COMMUNICATIONS

1,3,6,9-Tetraaza-spiro[4.4]nonane aus Bi-[1,3-diphenyl-imidazolidinyliden-(2)] und Isocyanaten bzw. Isothiocyanaten

Manfred REGITZ und Jürgen HOCKER

Institut für Organische Chemie der Universität des Saarlandes, D-66 Saarbrücken 11

Die Umsetzung von Bi-[1,3-diphenyl-imidazolidinyliden-(2)] (1)^{1,2} mit Isocyanaten im Molverhältnis 1:4 liefert analog einer schon beschriebenen Reaktion der entsprechenden 1,3-Diäthyl-Verbindung mit Phenylisothiocyanat³ unter Spaltung der elektronenreichen Doppelbindung die Tetraazaspiro[4.4]nonane 4a-g (2,4-Dioxo-imidazolidin-⟨5-spiro-2⟩-1,3-diphenyl-imidazolidine; siehe Tab. 1). Da sich unter unseren Reaktionsbedingungen eine Dissoziation von 1 in nucleophile Carbene (3) nicht nachweisen ließ², nehmen wir als einleitenden Reaktionsschritt die Bildung von 2 an. Bei dessen spontanem Zerfall entsteht 3 auf "reaktivem" Wege neben dem Dipol 5⁴, dessen rasche Cycloaddition an weiteres Isocyanat zur Spiroverbindung 4 führt. Ob das Carben 3 mit dem Isocyanat die gleiche Reaktionsfolge zu 4 eingeht oder über das Dimere 1 abreagiert, sei dahingestellt:

Mit Formel 4 der Cycloaddukte stehen die analytischen und spektroskopischen Daten (siehe Tab. 1) im Einklang⁵ sowie eine exemplarisch mit 4d durchgeführte saure Hydrolyse (konz. Salzsäure, 80°), die 1,2-Dianilino-äthan (6) und Diphenyl-parabansäure (7) zu 63 bzw. 83% liefert:

Tab. 1. 2,4-Dioxo-6,9-diphenyl-1,3,6,9-tetraaza-spiro[4.4]-nonane (4)

	R	Ausbeute [%]	F		NMR(CDCl ₃), δ_{CH_2} -7,8[ppm]
a	-CH ₃	87	173–174°	1761, 1706	3.78 (m)
Б(CH ₂ -CH=CH ₂	85	143°	1773, 1721	3.80 (m) ^a
c	\leftarrow	94	198°	1779, 1718	3.79 (s)
d	$\overline{}$	87	245–248°	1799, 1742	3.71 (m)
e	-CI p	83	201–206°	1795, 1739	3.70 (m)
f	$-\sqrt{}$ NO_2	58	198°	1797, 1745	3.90 (m)
g	OCH ₃	89	226-229°	1792, 1739	3.60 (m)

^a Überlagert mit den aliphatischen Protonen der Allyl-Gruppe.

Tab. 2. 2,4-Di-thiono-6,9-diphenyl-1,3,6,9-tetraaza-spiro-[4.4]nonane (8)

	R	Ausbeute [%]	F	NMR(CDCl ₃), δ_{CH_2} -7,8[ppm]
a	-CH ₃	87	176°	3.92 (m)
b	-CH ₂ -CH=CH ₂	95	97°	3.95 (m) ^a
c		71	180–181°	3.86 (m)
d	-CH2-	83	119°	3.75 (m)
e		96	201–204°	3.65 (m)
f	- CH₃	92	172–174°	3.46 (m)
g	-(93	184–185°	3.80 (m)
h	-{-}ОСН₃	93	196–198°	3.63 (m)

^a Überlagert mit den aliphatischen Protonen der Allylgruppe.

b Es werden entsprechende Acylazide eingesetzt, die sich unter den Reaktionsbedingungen in Isocyanate umlagern.

302 Communications Synthesis

Analoge Ergebnisse werden bei der 4:1-Umsetzung von Isothiocyananaten mit dem Olefin 1 erzielt; in einheitlicher Reaktion entstehen 2,4-Dithiono-6,9-diphenyl-1,3,6,9-tetra-aza-spiro[4.4]nonane (8a-h) (siehe Tab. 2). Die Isolierung der Dipol-Stufe 9 neben 8g gelingt im Fall der 2:1-Umsetzung mit 4-Nitro-phenylisothiocyanat (gelbe Kristalle, F: 216-218°, Chloroform/Äther)⁵. Im NMR-Spektrum (CDCl₃) von 9 erscheinen die Protonen des Imidazolinium-Ringes infolge verringerter Abschirmung bei tieferem Feld (δ =4.5 ppm) als bei den Imidazolidinen (siehe Tab. 1 und 2).

Der Dipol addiert glatt Perchlorsäure zum Imidazoliniumperchlorat 10 (orange Kristalle, F: 203–205°; IR (KBr): NH-Absorption bei 3215 und 3247 cm⁻¹); mit 4-Nitrophenylisothiocyanat entsteht das Cycloaddukt 8g. Auch Phenylisocyanat (F: 207–209°), Acetylen-dicarbonsäuredimethylester (F: 141–143°) und Dibenzoyl-acetylen (F: 185°) als Dipolarophile liefern Cycloaddukte.

2,4-Dioxo-1,3-diallyl-6,9-diphenyl-1,3,6,9-tetraaza-spiro[4.4]nonan (4b): Allyl-isocyanat (1,66 g, 20 mmol) und Bi-[1,3-diphenyl-imidazolidinyliden-(2)] (1; 2,22 g, 5 mmol) werden in absol. Toluol (20 ml) unter Stickstoff 45 Min. unter Rückfluß erhitzt. Kühlen auf 0° und Anreiben liefert 3,0 g reines **4b**; aus dem Filtrat erhält

man nach Eindampfen, Aufnehmen in Chloroform und Zusatz von Äther weitere 0,3 g Spiroverbindung; Gesamtausbeute: 3,3 g (85%) 4b; aus Toluol farblose Blättchen, F: 143°.

2,4-Dithiono-1,3,6,9-tetraphenyl-1,3,6,9-tetraaza-spiro[4.4]nonan (8e): Phenylisothiocyanat (2,70 g, 20 mmol) und Bi-[1,3-diphenyl-imidazolidinyliden-(2)] (1; 2,22 g, 5 mmol) werden in absol. Toluol (20 ml) unter Stickstoff 4 Stunden unter Rückfluß erhitzt. Aufarbeitung analog der vorstehenden Arbeitsvorschrift ergibt 4,7 g (96%) **8e.** Durch Lösen in Chloroform und Zusatz von Äther erhält man gelbe Nadeln; F: 201–204°.

Für die Unterstützung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft.

Eingang: 6. April 1970

¹ Zur Reaktivität von 1 siehe: B. Lachmann, H. W. Wanzlick, Liebigs Ann. Chem. **729**, 27 (1969), und vorhergehende Arbeiten

beiten.

² Zusammenfassung:
N. Wiberg, Angew. Chem. **80**, 809 (1968); Angew. Chem.,

Internat. Edit. 7, 766 (1968).
R. W. HOFFMANN, Angew. Chem. 80, 823 (1968); Angew. Chem., Internat. Edit. 7, 754 (1968).

³ H.E. WINBERG, D.D. COFFMAN, J. Amer. chem. Soc. 87, 2776 (1965); dort ist auch die Dipol-Bildung aus Bi-[1,3-diäthylimidazolidinyliden-(2)] und Schwefelkohlenstoff bzw. Phenylisothiocyanat beschrieben.

⁴ Zum Zerfallsmechanismus von 1 mit Elektrophilen siehe D. M. Lemal, R. A. Lovald, K. J. Kawano, J. Amer. chem. Soc. 86, 2518 (1964).

⁵ **4a** und **4g** zeigen darüber hinaus, wie die vorgesehene Struktur verlangt, zwei verschiedene CH₃-Signale im NMR-Spektrum (CDCl₃): δ = 2.69 bzw. 2.87 und 3.23 bzw. 3.88 ppm.