Synthesis and Molecular Structure of Substituted 4-[N-Phenyl-N-(2-chloroethyl)amino]-1,4-dihydro-1,2,4 λ^5 -diazaphosphorines

Yu. G. Trishin, T. V. Gonchar, V. I. Namestnikov, A. I. Stash, V. E. Zavodnik, and V. K. Bel'skii

St. Petersburg State Technological University of Plant Polymers, St. Petersburg, Russia

Received June 25, 2004

Abstract—The reaction of 3-phenyl-2-phenylethynyl-1,3,2 λ^3 -oxazaphospholidine with nitrilimines is a multistep process involving formation of the diazaphosphorine ring and cleavage of the oxazaphospholidine ring. The final products are the substituted 4-[*N*-phenyl-*N*-(2-chloroethyl)amino]-1,4-dihydro-1,2,4 λ^5 -diazaphosphorines. According to X-ray structural data obtained for 4-[*N*-phenyl-*N*-(2-chloroethyl)amino]-1,4-di-hydro-1,5-diphenyl-3-ethoxycarbonyl-1,2,4 λ^5 -diazaphosphorine, the heteroring of these compounds has the conformation of a flattened *P-envelope*.

We have shown recently [1] that 2-ethoxy-3-methyl-1,3,2 λ^3 -oxazaphospholidine reacts with nitrilimines (Huisgen 1,3-dipoles) to form alicyclic compounds with a P–C bond, which suggests the nucleophilic attack of the nitrilimine carbenium atom nitrilimine by the trivalent phosphorus atom, protonation of the intermediate bipolar P⁺CNN⁻ ion by triethylamine hydrohalide present in the reaction mixture, and cleavage of the five-membered heterocycle across the C–O bond.

In this study we found that the introduction of an acetylenic group instead of the ethoxy group at the phosphorus atom in $1,3,2\lambda^3$ -oxazaphospholidines provides the formation of a six-membered diazaphosphorine heterocycle under the similar conditions, but does not exclude the cleavage of the oxazaphospholidine ring. In particular, the reactions of 3-phenyl-2-phenylethynyl-1,3,2 λ^3 -oxazaphospholidine **I** with nitrilimines containing various substituents at the

carbenium atom yielded substituted 4-[*N*-phenyl-*N*-(2-chloroethyl)amino]-1,4-dihydro-1,2,4 λ^5 -diazaphos-phorines **II**-**VIII**.

The reaction probably starts with a nucleophilic attack of the carbenium atom of nitrilimine by phosphorus (the nitrilimine was generated in situ from the appropriate halohydrazones under the action of triethylamine). The arising bipolar ion IIa-VIIIa undergoes intramolecular nucleophilic addition to form the cyclic ylide IIb-VIIb, which is protonated with triethylamine hydrohalide to form the cyclic quasiphosphonium salt IIc-VIIIc. The latter transforms into the stable final product **II-VIII** by the cleavage of the oxazaphospholidine ring as a result of the attack of the oxygen-bonded carbon atom of the five-membered heterocycle by the halide ion. This reaction step is similar to the second step of the classical Arbuzov reaction. It yields the phosphoryl and N-phenyl-N-2haloethyl groups.

$$R-C(Hlg)=N-NH-Ar + Et_3N \longrightarrow R-C=N-N-Ar + Et_3N \cdot HHlg$$

 $R = C(O)Me, Ar = Ph (II), C_6H_4Br-p (III); R = C(O)OEt, Ar = Ph (IV), C_6H_4Br-p (V), C_6H_4NO_2-p (VI); Ar = Ph, R = C(O)C_6H_4NO_2-p (VII), Ph (VIII).$

Note that 2-phenylethynyl-1,3,2 λ^3 -dioxaphospholane, the analog of compound **I** containing the oxygen atom instead of the nitrogen atom in the fivemembered heterocycle, reacts with nitrilimines similarly [2].

The starting $1,3,2\lambda^3$ -oxazaphospholidine I was prepared by the reaction of 3-phenyl-2-chloro- $1,3,2\lambda^3$ -oxazaphospholidine with 2-phenylethynylmagnesium bromide.

$$\begin{array}{c} CH_2-O \\ | \\ CH_2-N \\ | \\ Ph \end{array} P-Cl + PhC \equiv CMgBr \longrightarrow I$$

The signal of the phosphorus atom in the ³¹P NMR spectrum of **I** (δ_P 97.7 ppm) is shifted upfield as compared to the signal of the related 2-phenylethynyl-1,3,2 λ^3 -dioxaphospholane (δ_P 127.4 ppm) [2], in line with the trend observed in going from amido esters to *O*,*O*-diesters of trivalent phosphorus [3]. In the ¹H NMR spectrum, the OCH₂ and NCH₂ protons give multiplets with δ 4.67 and 3.47 ppm, respectively. The presence of the C=C bond is confirmed by the IR spectrum [v(C=C) 2120 cm⁻¹].

Substituted diazaphosphorines **II–VIII** were prepared in 50–90% yield (Tables 1, 2). They are crystalline compounds readily soluble in THF and acetone and poorly soluble in hexane and ether. Their ³¹P NMR spectra contain the signals in the range of $\delta_{\mathbf{P}}$ from -0.6 to -8.6 ppm, characteristic of substituted 1,2,4-diazaphosphorines [2, 4]. The signals are shifted upfield by 8–10 ppm as compared to the related compounds containing a 2-haloethoxy substituent at the P atom [2]. This fact confirms the presence of the exocyclic P-N bond in II-VIII. The ¹H NMR spectra contain the signals of the alkenyl proton at δ 5.69– 6.06 ppm. The coupling constant ${}^{3}J_{PH}$ (0-3.3 Hz) in many cases is close to zero, so that the signals appear as singlets. The protons of the methylene groups HlgCH₂ and NCH₂ are anisochronous. They give pairs of multiplets at δ 3.62–4.51 and 3.51–3.63 ppm, respectively. In the IR spectra of II-VIII, the absorption band characteristic of the C=C bond is absent, which additionally confirms its conversion. Note that compounds II and III containing the acetyl group at the C^3 atom were obtained as mixtures of two diastereomers A and B. This is indicated by the presence of two signals in the ³¹P NMR spectra and by doubling of all the signals (primarily, of the alkenyl proton signals) in the ¹H NMR spectra (Table 2). The relative content of the isomers changes in the course of recrystallization. The A : B ratio in the finally isolated compounds **II** and **III** was 1:4 and 2:3, respectively.

 Table 1. Yields, melting points, and elemental analyses of substituted 4-[N-phenyl-N(2-chloroethyl)amino]-1,4-dihydro-1,2,4-diazaphosphorines II-VIII

Comp. no.	R	Ar	Yield, %	mp, °C	Found, %			Formula	Calculated, %		
					С	Н	Р	Formula	С	Н	Р
II	C(O)Me	Ph	72	171–172	64.87	5.20	6.47	C ₂₅ H ₂₃ ClN ₃ O ₂ P	64.73	5.00	6.68
III	C(O)Me	C_6H_4Br-p	67	183–184	55.04	4.18	5.87	$C_{25}H_{32}BrClN_3O_2P$	55.32	4.09	5.71
IV	C(O)OEt	Ph	70	180-182	63.01	5.02	6.11	$C_{26}H_{25}CIN_3O_3P$	63.22	5.10	6.27
\mathbf{V}	C(O)OEt	C_6H_4Br-p	90	161-162	54.68	4.32	5.65	$C_{26}H_{24}BrClN_3O_3P$	54.52	4.22	5.41
VI	C(O)OEt	$C_6H_4NO_2-p$	46	185–187	57.76	4.56	5.86	$C_{26}H_{24}CIN_4O_5P$	57.95	4.49	5.75
VII	$C(O)C_6H_4NO_2-p$	Ph	75	167–168	63.17	4.34	5.48	$C_{30}H_{24}BrN_4O_4P$	63.11	4.24	5.42
VIII	Ph	Ph	52	139–141	70.08	5.30	6.19	C ₂₉ H ₂₅ CIN ₃ OP	69.95	5.06	6.22

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 75 No. 3 2005

Comp. no.	IR spectrum, v, cm^{-1}		¹ H NMR spectrum, δ, ppm (J, Hz)						
	C=O	P=O	=CH, d $(^2J_{\rm Ph})$	HlgCH ₂ , two m	NCH ₂ , two m	Ar–H, m	other groups	spectrum, δ _P , ppm	
II	1625	1280	Isomer A: 6.06 (2.8)	4.48, 3.63	3.51, 3.58	7.02–7.85	2.65 s [C(O)Me]	-0.6	
			Isomer B : 5.67 (~0)	4.45, 3.82	3.52, 3.65	6.65-7.38	2.38 s [C(O)Me]	-7.4	
III	1700	1240	Isomer A: 6.09 (3.4)	4.48, 3.72	3.51, 3.60	6.92-7.70	2.64 s [C(O)Me]	-1.1	
			Isomer B : 5.69 (~0)	4.46, 3.80	3.53, 3.67	6.60-7.30	2.39 s [C(O)Me]	-7.8	
IV	1760	1250	5.64 (~0)	4.53, 3.79	3.56, 3.63	6.61–7.35	1.43 t (Me),	-7.3	
							4.42 m (OCH ₂)		
V	1766	1260	5.65 (~0)	4.51, 3.77	3.55, 3.62	6.50-7.30	1.43 t (Me),	-7.8	
							4.42 m (OCH ₂)		
VI	1710	1245	5.74 (~0)	4.51, 3.75	3.55, 3.62	6.82-7.95	1.45 t (Me),	-8.6	
							4.45 m (OCH ₂)		
VII	1760	1250	5.81 (3.3)	4.57, 3.94	3.42, 3.58	6.55-8.18	-	—	
VIII	_	1260	5.45 (1.1)	4.12, 3.68	3.35, 3.40	6.65-8.18	_	—	

Table 2. IR and ¹H and ³¹P NMR data for substituted 4-[*N*-phenyl-*N*(2-chloroethyl)amino]-1,4-dihydro-1,2,4-diazaphosphorines **II**–**VIII**

The molecular structure of diazaphosphorines **II**– **VIII** was studied by single crystal X-ray diffraction for 4-[*N*-phenyl-*N*-(2-chloroethyl)amino]-1,4-dihydro-1,5-diphenyl-3-ethoxycarbonyl-1,2,4 λ^5 -diazaphosphorine IV as example (see figure; Tables 3, 4). We found that all the atoms of the heterocycle except phosphorus are coplanar within 0.030 Å. The phosphorus atom deviates from this plane by 0.294 Å,

Molecular structure of 4-[*N*-phenyl-*N*-(2-chloroethyl)amino]-1,4-dihydro-1,5-diphenyl-3-ethoxycarbonyl-1,2,4 λ^5 -diazaphosphorine **IV**.

Table 3. Interatomic distances in the molecule of 4-[*N*-phenyl-*N*-(2-chloroethyl)amino]-1,4-dihydro-1,5-diphenyl-3-ethoxycarbonyl-1,2, $4\lambda^5$ -diazaphosphorine **IV**

Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
$\begin{array}{c} \text{Cl-C}^{20} \\ \text{P-O}^{1} \\ \text{P-N}^{3} \\ \text{P-C}^{1} \\ \text{P-C}^{3} \\ \text{O}^{2}\text{-C}^{4} \\ \text{O}^{3}\text{-C}^{5} \\ \text{N}^{1}\text{-N}^{2} \\ \text{N}^{1}\text{-C}^{2} \\ \text{N}^{1}\text{-C}^{7} \\ \text{N}^{2}\text{-C}^{3} \\ \text{N}^{3}\text{-C}^{21} \\ \text{N}^{3}\text{-C}^{19} \\ \text{C}^{1}\text{-C}^{2} \\ \text{C}^{2}\text{-C}^{13} \\ \text{C}^{3}\text{-C}^{4} \\ \text{C}^{5}\text{-C}^{6} \\ \text{C}^{7}\text{-C}^{8} \end{array}$	$\begin{array}{c} 1.780(6)\\ 1.464(3)\\ 1.662(4)\\ 1.737(4)\\ 1.786(4)\\ 1.197(5)\\ 1.314(5)\\ 1.455(6)\\ 1.340(4)\\ 1.398(5)\\ 1.448(5)\\ 1.296(5)\\ 1.419(5)\\ 1.469(6)\\ 1.341(6)\\ 1.492(6)\\ 1.492(6)\\ 1.455(10)\\ 1.359(7)\end{array}$	$\begin{array}{c} {\rm C}^7 - {\rm C}^{12} \\ {\rm C}^8 - {\rm C}^9 \\ {\rm C}^9 - {\rm C}^{10} \\ {\rm C}^{10} - {\rm C}^{11} \\ {\rm C}^{11} - {\rm C}^{12} \\ {\rm C}^{13} - {\rm C}^{18} \\ {\rm C}^{13} - {\rm C}^{14} \\ {\rm C}^{14} - {\rm C}^{15} \\ {\rm C}^{15} - {\rm C}^{16} \\ {\rm C}^{16} - {\rm C}^{17} \\ {\rm C}^{17} - {\rm C}^{18} \\ {\rm C}^{19} - {\rm C}^{20} \\ {\rm C}^{21} - {\rm C}^{26} \\ {\rm C}^{21} - {\rm C}^{22} \\ {\rm C}^{22} - {\rm C}^{23} \\ {\rm C}^{23} - {\rm C}^{24} \\ {\rm C}^{24} - {\rm C}^{25} \\ {\rm C}^{25} - {\rm C}^{26} \end{array}$	$\begin{array}{c} 1.368(7)\\ 1.375(7)\\ 1.356(9)\\ 1.361(8)\\ 1.387(7)\\ 1.380(6)\\ 1.381(6)\\ 1.381(6)\\ 1.378(7)\\ 1.359(8)\\ 1.374(8)\\ 1.369(7)\\ 1.509(9)\\ 1.383(7)\\ 1.386(7)\\ 1.386(7)\\ 1.377(8)\\ 1.345(8)\\ 1.377(9)\\ 1.357(8)\end{array}$

which allows the structure of the heterocycle to be considered as a flattened *P*-envelope. The angle between the phosphorus triangle ($C^{1}-P-C^{3}$) and the remaining part of the heterocycle is 14°. The angles between the planes of the heterocycle and phenyl rings $C^{7}-C^{12}$ and $C^{13}-C^{18}$ are 125.2° and 61.2°, respectively. The tetrahedral configuration of phosphorus is distorted; the XPY angles vary in the range 96.8°-118.1°.

Thus, by the reaction of 3-phenyl-2-phenylethynyl-1,3,2 λ^3 -oxazaphospholidine **I** with nitrilimines we prepared previously unknown substituted 1,4-dihydro-1,2,4 λ^5 -diazaphosphorines **II**–**VIII** containing the aminohalomethyl group at phosphorus. The presence of this group in the molecules of organophosphorus compounds is important for realization of their anticancer propeties.

EXPERIMENTAL

The IR spectra of **I**–VIII were recorded on an IKS-29 spectrometer in thin film (for **I**) or in KBr pellets (for **II–VIII**). The ¹H NMR spectra were taken on a Bruker AM-500 (500 MHz) spectrometer in CDCl₃ with the internal stabilization by the resonance line of ²H. The ³¹P NMR spectra were measured on a Bruker AC-200 spectrometer (81.4 MHz) in CDCl₃. The

Table 4. Bond angles in the molecule of 4-[*N*-phenyl-*N*-(2-chloroethyl)amino]-1,4-dihydro-1,5-diphenyl-3-ethoxy-carbonyl-1,2,4 λ^{5} -diazaphosphorine **IV**

Angle	ω, deg	Angle	ω, deg
$O^{1}PN^{3}$ $O^{1}PC^{1}$ $N^{3}PC^{1}$ $O^{1}PC^{3}$ $N^{3}PC^{3}$ $C^{1}PC^{3}$ $C^{4}O^{3}C^{5}$ $N^{2}N^{1}C^{2}$ $N^{2}N^{1}C^{7}$ $C^{3}N^{2}N^{1}$ $C^{21}N^{3}P$ $C^{21}N^{3}P$ $C^{2}C^{1}P$ $C^{1}C^{2}N^{1}$ $C^{2}C^{1}N^{3}P$ $C^{2}C^{1}P$ $C^{1}C^{2}C^{1}S$ $N^{1}C^{2}C^{1}S$ $N^{2}C^{3}C^{4}$ $N^{2}C^{3}P$ $C^{4}C^{3}$ $O^{3}C^{4}C^{3}$ $O^{3}C^{5}C^{6}$ $C^{2}C^{2}C^{4}$	$\begin{array}{c} 109.77(19)\\ 118.1(2)\\ 106.01(19)\\ 114.32(19)\\ 114.32(19)\\ 111.00(19)\\ 96.8(2)\\ 117.0(4)\\ 124.2(3)\\ 112.6(3)\\ 123.2(3)\\ 122.1(3)\\ 112.6(3)\\ 122.4(3)\\ 119.5(3)\\ 122.4(3)\\ 119.5(3)\\ 125.0(3)\\ 122.1(4)\\ 120.9(4)\\ 117.0(3)\\ 115.6(4)\\ 126.8(3)\\ 117.6(3)\\ 124.5(4)\\ 122.1(4)\\ 113.3(4)\\ 107.0(6)\\ 107.0(6)\\ 10000\\ 1000$	$\begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$	$\begin{array}{c} 120.4(5)\\ 119.2(4)\\ 120.3(4)\\ 119.6(5)\\ 120.6(6)\\ 120.0(5)\\ 119.9(5)\\ 119.9(5)\\ 119.4(5)\\ 118.6(4)\\ 118.5(4)\\ 122.8(4)\\ 122.8(4)\\ 120.1(5)\\ 120.9(5)\\ 119.4(5)\\ 120.9(5)\\ 119.4(5)\\ 120.7(5)\\ 110.4(4)\\ 109.5(5)\\ 117.4(5)\\ 120.5(4)\\ 122.0(4)\\ 122.0(4)\\ 120.6(5)\\ 121.1(6)\\ 119.0(6)\\ 120.8(5)\end{array}$
<u> </u>	12111(0)		

chemical shift was measured against 85% phosphoric acid.

A single crystal X-ray diffraction study of 4-[*N*-phenyl-*N*-(2-chloroethyl)amino]-1,4-dihydro-1,5-diphenyl-3-ethoxycarbonyl-1,2,4 λ^5 -diazaphosphorine **IV** was carried out on a CAD-4 diffractometer (Mo K_{α} radiation, $\theta/2\theta$ scanning). Triclinic crystals: C₂₆H₂₅·ClN₃O₃P; *a* 10.910(2), *b* 10.967(2), *c* 12.134(2) Å, α 72.52(3)°, β 68.21(3)°, γ 67.54(3)°, *V* 1224.4(4) Å³; space group *P*1, *Z* 2, *d*_{calc} 1.340 g cm⁻³. The structure was solved by the direct method, *R* 0.0538, *R*_W 0.1387 [2394 reflections with *I* > 2 σ (*I*)]. The atomic coordinates and their isotropic temperature factors are deposited at the Cambridge Structural Database (registry no. CCDC 235900).

Synthesis of 3-phenyl-2-phenylethynyl-1,3, $2\lambda^3$ -oxazaphospholidine **I** and its reactions with nitrilimines were performed under dry argon in anhydrous solvents.

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 75 No. 3 2005

3-Phenyl-2-phenylethynyl-1,3, $2\lambda^3$ -oxazaphospholidine I. A solution of phenylethynylmagnesium bromide prepared from 4.0 g of magnesium, 14.2 g of ethyl bromide, and 14.0 g of phenylacetylene in 40 ml of THF was added dropwise with vigorous stirring at -60°C to a solution of 24.9 g of 2-chloro-3phenyl-1,3,2 λ^3 -oxazaphospholidine [5] in 200 ml of THF. After that the reaction mixture was gradually heated to 20°C, stirred for 30 min, and then 50 ml of pyridine was added. The resulting precipitate was filtered off, THF was distilled off at reduced pressure, and the residue was extracted with diethyl ether $(3 \times$ 100 ml). The ether was removed in a vacuum, and the residue was crystallized on cooling to 0-5°C to obtain 24.7 g (77%) of 3-phenyl-2-phenylethynyl-1,3,2 λ^3 oxazaphospholidine I, mp 67–70°C. IR spectrum, v, cm⁻¹: 2120 (C=C), 1010 (P–O–C). ¹H NMR spectrum (CDCl₃), δ, ppm: 3.47 m (2H, NCH₂), 4.67 m (2H, OCH₂), 6.90-7.52 m (10H, Ph). ³¹P NMR spectrum: δ_P 97.7 ppm. Found, %: C 71.78; H 5.39; P 11.45. Č₁₆H₁₄NOP. Calculated, %: C 71.90; H 5.28; P 11.59.

Substituted 4-[N-phenyl-N-(2-chloroethyl)amino]-1,4-dihydro-1,2,4 λ^5 -diazaphosphorines II and III. A solution of 0.005 mol of 3-phenyl-2-phenylethynyl-1,3,2 λ^3 -oxazaphospholidine I, 0.005 mol of appropriate hydrazonoyl chloride, and 2 ml of triethylamine in 20 ml of benzene was refluxed for 2 h. The abundant precipitate that formed after cooling to 20°C was filtered off, washed with water (2 × 50 ml) to remove an impurity of triethylamine hydrochloride, and crystallized from 1:1 acetone–hexane (compound II) or benzene (compound III).

Substituted 4-*N*-[*N*-phenyl-*N*-(2-chloroethyl)]-1,4-dihydro-1,2,4 λ^5 -diazaphosphorines IV–VIII. A solution of 0.005 mol of 3-phenyl-2-phenylethynyl-1,3,2 λ^3 -oxazaphospholidine I, 0.005 mol of appropriate hydrazonoyl halide, and 2 ml of triethylamine in 20 ml of benzene was refluxed for 2 h. A small amount of triethylamine hydrochloride (14–20%) was filtered off. In the case of V and VIII, the residue was a solid which was crystallized from 1:1 acetone– hexane. In the case of IV, VI, and VII, the residue was an oily substance which was treated with diethyl ether (compounds IV and VI) or with 2:1 ether– hexane mixture (VII). The crystalline products were filtered off and crystallized from 3:1 hexane–benzene (compound IV), 1:1 acetone–hexane (compound VI), or 2:1 hexane–benzene (compound VII).

ACKNOWLEDGMENTS

The study was financially supported by the Russian Foundation for Basic Research (project no. 03-03-32905).

REFERENCES

- Trishin, Yu.G., Gonchar, T.V., and Namestnikov, V.I., *Zh. Obshch. Khim.*, 2004, vol. 74, no. 10, p. 1752.
- Senyukh, S.V., Namestnikov, V.I., Trishin, Yu.G., and Chistokletov, V.N., *Zh. Obshch. Khim.*, 1990, vol. 60, no. 10, p. 1926.
- Nifant'ev, E.E. and Vasyanina, L.K., *Spektroskopiya* YaMR ³¹P (³¹P NMR Spectroscopy), Moscow: Mosk. Gos. Ped. Inst., 1986.
- Erofeeva, M.P., Trishin, Yu.G., and Chistokletov, V.N., Zh. Obshch. Khim., 1989, vol. 59, no. 9, p. 2146; Namestnikov, V.I., Trishin, Yu.G., Tamm, L.A., and Chistokletov, V.N., Zh. Obshch. Khim., 1990, vol. 60, vol. 3, p. 510; Trishin, Yu.G., Afanasov, A.F., Litvinov, I.A., Naumov, V.A., and Chistokletov, V.N., Zh. Obshch. Khim., 1990, vol. 60, no. 11, p. 2446.
- Pudovik, A.N., Pudovik, M.A., Shulyndina, O.S., and Nagaeva, Kh.Kh., *Zh. Obshch. Khim.*, 1970, vol. 40, no. 7, p. 1477.