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ABSTRACT: Spirocyclic hexadienones with multiple stereogenic
centers are frequently found in natural products but remain
challenging targets to synthesize. Herein, we report the
enantioselective desymmetrization of bisphenol derivatives via Ir-
catalyzed allylic dearomatization reactions, affording spirocyclic
hexadienone derivatives with up to three contiguous stereogenic
centers in good yields (up to 90%) and excellent enantioselectivity

within 30 min
up to 90% vyield
99% ee

(up to 99% ee). The high efficiency of this reaction is exemplified by the short reaction time (30 min), low catalyst loading (down to
0.2 mol %), and ability to perform the reaction on a gram-scale. The total syntheses of (+)-tatanan B and (+)-tatanan C were also
realized using this Ir-catalyzed allylic dearomatization reaction as a key step.

Bl INTRODUCTION

Spirocyclic hexadienones bearing multiple stereogenic centers
are key structural motifs found in numerous natural products
(Figure 1). For example, caesalpin J' and futoenone” are
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Figure 1. Selected natural products containing spirocyclic hexadie-
none motifs and the synthetic strategy of desymmetrization of
bisphenols via dearomatization.

biologically active compounds that have been extracted from
herbs used in traditional Chinese medicine. In particular,
spirocyclic hexadienones bearing an adjacent phenol sub-
stituent exist in complicated natural products, including
tatanans B and C, hopeanol, and spirotriscoumarins A and B.
These complex natural products display a wide range of
biological activities. Tatanans B and C, isolated from the
rhizomes of Acorus tatarinowii Schott by Yu and co-workers,’
are reported to display antidiabetic activity. Hopeanol displays
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potent antitumor activity and acetylcholinesterase inhibition.”
Spirotriscoumarins A and B show antiviral activity against the
influenza virus A.° From a retrosynthetic viewpoint, a
desymmetrization reaction of bisphenol derivatives could be
envisaged for the syntheses of these complex natural products.

Catalytic asymmetric dearomatization (CADA) reactions
have great potential for directly converting planar aromatic
starting materials into chiral spiro and fused polycyclic
compounds.®’ Among the tremendous efforts devoted in this
area, transition-metal-catalyzed asymmetric allylic substitution
reactions have been applied as an eflicient strategy in the
construction of spirocyclic hexadienones.” In 2010, the
Hamada group described a Pd-catalyzed spirocyclization
forming the spiro[4.5]decadienone ring system.* Shortly
after, our group reported an Ir-catalyzed asymmetric allylic
dearomatization of para-substituted phenols, providing cyclo-
hexadienones containing the spiro cyclopentane, piperidine, or
pyrrolidine ring structure in enantioenriched forms (Scheme
1(a)).*® In their elegant enantioselective synthesis of tatanans
B and C in 2013, Miller, Zakarian, and co-workers
implemented a Pd-catalyzed allylic dearomatization of a
bisphenol derivative as a key step in forging the central
cyclohexane ring, with the concurrent establishment of three
stereogenic centers (Scheme 1(b)).” However, under their
optimal conditions, a mixture of tatanans B and C and
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Scheme 1. Transition-Metal-Catalyzed Allylic
Dearomatization of Phenols

(a) Hamada (2010), and You (2011)
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up to 90% vyield
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undesired isomers (6:3:2) were obtained. The authors also
reported that when using an Ir-catalyst derived from
[Ir(cod)Cl], and P(OPh),, lower reactivity was observed
(up to 10% yield). Recently, we found that the enantioselective
desymmetrization of bisphenol-derived allylic carbonates could
be achieved via an Ir-catalyzed intramolecular asymmetric
allylic dearomatization reaction (Scheme 1(c)). In most cases,
the desired products bearing multiple stereogenic centers could
be afforded in high yields with excellent stereochemical control
within 30 min. Furthermore, this method was successfully
applied to the total syntheses of tatanans B and C, and the
details of this study are reported herein.

B RESULTS AND DISCUSSION

Reaction Development. Using bisphenol-derived allylic
carbonate 1a as the model substrate, various parameters were
first evaluated in the Ir-catalyzed asymmetric allylic sub-
stitution reaction (Table 1).'”"" Treatment of 1a with an Ir-
catalyst derived from [Ir(cod)Cl], (2 mol %) and (S,S,S,)-
Feringa ligand L1 (4 mol %), and Cs,CO; (1 equiv) as the
base, in THF at 50 °C gave 2a in 82% NMR vyield with 92% ee
in S min (entry 1). Next, the effect of a variety of chiral
phosphoramidites, the most frequently utilized chiral ligands in
Ir-catalyzed asymmetric allylic substitution reactions, was
evaluated (entries 2—8). It was found that the Alexakis ligand
(5,5,S,)-L2 performed the best in terms of the enantioselec-
tivity of 2a (98% ee). Furthermore, different Ir-precursors and
prepreparation methods for the chiral Ir-catalysts were
screened, as these modifications have been shown to lead to
marked differences in catalyst stability and often influence the
overall reaction outcomes.'””'* Using [Ir(dbcot)Cl], or
[Ir(dncot)Cl], as the Ir-precursor led to decreased yields
and enantioselectivity of 2a (33—43% yields, 91% ee, entries 9
and 10)."” Instead of the in situ preparation of the Ir-catalyst
via "PrNH, activation,'” the utilization of (S,S,S,)-L2-derived
cyclometalated Ir- com4plex (5,5,S,)-K1 improved the reaction
efficiency (entry 11)."* The NMR yield of 2a was increased to
86% with an isolated yield of 81% and comparable
enantioselectivity on a 0.2 mmol scale reaction. Notably, in

Table 1. Optimization of the Reaction Conditions”

Me Me
—~N
HO OH [Ir(cod)Cl], (2 mol %) BN\ = Me
ligand (4 mol %) O
Me' Me —— > O
N,Bn

Cs,CO;3 (1 equiv) Me
THF, 50 °C Me

i Me
Me02CO\/\) 1a time HO 2a
R1
COL "y, OO O
o A" o pn o
PN PN PN
0 A o )—pn o
Me PH Mé
R1
L4

(S,5,S,)-L1, Ar=Ph (Ra)-
S,S,S,)-L2, Ar = 2-MeOCgHy
(S,S,S,)-L3, Ar = 2-naphthyl

(RR,)-L5, R'=H
(S,S,)-L6, R =Ph
Me _ ‘|@

/—F‘h 0 O, p OOO
. P N}_ o Q o~ dbcot
S @@ seiee

‘@
2.
\)

oTf

(RR,S,)-L (S,5,S.)-K1

(R.R.R,)-Li Ar =2 MeOCeH4 dncot
entry ligand time yield (%)° ee (%)
1 L1 S min 82 92 (-)
2 L2 S min 74 98 (-)
3 L3 S min 68 93 (-)
4 L4 45 min 72 87 (-)
S LS 45 min 63 86 (—)
6 L6 3h 62 74 (+)
7 L7 24 h 26 87 (+)
8 L8 24 h <5 N.D.”
9 L2 12h 33 91 (=)
10¢ L2 12h 43 91 (=)
Ny L2 S min 86 (81%) 97 (-)

“Reaction conditions: 1a (0.1 mmol), [Ir(cod)Cl], (2 mol %), ligand
(4 mol %), Cs,CO; (1.0 equiv) in THF (1.0 mL) at S0 °C. Catalyst
was prepared via "PrNH, activation.' “Yield determined by '"H NMR
using mesitylene as an internal standard. “Determined by HPLC
ana1y51s The sign of the optical rotation is given in parentheses.

[Ir(dbcot)Cl] (2 mol %) was used. °[Ir(dncot)Cl], (2 mol %) was
used. /Independently prepared (S,S,S,)-K1 (4 mol %) was used.
&lsolated yield of a 0.2 mmol scale reaction. "N.D.: not determined.

all cases, 2a was obtained as a single diastereoisomer. Further
screening of solvents and bases did not lead to better results
(see the SI for details).

After optimal reaction conditions had been established
(entry 11, Table 1), the substrate scope of this reaction was
investigated (Table 2). For the reactions of symmetric 2,6-
disubstituted bisphenol-derived substrates, variation of the
chain linkage (2a—2e) or the alkyl groups at the C2 and C6
positions (2f and 2g) were well accommodated. The
corresponding products were obtained in high yields (70—
88%) with excellent enantioselectivity (93—98% ee). The
absolute configuration of 2c (1S,3R) was unambiguously
determined by X-ray crystallographic analysis of an enantio-
pure sample. However, when an O-linked substrate was
employed, the target product was produced in only 7% yield
(see the SI for details). Notably, when using a 2,6-
unsubstituted phenol derivative, the allylic dearomatization
reaction afforded the desired product 2h in 69% yield and 95%
ee. Specifically, Friedel—Crafts-type allylation at the ortho-
position was not observed, presumably due to the strained
nature of the product. Contrastingly, the incorporation of two
fluorine atoms at the C2 and C6 positions led to a complex
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Table 2. Substrate Scope”

(S.5.5,)-K1
(4 mol %)
—_—
Cs,CO3 (1 equiv)
THF, 50 °C

H
Bn—N~— / N~ /
Su- oW
=
cs, cs cs,
Me Me
2 e 216
HOo Me HO Me
2a 2b

81% yield, 97% ee

EO,C  H
Ns=N

= O O
CZMe CZMe
HO Me HO Me

2g

82% yleld 94% ee 88% yleld 97% ee 70% yleld 93% ee 72% yield, 95% ee

Bn’N\—H A
0,
HO

2h

i j
69% yield, 95% ee 70% vyield, 1.5:1° 74% yield, 98% ee 69% yield, 98% ee

96% ee (major), 94% ee (minor)

87% yield, 92% ee 81% vyield, 97% ee 84% vyield, 99% ee 86% yield, 96% ee

H
H

77% yield, 96% ee 83% yield, 99% ee

90% yield, 93% ee

X-ray of 2q

“Reaction conditions: 1 (0.2 mmol), (S S,S,)-K1 (4 mol %), Cs,CO4
(1.0 equiv) in THF (2.0 mL) at 50 °C. *Combined yield and ratio of
two diastereoisomers.

mixture, which could be caused by the reduced nucleophilicity
of the phenol ring (see the SI for details). When different alkyl
groups (Pr and Me) were introduced to the C2 and C6
positions at the same time, a pair of diastereoisomers of 2i
(1.5,1) was obtained in a combined yield of 70%, with both
major and minor isomers in excellent enantiopurity (94—96%
ee). To our delight, the reactions of more sterically demanding
substrates, containing C3 or CS substituents at the phenol ring,
all proceeded smoothly with excellent atroposelectivity
(>95:5). Different alkyl (Me, Et, and 'Pr) or methoxyl groups
were well tolerated in these cases. All the desired products
(2j—2q) were obtained in good yields (69—87%) with high
enantioselectivity (92—99% ee). Notably, according to the X-
ray crystallographic analysis of 2q, the newly formed terminal
olefin and the CS substituent on the original phenol ring were
located on the opposite side of the central six-membered ring,
avoiding steric congestion in the C—C bond-forming transition
state. Further efforts toward the synthesis of five- or seven-
membered spirocyclic hexadienones were not successful (see
the SI for details). Finally, the reaction could be expanded to a

bis(1-naphthol) derivative, allowing facile access to 2r in 90%
yield with 93% ee. With a lower loading of the Ir-catalyst (0.2
mol %), a gram-scale synthesis of 2a (1.23 g) also gave
comparable results to the 0.2 mmol scale reaction in terms of
yield (76%) and enantiopurity (97% ee) within 1 h (eq 1),
which showed the robustness and practicality of this method.

Me Me
HO. OH
O O (S.5.8,)-K1
& Me (0.2 mol %)
——

Cs,CO;3 (1 equiv)

NBn °
THF,50°C,1h
MeOZCO\/\) ,
a (1.23 g)
1a (1.90 g) 76% yield, 97% ee

Synthetic Applications. A series of synthetic trans-
formations of spirocyclic hexadienone 2a were carried out
(Scheme 2). The O-methylation of 2a afforded ether 3 in 89%

Scheme 2. Transformations of 2a”

H H Me
—N —N. —N
Bn—N ! Bn~N >~ Me Bn~N ! Me
¢] O o
© Me Me Me
Meo Me HO Me HO Me
89% yield, 98% ee 97% ee 50% yield, 98% ee

(c)

nh s
(d)(e) O O

AcO Me AcO Me

5
80% yield, 98% ee 7% yleld 98% ee

“Reaction conditions: (a) NaH (1.2 equiv), Mel (10 equiv), THF, 0
°C to rt, 30 min; (b) Pd/C, H,, ethyl acetate, rt, 10 min; (c) Ac,O
(1.5 equiv), pyridine (2 equiv), DCM, 0 °C to rt; (d) 9-BBN, THF,
rt, 10 min; (e) H,0,, NaOH, rt, 15 min.

yield. The terminal olefin group of 2a was readily reduced
under Pd/C and H, conditions, leading to 4 in 50% yield.
Furthermore, the O-acylation of 2a brought about S, which
was subsequently transformed into primary alcohol 6 in 77%
yield via hydroboration/oxidation of the terminal olefin
moiety. Notably, no erosion of the enantiopurity of the
compounds was observed.

The synthetic utility of this Ir-catalyzed allylic dearomatiza-
tion of phenols was further showcased by the total synthesis of
tatanans B and C (Scheme 3). Following the work of Miller,
Zakarian, and their co-workers,” both enantiomers of function-
alized bisphenol-derived allylic carbonate 7 were synthesized.
Notably, a significant match/mismatch phenomenon was
identified between the enantiomers of 7 and the chiral Ir-
catalyst. Only (+)-7 was found to be reactive with (§,S,S,)-K1,
leading to a pair of atropisomers (5:1) of dearomatized
product 8 in 79% combined yield, while (—)-7 remained
mainly intact under the same reaction conditions. After
subsequent O-methyl protection and hydrogenation of the
terminal olefin, an inseparable mixture of atropisomers
(+)-tatanan C and (+)-tatanan B (5:1) was obtained in a
total yield of 55% [three steps from (+)-7]. Notably, the
formation of other undesired isomers during the dearomatiza-
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Scheme 3. Syntheses of (+)-Tatanan B and (+)-Tatanan C

(5,5,5,0-K1

Cs,CO.

M 2C03
OMe (1 equiv), THF
80 °C sealed

OH

@

Pd/C, H, MeO
—_—

0 EtOAc, rt MeO

74% yield, 5:1 dr

(+)-tatanan C

(+)-tatanan B
94% yield
(+)-tatanan C : (+)-tatanan B = 5:1

tion step described in previous work” was avoided under our
conditions.

It is noteworthy that dearomatized product 2c can be
transformed into ring-opened compound trans-10 when
reacting under the standard allylic dearomatization conditions
for an extended period of time (4S5 min, Scheme 4a). We

Scheme 4. Ring-Opening/Rearomatization of 2¢ and
Synthetic Attempts toward (—)-Tatanan A

(a)

H

H\ y H

~N

TSNS Me Ts’N\I:I -u/

j H 7/ Me

/) "standard conditions" / )
Me 0 —————————— | base
C Me 45 min Me' OH
B0 Me only trans-10 obtained < Mi\,ﬂe
“— base 0
2c
LS N H?
Te— s

‘BUOK | Y Me

(1 equiv) Me Me -

THF, 1t | = o

i
i Me
84% yield (trans) HO OH Me' Me
9:1 trans:cis Me Me OH

trans-10
BUOK (1 eq)
or "BuLi (1 eq)

THF
rtor 50 °C

(-)-tatanan A

speculated that the formation of trans-10 could be attributed to
a base-promoted ring-opening/rearomatization sequence. In
order to verify this hypothesis, 2c was treated with 1 equiv of
‘BuOK. Indeed, compound 10 was obtained smoothly in a high
yield (84% for trans-10, trans-10/cis-10 = 9:1). Considering
the structural similarity between 10 and tatanan A,” we further
tested the synthesis toward (—)-tatanan A from 8. Unfortu-
nately, the proposed transformation did not occur in the
presence of ‘BuOK or "BuLi at room temperature or S0 °C
(Scheme 4b).

B CONCLUSIONS

In conclusion, we have applied our desymmetrization strategy
to the Ir-catalyzed intramolecular allylic dearomatization
reaction of phenols. Spirocyclic dienone derivatives with up
to three stereogenic centers were synthesized with high
efficiency (up to 90% yield and 99% ee within 30 min).
Notably, this method could be scaled up to a gram-scale in the
presence of only 0.2 mol % of the Ir-catalyst. By using this
reaction as a key step, the total syntheses of (+)-tatanan B and
(+)-tatanan C were accomplished with superior atroposelec-
tivity relative to that reported in the literature.’
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