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Abstract An unexpected substitution reaction of HCFC-123 with
phenolates is reported. During the reaction, fluorine atoms in HCFC-
123 are removed one by one in the presence of phenolates.
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In recent decades, hydrochlorofluorocarbons (HCFCs;
for example, HCFC-21, HCFC-22 and HCFC-123) have been
produced worldwide as transitional substitutes for chloro-
fluorocarbons or as starting materials for the manufacture
of hydrofluorocarbons (e.g., HCFC-133a). As ozone-deplet-
ing compounds, HCFCs will be banned from use as refriger-
ants, aerosol propellants, and cleaning solvents by 2040 un-
der the Montreal Protocol. Nevertheless, investigations on
the reactivities of HCFCs are still attractive from the view-
point of their chemistry. On the one hand, due to the induc-
tive and stereoelectronic effect of the fluorine atoms, the C-
Cl bonds in HCFCs tend to undergo single-electron transfer
reactions'-3 rather than Sy1 or Sy2 reactions of other alkyl
chlorides.* On the other hand, some HCFCs are irreplaceable
for the preparation of fluoroalkyl reagents.>¢ Therefore, re-
searches on the reactivities of HCFCs are desirable from the
points of view of both fluorine chemistry and environmen-
tal protection.

As an HCFC with a lower ozone-depleting potential, 1,1-
dichloro-2,2,2-trifluoroethane (HCFC-123) is widely used
as the refrigerant, a cleaning solvent, or a foaming agent. In-
spired by the pioneering work of Dolbier’s group,” we have
extensively investigated the Cu-mediated reactions of
HCFC-123 with phenols, thiophenols? alkynes10
alkenes,!" and phosphites.!? In particular, the Cu-mediated
reaction of HCFC-123 with phenol in the presence of Et;N
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afforded the phenoxylated product 2a’ ['°F NMR: & = -80.8
ppm (d, ] = 4.0 Hz)] through substitution of a chlorine atom
with a phenoxy group when DCE or HCFC-123 was used as
the solvent (Scheme 1; previous work).
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Scheme 1 The reactions of HCFC-123 with phenol (1a) under various
conditions

To our surprise, when we used DMF as the solvent and
KOH as the base, and performed the reaction at 50 °C for
three hours, a different product 2a appeared in the '°F NMR
spectrum [& = -80.2 ppm (d, J = 5.8 Hz)] (Scheme 1 and Ta-
ble 1, entry 1). The '°F NMR yield of 2a improved to 82%
when the reaction was performed at 70 °C for three hours
(entry 2). The yield decreased slightly when another aprotic
solvent (DMSO or HMPA) was used (entries 3 and 4). Note
that a byproduct with a '°F NMR peak at 8 = -78 ppm was
also detected; the formation of this byproduct was inhibit-
ed by increasing the amount of HCFC-123 to two equiva-
lents (entry 5). Eventually, the isolated yield 2a was in-
creased to 88% by performing the reaction at 90 °C for two
hours (entry 6).

With the optimized conditions in hand, we extended
this reaction to other phenols (Scheme 2). Phenols bearing
electron-donating groups gave the corresponding products
2a-f in excellent yields within three hours. In contrast, phe-
nols bearing electron-withdrawing groups afforded the de-
sired products 2g-i in moderate yields after prolonged re-
action times.
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Phenols with strongly electron-withdrawing groups
shut down the reaction (2j and 2k). As mentioned above, a
small amount of a byproduct was detected at 6 = -78 ppm
in the '°F NMR spectrum when the molar ratio of 1m to

Table 1 Optimization of the Conditions for the Reaction of Phenol (1a)
with HCFC-1232

1) KOH, 40 °C

F
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Cl
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Entry Solvent Temp (°C) Yield® (%)
1 DMF 50 trace
2 DMF 70 82
3 DMSO 70 66
4 HMPA 70 70
5¢ DMF 70 93
64 DMF 90 88

2 1a/KOH/HCFC-123 molar ratio = 1:1.1:1.2; [HCFC-123] = 1 mol/L, 3 h.
b Determined by '°F NMR with PhCF; as the internal standard.

¢ 1a/KOH/HCFC-123 molar ratio = 1:1.1:2, 3 h.

41a/KOH/HCFC-123 molar ratio = 1:1:2, 2 h.

¢ Isolated yield.
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Scheme 2 Reactions of HCFC-123 with various phenols in a molar ratio
of 2:1

HCFC-123 was 1:1.2. When the molar ratio of 1m to HCFC-
123 was to 2.5:1, compound 2mm, which appeared at 6 =
-78 ppm in the '°F NMR spectrum, became the main prod-
uct, with a 71% isolated yield (Scheme 3).
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Scheme 3 The reaction of HCFC-123 with 1m in a molar ratio of 1:2.5

However, with the electron-deficient phenols 1cand 1h,
although products 2cc and 2hh were detected in '°F NMR,
the defluorinated products 2ccc and 2hhh (Scheme 4),
rather than 2cc and 2hh, were isolated by column chroma-
tography on silica gel. As expected, when we increased the
molar ratio of the phenolate to HCFC-123 to 5:1, the fully
defluorinated products 2aaa-2ccc were obtained in good to
excellent yields for both electron-rich and electron-defi-
cient phenols (Scheme 4). Taking 1b as an example, prod-
ucts 2b, 2bb, and 2bbb were all detected by TLC and '°F
NMR after 30 minutes of reaction, and 2bbb was shown to
be the sole product after 12 hours.
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Scheme 4 Reactions of HCFC-123 with selected phenols at a molar ra-
tio of 1:5

In addition, the reaction of purified 2e with four equiva-
lents of potassium 4-methylphenoxide gave the defluori-
nated product 2ebb in 86% yield (Scheme 5).

Finally, an acid-base pathway was proposed for the re-
action mechanism (Scheme 6). The key intermediate, 1,1-
dichloro-2,2-difluoroethene, generated by an acid-base re-
action, reacts further with the phenolate and affords the
product 2a.'* However, a halophilic mechanism, similar to
the reaction of the phenolate with CF;CCl; cannot be ex-
cluded.’*'> In this pathway, the phenolate attacks the chlo-
rine atom in HCFC-123 and produces 1-chloro-2,2-difluoro-
ethene, which reacts with a second phenolate ion'® to af-
ford the product through a chain-anion mechanism.
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Scheme 5 The reaction of 2e with potassium 4-methylphenolate at a molar ratio of 1:4
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Scheme 6 Proposed plausible reaction mechanisms

In summary, we have reported unexpected substitution
reaction of fluorine in HCFC-123 by phenolates. By increas-
ing the amount of the phenolate, the fluorine atoms in
HCFC-123 could be removed one by one. This reaction can
produce valuable fluorinated alkyl aryl ethers'”'® and un-
usual tetrasubstituted alkenes from readily available HCFC-
123 under simple conditions.!®
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A 20 mL Schlenk tube was charged with DMF (10 mL) and 1a (5
mmol, 470 mg). KOH (5 mmol, 280 mg) was added, and the
mixture was stirred at 40 °C until the KOH disappeared. The
mixture was then cooled to r.t. Precooled HCFC-123 (10 mmol,
1.52 g) was added to the solution, and the mixture was stirred
at 90 °C for 2 h, then cooled to r.t. The mixture was then poured
into Et,0 (100 mL), washed with H,0, dried (Na,S0O,), and con-
centrated by rotary evaporation under vacuum. The residue was
purified by flash column chromatography [silica gel, PE-CH,Cl,
(20:1)] to give a colorless oil; yield: 994 mg (88%).
'H NMR (300 MHz, CDCl;): 8 = 7.35-7.40 (m, 2 H), 7.21-7.29 (m,
3 H), 5.91 (t, J = 4.4 Hz, 1 H). 13C NMR (100 MHz, CDCl,): & =
149.5, 129.6, 126.4, 121.7, 119.7 (t, ] = 270 Hz), 67.8 (t, ] = 42
Hz). 1F NMR (282 MHz, CDCl,): 6 = -80.2 (d, J = 5.8 Hz). MS (EI):
m/z (%) = 226 (M, 21.51), 77 (100), 143 (50.87), 65 (38.96), 94
(30.34), 226 (21.51).
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