3C22), 1.64 (s, 3H, 
H3C21), 1.41 (s, 3H, H3C19), 1.17 (d, J = 6.6 Hz, 3H, H3C20) ppm; 

13C{1H} NMR (125 MHz, CDCl3): δ = 209.8 (C3=O), 196.5 (C24=O), 
171.3 (C1=O), 159.8 (C23=O), 139.2 (C16), 138.5 (C10), 136.5 (C15H), 
134.2 (C8H), 132.9 (C14H), 128.1 (C9H), 125.8 (C17H), 123.5 (C7H), 
77.9 (C5H), 77.1 (C11H), 71.9 (C13H), 57.0 (C2), 53.3 (C18H), 46.2 
(C4H), 40.9 (C12H2), 32.7 (C6H2), 24.5 (C25H3), 20.4 (C19H3), 13.0 
(C22H3), 11.2 (C21H3), 9.0 (C20H3) ppm; IR (thin film): vmax = 3362, 
2923, 2853, 1734, 1702, 1685, 1635, 1521, 1457, 1377, 1333, 1260, 
1167, 1138, 1035, 1011, 967, 888, 832, 694, 594 cm-1; HRMS-DART 
(Negative-ion mode) (m/z): calcd. for C25H32O7N [M − H]−: 458.2184, 
found: 458.2201.

Synthesis of isolankacidinol (10) via desilylation of 36b.. A 
solution of macrocycle 36b (18.0 mg, 0.0193 mmol, 1.0 equiv) in 
acetonitrile (2.0 mL) was cooled to −20 C and HF (aq., 40 wt.%, 1.6 
mL) was slowly added. The resulting cloudy mixture was vigorously 
stirred at the same temperature for 60 hours. The reaction was then 
quenched by pouring into a vigorously stirred cold solution of 
saturated aq. NaHCO3 (80 mL) and stirred at room temperature for 
further 30 min before it was extracted with EtOAc (3 x 60 mL). The 
organic layers were combined, dried over Na2SO4 and concentrated in 
vacuo. ([Note]: 1H NMR of the crude material indicated formal [1,5]-
hydroxy migration product was not formed). The crude desilylation 
product was subjected to preparative TLC (10% MeOH in CHCl3) to 
afford isolankacidinol (10, 7.3 mg, 82% yield) as a white solid. 
Recrystallization of the purified material in MeOH/H2O (8/1, v/v) at 5 
C gave crystals suitable for X-ray diffraction. TLC (chloroform / 
methanol = 10:1 v/v, KMnO4): Rf = 0.38; []  = −189.2 (c = 0.13 in 
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EtOH); 1H NMR (400 MHz, CD3OD): δ = 6.21 (d, J = 15.2 Hz, 1H, 
HC9), 5.82 (d, J = 15.6 Hz, 1H, HC15), 5.57 (d, J = 10.4 Hz, 1H, 
HC18), 5.43 (dd, J = 15.6, 7.6 Hz, 1H, HC14), 5.32 (m, 1H, HC11), 5.29 
(m, 1H, HC8), 4.97 (d, J = 10.4 Hz, 1H, HC17), 4.35 (ddd, J = 11.2, 
8.4, 4.0 Hz, 1H. HC7), 4.17 (m, 1H, HC13), 4.10 (q, J = 6.8 Hz, 1H, 
HC24), 3.60 (app t, J = 10.8 Hz, 1H, HC5), 3.04 (dq, J = 10.8, 6.8 Hz, 
1H, HC4), 2.47 (m, 1H, HAC12), 2.32 (m, 1H, HBC12), 2.07 (m, 1H, 
HAC6), 1.84 (m, 1H, HBC6), 1.73 (s, 3H, H3C22), 1.63 (s, 3H, H3C21), 
1.38 (s, 3H, H3C19), 1.37 (d, J = 6.8 Hz, 3H, H3C25), 1.01 (d, J = 6.4 
Hz, 3H, H3C20) ppm; 13C{1H} NMR (100 MHz, CD3OD): δ = 206.2 
(C3=O), 176.9 (C23=O), 175.0 (C1=O), 139.2 (C9H), 138.2 (C16), 
136.3 (C15H), 135.0 (C10), 133.4 (C14H), 131.0 (C11H), 128.7 (C8H), 
127.7 (C17H), 78.7 (C5H), 75.1 (C13H), 70.8 (C7H), 69.2 (C24H), 60.2 
(C2), 49.6 (C18H), 45.1 (C4H), 41.6 (C6H2), 36.9 (C12H2), 22.8 (C19H3), 
21.3 (C25H3), 13.3 (C21H3), 12.9 (C22H3), 9.7 (C20H3) ppm; IR (thin 
film): vmax = 3383, 2929, 1742, 1712, 1659, 1519, 1456, 1376, 1314, 
1244, 1123, 1024, 965, 877, 709 cm-1; HRMS-DART (m/z): calcd. 
for C25H36O7N [M + H]+: 462.2486, found: 462.2486.

Decarboxylation of isolankacidinol (10) following Harada’s 
protocol. To a solution of 10 (20.0 mg, 0.044 mmol) in methanol (1.0 
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mL) was added aq. K2CO3 (2 wt.%, 1.0 mL) at room temperature. The 
reaction mixture was vigorously stirred for 1 hour at the same 
temperature before acidified to pH = 2 by slow dropwise addition of 1 
M HCl (aq.). The mixture was then diluted with EtOAc (30 mL) and 
brine (30 mL). The layers were separated, the aqueous layer was 
extracted with additional EtOAc (2 x 20 mL) and the combined 
organic extracts were dried over Na2SO4 and concentrated in vacuo. 
The residue was applied to preparative TLC (CH2Cl2/MeOH, 10/1) to 
give lankacyclinol (5, 12.4 mg, 67% yield) and 2-epi-lankacyclinol 
(62, 2.2 mg, 12% yield). A crystal of 62 suitable for X-ray analysis 
were eventually grown by slow evaporation at 5 C from methanol.

Synthesis of 2,18-bis-epi-lankacyclinol (72) via desilylation of 
36c. To a solution of macrocycle 36c (35.0 mg, 0.038 mmol, 1.0 
equiv) and H2O (27.0 mg, 1.510 mmol, 40.0 equiv) in DMF (9.0 mL) 
was added TASF (159.0 mg, 0.565 mmol, 15.0 equiv) in one portion. 
The resulting orange-colored solution was stirred for 24 hours at room 
temperature, diluted with EtOAc (20 mL) and cooled to 0 C, during 
which time a mixture of brine (30 mL) and phosphate buffer (aq., pH 
= 7, 30 mL) was added to quench the reaction. The resultant slurry 
was further extracted with additional EtOAc (3 x 40 mL). The 
combined organic layers were washed with brine (2 x 40 mL), dried 
over Na2SO4 and concentrated in vacuo. The residue was purified by 
preparative TLC (CHCl3/MeOH, 10/1) to give 2,18-bis-epi-
lankacyclinol (72, 12.1 mg, 77% yield) as a white solid. TLC 
(chloroform / methanol = 10:1 v/v, KMnO4): Rf = 0.30; []  = +185.7 
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(c = 0.10 in MeOH); 1H NMR (400 MHz, CD3OD): δ = 6.66 (m, 1H, 
HC5), 6.07 (d, J = 15.6 Hz, 1H, HC9), 5.94 (d, J = 15.8 Hz, 1H, HC15), 
5.54 (dd, J = 15.9, 5.7 Hz, 1H, HC14), 5.48 (dd, J = 15.6, 6.3 Hz, 1H, 
HC8), 5.32 (t, J = 7.6 Hz, 1H, HC11), 5.17 (br d, J = 9.6 Hz, 1H, HC17), 
4.97 (t, J = 9.9 Hz, 1H, HC18), 4.41 (m, 1H, HC7), 4.36 (m, 1H, HC13), 
4.12 (q, J = 6.8 Hz, 1H, HC24), 3.57 (dq, J = 10.3, 6.8 Hz, 1H, HC2), 
2.74 (ddd, J = 13.6, 9.4, 3.9 Hz, 1H, HAC6), 2.50-2.36 (m, 3H, HBC6, 
HAC12, HBC12), 1.73 (s, 3H, H3C20), 1.70 (s, 3H, H3C22), 1.65 (s, 3H, 
H3C21), 1.31 (d, J = 6.8 Hz, 3H, H3C25), 0.99 (d, J = 6.8 Hz, 3H, H3C19) 
ppm; 13C{1H} NMR (100 MHz, CD3OD): δ = 206.0 (C3=O), 176.9 
(C23=O), 140.0 (C4), 139.2 (C5H), 136.8 (C16), 136.5 (C9H), 136.2 
(C15H), 135.2 (C10), 130.6 (C14H), 129.9 (C17H), 129.1 (C8H), 128.5 
(C11H), 72.0 (C7H), 71.6 (C13H), 69.1 (C24H), 50.5 (C18H), 44.9 (C2H), 
37.5 (C6H2), 35.4 (C12H2), 21.3 (C25H3), 16.2 (C19H3), 13.8 (C22H3), 
13.4 (C21H3), 12.4 (C20H3) ppm. IR (thin film): vmax = 3344, 2922, 
2853, 1661, 1631, 1548, 1454, 1370, 1293, 1265, 1126, 1027, 1013, 
967, 877 cm-1; HRMS-DART (m/z): calcd. for C24H36O5N [M + H]+: 
418.2588, found: 418.2587.

 18-epi-lankacyclinol (73, 1.4 mg, 9% yield) was also isolated as a 
white waxy solid from the above crude product mixture. TLC 
(chloroform / methanol = 10:1 v/v, KMnO4): Rf = 0.40; []  = +44.2 
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(c = 0.10 in MeOH); 1H NMR (400 MHz, acetone-d6): δ = 8.29 (d, J 
= 9.6 Hz, 1H, H-N), 6.54 (ddq, J = 9.4, 6.0, 1.2 Hz, 1H, HC5), 6.16 (d, 
J = 15.6 Hz, 1H, HC9), 6.01 (d, J = 15.6 Hz, 1H, HC15), 5.61-5.55 (m, 
2H, HC8, HC14), 5.40 (dd, J = 8.4, 7.0 Hz, 1H, HC11), 5.10 (d, J = 9.2 
Hz, 1H, HC17), 4.89 (td, J = 9.4, 3.4 Hz, 1H, HC18), 4.74 (d, J = 4.8 
Hz, 1H, HO-C24), 4.58-4.52 (m, 2H, HC13, HC7), 4.15 (qd, J = 6.8, 5.2 
Hz, 1H, HC24), 3.96 (d, J = 4.8 Hz, 1H, HO-C7), 3.80 (d, J = 4.8 Hz, 
1H, HO-C13), 3.49 (qd, J = 7.2, 3.6 Hz, 1H, HC2), 2.71 (ddd, J = 14.4, 
9.4, 6.8 Hz, 1H, HAC6), 2.54 (m, 1H, HBC6), 2.49-2.36 (m, 2H, HAC12, 
HBC12), 1.80 (s, 3H, H3C20), 1.79 (s, 3H, H3C22), 1.62 (s, 3H, H3C21), 
1.29 (d, J = 6.8 Hz, 3H, H3C25), 1.04 (d, J = 7.2 Hz, 3H, H3C19) ppm; 
13C{1H} NMR (100 MHz, acetone-d6): δ = 208.0 (C3=O), 174.5 
(C23=O), 139.7 (C4), 139.5 (C5H), 135.1 (C10), 135.0 (C9H), 134.7 
(C16), 133.3 (C15H), 131.3 (C14H), 130.9 (C17H), 128.6 (C8H), 127.9 
(C11H), 71.1 (C7H), 70.8 (C13H), 68.8 (C24H), 50.4 (C18H), 42.6 (C2H), 
37.6 (C6H2), 35.5 (C12H2), 21.5 (C25H3), 16.4 (C19H3), 13.1 (C21H3), 
12.8 (C22H3), 12.3 (C20H3) ppm; IR (thin film): vmax = 3361, 3201, 
2963, 2923, 2853, 1657, 1631, 1519, 1467, 1457, 1377, 1316, 1300, 
1261, 1123, 1061, 1028, 967, 871, 806, 722 cm-1; HRMS-DART 
(m/z): calcd. for C24H36O5N [M + H]+: 418.2588, found: 418.2588.

Synthesis of tris-(4-bromobenzyl ester) derivative 74. A solution 
of 2,18-bis-epi-lankacyclinol 72 (2.2 mg, 5.3 µmol, 1.0 equiv) in 

CH2Cl2 (0.3 mL) was treated successively with Et3N (9.0 µL, 65 µmol, 
12.3 equiv), DMAP (0.7 mg, 5.7 µmol, 1.1 equiv) and 4-
bromobenzoyl chloride (11.7 mg, 53 µmol, 10.0 equiv). The reaction 
mixture was stirred at room temperature for 13 hours before 
partitioned between CH2Cl2 (10 mL) and H2O (10 mL). Layers were 
separated and the aqueous phase was extracted with CH2Cl2 (2 x 10 
mL). The combined organic extracts were dried over Na2SO4, filtered 
and concentrated under reduced pressure. The oily residue was 
purified by preparative TLC (petroleum ether/EtOAc: 2/1) to produce 
74 (4.5 mg, quant.) as a white solid. A single crystal suitable for X-
ray analysis was obtained by slow evaporation at room temperature 
from petroleum ether/dichloromethane. []  = +50.2 (c = 0.17 in 

25
 
 
D

CHCl3); 1H NMR (600 MHz, CDCl3): δ = 7.96 (d, J = 7.8 Hz, 2H), 
7.90 (dd, J = 18.6, 7.8 Hz, 4H), 7.62 (d, J = 7.8 Hz, 4H), 7.57 (d, J = 
7.8 Hz, 2H), 6.49 (s, 1H), 6.17 (d, J = 15.6 Hz, 1H), 6.06 (s, 1H), 5.99 
(d, J = 15.0 Hz, 1H), 5.68-5.58 (m, 3H), 5.49 (dd, J = 15.0, 7.2 Hz, 
1H), 5.45-5.37 (m, 1H), 5.37-5.27 (m, 2H), 4.85-4.74 (m,1H), 3.63 (s, 
1H), 2.91-2.84 (m, 1H), 2.76-2.68 (m, 1H), 2.66-2.53 (m, 2H), 1.84 (s, 
3H), 1.73 (s, 3H), 1.70 (s, 3H), 1.58 (d, J = 6.6 Hz, 3H), 1.04 (d, J = 
5.4 Hz, 3H), ppm. 13C{1H} NMR (150 MHz, CDCl3): δ = 203.7, 
169.7, 165.1 (2 peaks), 165.0, 140.1, 138.4, 137.3, 136.7, 134.9, 134.4, 
132.2, 132.0, 131.9, 131.4, 131.3, 129.4, 128.4, 128.3 (3 peaks), 125.1, 
123.4, 74.3, 73.4, 71.6, 51.0, 44.1, 33.5, 31.8, 22.8, 17.9, 16.0, 13.4, 
12.7 ppm; IR (thin film): vmax = 3300, 2959, 2923, 2853, 1718, 1679, 
1660, 1618, 1590, 1540, 1457, 1397, 1263, 1171, 1100, 1012, 972, 
847, 800, 756 cm-1; HRMS-ESI (m/z): calcd. for C45H44O8NBr3Na 
[M + Na]+: 986.0509, found: 986.0516.

Synthesis of 2,18-bis-epi-lankacidinol (75). To a stirred solution 
of acetic acid (123 mg, 120 µL, 2.0 mmol) in THF (3.0 mL) at room 
temperature was added TBAF (1.0 mol/L in THF, 1.0 mL, 1.0 mmol). 
After stirring for 10 min, 1.5 mL of this reagent was added to a 
solution of 36c (10.2 mg, 0.011 mmol) in THF (1.5 mL). The 
resulting reaction mixture was stirred at room temperature for 90 
hours and partitioned between saturated NaHCO3 (aq., 40 mL) and 
EtOAc (20 mL). The separated aqueous layer was extracted with 
EtOAc (3 x 30 mL) and the combined organic layers were washed 
with brine (20 mL), dried over Na2SO4, filtered and concentrated. 
Analysis of the NMR spectra collected on crude residue indicated C7-
epimerization was not observed. Purification by preparative TLC 
(CH2Cl2/MeOH: 9/1) gave 75 (3.9 mg, 76% yield) as a white waxy 
solid. TLC (chloroform / methanol = 10:1 v/v, KMnO4): Rf = 0.38; []

 = +65.7 (c = 0.33 in MeOH); 1H NMR (400 MHz, CD3OD): δ = 
24
 
 
D

8.40 (d, J = 10.0 Hz, 1H, H-N), 6.20 (d, J = 15.6 Hz, 1H, HC9), 5.96 
(d, J = 16.0 Hz, 1H, HC15), 5.73 (dd, J = 16.0, 3.2 Hz, 1H, HC14), 5.43 
(dd, J = 15.6, 6.8 Hz, 1H, HC8), 5.35-5.30 (m, 2H, HC18, HC11), 5.08 
(d, J = 10.4 Hz, 1H, HC17), 4.62 (m, 1H, HC13), 4.47 (td, J = 7.7, 4.2 
Hz, 1H, HC7), 4.15 (q, J = 6.8 Hz, 1H, HC24), 3.84 (ddd, J = 11.9, 9.7, 
2.4 Hz, 1H, HC5), 3.06 (dq, J = 12.8, 6.5 Hz, 1H, HC4), 2.53 (ddd, J = 
14.0, 8.5, 3.5 Hz, 1H, HAC12), 2.38 (ddd, J = 13.9, 8.3, 3.8 Hz, 1H, 
HBC12), 2.07 (ddd, J = 14.1, 9.8, 4.2 Hz, 1H, HAC6), 1.96 (ddd, J = 
14.2, 8.6, 2.5 Hz, 1H, HBC6), 1.79 (s, 3H, H3C22), 1.68 (s, 3H, H3C21), 
1.49 (s, 3H, H3C19), 1.30 (d, J = 6.8 Hz, 3H, H3C25), 1.09 (d, J = 6.5 
Hz, 3H, H3C20) ppm; 13C{1H} NMR (100 MHz, CD3OD): δ = 211.2 
(C3=O), 177.0 (C23=O), 174.4 (C1=O), 139.9 (C16), 138.0 (C9H), 
136.0 (C10), 133.3 (C15H), 132.8 (C14H), 129.4 (C11H), 127.5 (C8H), 
125.5 (C17H), 77.3 (C5H), 71.5 (C13H), 70.4 (C7H), 69.0 (C24H), 60.2 
(C2), 53.1 (C18H), 46.5 (C4H), 41.9 (C6H2), 35.0 (C12H2), 23.3 (C19H3), 
21.0 (C25H3), 13.2 (C21H3), 13.1 (C22H3), 9.0 (C20H3) ppm; IR (thin 
film): vmax = 3385, 2978, 2914, 2847, 1735, 1706, 1653, 1517, 1456, 
1374, 1252, 1123, 1059, 1023, 967, 877 cm-1; HRMS-DART (m/z): 
calcd. for C25H36O7N [M + H]+: 462.2486, found: 462.2486.

Synthesis of 2,7,18-tri-epi-lankacidinol (76) via HF-promoted 
desilylation of 36c. To a solution of macrocycle 36c (15.0 mg, 0.0161 
mmol, 1.0 equiv) in acetonitrile (1.8 mL) was added HF (aq., 40 wt.%, 
1.4 mL) at −20 C. The resulting cloudy mixture was vigorously 
stirred at the same temperature for 96 hours until complete 
desilylation of the starting material was achieved as monitored by 
TLC analysis. The reaction was quenched by pouring into a 

Page 15 of 19

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



vigorously stirred cold solution of saturated NaHCO3 (aq., 40 mL). 
The mixture was stirred for further 30 min and extracted with EtOAc 
(3 x 25 mL). The organic extracts were combined, dried over Na2SO4, 
filtered and concentrated under reduced pressure. The crude product 
was further purified by preparative TLC (5% MeOH in CHCl3, twice 
development was necessary) to give 75 (4.1 mg, 55% yield) and a 
slightly polar component 2,7,18-tri-epi-lankacidinol (76, 2.2 mg, 30% 
yield) as a colorless oil. TLC (chloroform / methanol = 10:1 v/v, 
KMnO4): Rf = 0.37; []  = +169.8 (c = 0.11 in MeOH); 1H NMR 
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(500 MHz, CD3OD): δ = 6.18 (d, J = 15.5 Hz, 1H, HC9), 5.97 (d, J = 
16.5 Hz, 1H, HC15), 5.69 (dd, J = 15.5, 3.5 Hz, 1H, HC14), 5.56 (dd, J 
= 11.5, 5.0 Hz, 1H, HC11), 5.48 (dd, J = 15.5, 9.5 Hz, 1H, HC8), 5.30 
(d, J = 10.5 Hz, 1H, HC18), 5.07 (d, J = 10.5 Hz, 1H, HC17), 4.62 (m, 
1H, HC13), 4.14 (q, J = 7.0 Hz, 1H, HC24), 4.05 (td, J = 10.3, 5.8 Hz, 
1H, HC7), 3.61 (m, 1H, HC5), 3.09 (dq, J = 12.8, 6.4 Hz, 1H, HC4), 
2.48 (ddd, J = 13.7, 11.4, 2.5 Hz, 1H, HAC12), 2.43-2.37 (m, 2H, 
HBC12, HAC6), 1.83 (ddd, J = 16.5, 10.4, 5.0 Hz, 1H, HBC6), 1.74 (s, 
3H, H3C22), 1.58 (s, 3H, H3C21), 1.48 (s, 3H, H3C19), 1.29 (d, J = 7.0 
Hz, 3H, H3C25), 1.13 (d, J = 6.5 Hz, 3H, H3C20) ppm; 13C{1H} NMR 
(125 MHz, CD3OD): δ = 211.1 (C3=O), 177.1 (C23=O), 174.1 (C1=O), 
139.5 (C16), 139.4 (C9H), 136.8 (C10), 133.3 (C15H), 133.1 (C14H), 
128.8 (C11H), 128.4 (C8H), 125.5 (C17H), 77.9 (C5H), 74.0 (C7H), 
71.2 (C13H), 69.0 (C24H), 59.9 (C2), 53.2 (C18H), 46.3 (C4H), 42.4 
(C6H2), 34.8 (C12H2), 23.2 (C19H3), 20.9 (C25H3), 13.0 (C22H3), 12.8 
(C21H3), 8.9 (C20H3) ppm; IR (thin film): vmax = 3391, 2915, 2848, 
1736, 1708, 1662, 1516, 1456, 1376, 1248, 1120, 1061, 1029, 967, 
877 cm-1; HRMS-DART (m/z): calcd. for C25H36O7N [M + H]+: 
462.2486, found: 462.2485.
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(revised, novel family member)
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