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A B S T R A C T   

We herein report two coordination polymers [Cd2L(H2O)4]⋅CH3OH⋅DMF (1) and [Mn2L(H2O)3(CH3O)]⋅ 
(NH2CH3)2⋅3CH3OH⋅H2O (2) assembled with a novel p-tertbutylcalix[4]arene ligand (H4L = tetrakis [(2- 
biphenylcarboxyl)oxy]-p-tertbutylcalix[4]arene). Isostructural coordination polymers 1 and 2 feature layer 
structures, which are further linked by hydrogen bonds to generate supramolecular double layers. The lumi-
nescent character of 1 in different ions and anions were explored. The quenching to Fe3+ and MnO4

− in water 
makes 1 into a promising luminescent sensor.   

1. Introduction 

Calix[4]arene have been used as excellent buildings in the assemble 
of coordination polymers (CPs) because their upper or lower rims can be 
easily modified by substituents [1,2]. Up to now, a variety of functional 
groups, such as pyrazolyl, 2-(1H-pyrazol-3-yl)pyridine and acetamido 
have been incorporated into calix[4]arenes [3–5]. P-tert-butylcalix[4] 
arenes, as an important branch of calix[4]arenes, is popular in organic 
synthesis because of its variable cavity and easy adjustment by func-
tional groups [6–8]. Nevertheless, only very limited p-tert-butylcalix[4] 
arenes-based CPs have been reported because most of them have poor 
solubility and crystallinity [9]. Recently, the research on the CPs of 
modified p-tert-butylcalix[4]arenes of our group has led to several CPs 
through the introduction of hydrophilicpyridyl group [10,11]. To pro-
mote the research, we designed a new tetrakis[(2-biphenylcarboxyl) 
oxy]-p-tertbutylcalix[4]arenes ligand (H4L, Scheme 1). The ligand fea-
tures four carboxylic acids, which may be favourable for the synthesis of 
CPs. 

Chemical sensing has attracted a great deal of attention in the fields 
of separation, food safety, environmental protection and medical science 
[12–15]. In this regard, luminescent-CPs based on quenching effects 
have achieved interests because of their short response time and easy 
operation [16–18]. Fe3+ ion is one of the most abundant transition metal 
in cellular systems, and plays an indispensable role in living organisms 
[19,20]. MnO4

− ion, for its excellent oxidation ability, is widely used in 
laboratory, manufacturing and daily life [21,22]. It is necessary to 
detected them selectively and sensitively. 

In this paper, we constructed two CPs based on H4L, namely [Cd2L 
(H2O)4]⋅CH3OH⋅DMF (1) and [Mn2L(H2O)3(CH3O)]⋅(NH2CH3)2⋅3CH3O 
H⋅H2O (2). 1 and 2 exhibit unique double layer structures. Notably, 1 shows 
a strong emission. 1 could also luminescent detects Fe3+ and MnO4

− with 
high selectivity and sensitivity. 

2. Synthesis of H4L 

The intermediate p-tert-butylcalix[4]arenes was prepared according 
to the literature methods [23]. P-tert-butylcalix[4]arenes (3.85 mmol) 
and NaH (129 mmol) were suspended in dried DMF and stirred for 30 
min [24]. Then 2-(4-bromomethylphenyl)benzoic acid methyl ester 
(15.8 mmol) was added, and the mixture was placed in a water bath (50 
◦C) for 48 h. After the reaction was completed, a little methanol was 
added to the flask until no bubbles were produced. The solvent was 
removed by rotary evaporation, then put sufficient water into flask. 
Next, removed insoluble materials by vacuum filtration. After the 
filtrate was transferred to the beaker, hydrochloric acid (12 mol) was 
added into beaker to adjust pH = 1. The solid was filtered and dried at 80 
◦C. The product was recrystallized by methanol. Finally, white solid H4L 
was obtained in a yield of 55.5% (4.24 g). IR (cm− 1): 3743(s), 3426(m), 
3064(m), 3032(m), 2955(w), 2905(w), 2865(w), 2656(s), 2547(s), 1912 
(s), 1695(w), 1600(m), 1482(w), 1401(m), 1366(m), 1294(w), 1253 
(m), 1193(m), 993(m), 937(s), 877(m), 821(m), 762(w), 646(s), 571(s) 
(Fig. S1). 
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3. Results and discussion 

SQUEEZE instruction in PLATON was utilized and the disordered 
solvents were obtained through electron cloud density, TGA and 
elemental analysis (Fig. S2) [25]. The individual unit of 1 contains one 
L4– anion, two Cd2+ ions, four coordinated water molecules, one free 
methanol and one free DMF molecule. Cd1 and Cd2 both show seven 
coordination modes, whereas their coordination environments are 
completely different (Fig. 1a). Cd1 ion is surrounded by three O atoms 
from three individual L4− anions and four water molecules. Cd2 ion is 

coordinated by seven O atoms from four individual L4− anions. Cd1 and 
Cd2 ions are held together via three carboxylate O atoms from three 
individual L4− anions to afford a dimer. The conformation of L4− anion is 
“cone”. The neighboring dimers are linked by L4− anions to generate a 
layer (Fig. 1b). According to the extension direction of t-butyl groups, 
the layers could be described as plane-α and plane-β, respectively. As 
there exists hydrogen bonds between L4− anions (C69⋅⋅⋅C69#6 = 3.461 Å, 
∠C69-H69⋅⋅⋅C69#6 = 125.12◦), a fascinating supramolecular double 
layer is generated (Fig. 1c). 

The structure of 2 is isomorphous with 1. Nevertheless, two major 

Fig. 1. (a) Coordination spheres of Cd2+ ions. (b) View of the layer (red balls represent the cavities of L4− anions). (c) The supramolecular double layer. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Scheme 1. Synthetic procedure of H4L.  
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differences exist for the CPs (Fig. S3). Firstly, the coordination modes of 
metal ions have differed. Two Mn2+cations in 2 show octahedral ge-
ometries, instead of the seven coordination modes. Mn1 is surrounded 
by three O atoms of three L4− anions, one methanol, and one water 
molecule. Mn2 is coordinated by four O atoms of three individual L4−

anions and two water molecules. Secondly, the free molecules in 2 are 
different. There are one free NH2(CH3)2

+ cation, one free water and three 
free methanol. The balance positive charge NH2(CH3)2

+ came from the 
decomposed DMF [26]. 

Solid state luminescent properties of 1 and H4L at RT were tested 
(Figs. 2 and S4). H4L shows an emission at 432 nm (λex = 350 nm) 
[27,28]. For 1, the maximum emission spectrum appeared at 409 nm 
(λex = 350 nm), which may be attributed to the emission of the L4−

anions. 
As 1 exhibits a strong luminescent emission, the investigation of 

metal ions detection was carried out. We spread the crystals evenly on a 
glass plate, and put the glass plate into the aqueous solution of 0.01 
mol⋅L− 1 MClx (M = Na+, Cd2+, Co2+, Cu2+, Ni2+, Mn2+, Zn2+, Mg2+ or 
Fe3+) to make fully combined M@1 [29], respectively. As shown in 
Fig. 3, compared with blank water, the intensities of Na+, Cu2+ and Cd2+

Fig. 4. Fe3+ concentration-dependent emission intensities of 1.  

Fig. 3. Emission intensities in different metal ion solutions.  

Fig. 2. The emission spectra of H4L and 1.  
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solutions were broadly unchanged after interaction with 1. The in-
tensities of Ni2+, Mn2+, Mg2+, Zn2+ solutions were significantly 
increased. And the intensity of Co2+ solution has a slightly reduction. 
Notably, an obviously quenching was visible for the solution containing 
Fe3+ cations. 

The quenching effect of Fe3+ ion for 1 was further investigated by 
studying the emissions of different Fe3+@1 concentrations [30]. As 
depicted in Fig. 4, with the increasing concentration of Fe3+, the emis-
sion intensity of 1 gradually decreases. Obviously, the intensity almost 
disappeared when the concentration reaches 5 × 10− 3 mol⋅L− 1. The 
experimental results show that 1 is an efficient Fe3+ ion detection sensor 
[31]. The quenching value Ksv calculated by the Stern-Volmer equation 
is 1.22 × 104 M− 1 (Fig. S5). The detection ability is comparable to those 
reported high efficiency CPs (Table S1) [32–34]. 

To study whether 1 has a selective recognition on Fe3+ ion, further 
experiments by mixing Fe3+ ions (0.01 M) with other metal ions (0.01 
M) were performed [35]. As illustrated in Fig. 5, the reduction of 
emission was pronounced for all of the mixed solutions. That means the 
selectivity of 1 to Fe3+ ions is hardly affected by other metal ions. To 
probe the reusability of 1, recycled experiments were carried out. After 
four cycles of experiments, 1 still has an obvious recognition effect to 

Fe3+ ions (Fig. S6). 
The efficient quenching effect of 1 to Fe3+ impelled us to continu-

ously explore the detection on trace amounts of anions. Using the same 
method, 1 was thoroughly contacted with 0.01 mol⋅L− 1KnX (X = I− , Br− , 
C2O4

2− , Cl− , H2PO4
− , HPO4

2− , PO4
3− , CNS− , S2O8

2− , SO4
2− and MnO4

− ) so-
lution to form X@1. As shown in Fig. 6, different anions lead the 
luminescent intensity fluctuates to a certain extent. Of which an obvious 
recognition effect on MnO4

− ion was observed [36]. 
Further research can discover a negative correlation between the 

fluorescence intensity of 1 and the concentration of MnO4
− ions. Obvi-

ously, when the concentration of MnO4
− reaches 10− 2 mol⋅L− 1, the 

fluorescence intensity of 1 tends to 0 (Fig. 7). Therefore, it is concluded 
that 1 is also an effective substance for the detection of MnO4

− ion. As 
illustrated in Fig. S7, the quenching value Ksv is 1.06 × 104 M− 1. 
Comparing to the limited CPs reported for detecting MnO4

− ion, 1 ex-
hibits a more sensitive luminescent quenching effect (Table S2) [37,38]. 

In order to explore whether the quenching of MnO4
− was disturbed by 

other anions, a series of mixing experiments were conducted [39]. We 
combined 1 with MnO4

− and 0.01 M other anions (KnX, X  = Br− , Cl− , 
H2PO4

− , SO4
2− , PO4

3–, HPO4
2− and S2O8

2− ), respectively. As shown in Fig. 8, 
1 still possesses obvious recognition effect on MnO4

− . This phenomenon 
indicates that 1 has good anti-interference ability for the quenching of 
MnO4

− . The recyclable tests verified that 1 could still shows a good 
recognition after four runs of sensing (Fig. S8) [40]. 

4. Conclusion 

In short, we synthesized two CPs based on a novel p-tert-butylcalix 
[4]arenes ligand through the solvothermal method. Fascinating double 
layers are formed for the structures of 1 and 2. Notably, 1 exhibits strong 
luminescent emission at RT. Systemic luminescent sensing study reveals 
that 1 displays high sensitively recognition effects and excellent cycling 
stabilities for Fe3+ ion and MnO4

− anion. This work illustrates that p-tert- 
butylcalix[4]arenes-based CP has potential application in the field of 
multiple luminescent sensor. 
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Fig. 6. Emission intensities of 1 in different anions.  

Fig. 5. The luminescent intensities of 1 in interfering cation solutions.  
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Appendix A. Supplementary material 

Crystallographic data for structural analysis have been deposited 
with the Cambridge Crystallographic Data Center, CCDC reference 
number 2023849 and 2023850. Details on the materials, instruments, 
PXRD, IR spectra, TGA curves, UV/Vis spectra, Selected bond lengths 
and angles are list in supplementary content Supplementary data to this 
article can be found online at https://doi.org/10.1016/j.inoche.2020.10 
8290. 
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