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ABSTRACT: While biocatalysis is increasingly incorporated into drug development pipelines, it is less commonly used in the early 

stages of drug discovery. By engineering a protein to produce a chiral motif with a derivatizable functional handle, biocatalysts can 

be used to help generate diverse building blocks for drug discovery. Here we show the engineering of two variants of Rhodothermus 

marinus nitric oxide dioxygenase (RmaNOD) to catalyze the formation of cis- and trans- diastereomers of a pinacolboronate-substi-

tuted cyclopropane which can be readily derivatized to generate diverse stereopure cyclopropane building blocks. 

Enzymes are increasingly used in industrial processes to pro-

duce value-added compounds and drugs.1 As a drug moves fur-

ther down the development pipeline, highly selective biocata-

lytic processes may become desirable alternatives to chemical 

ones for synthesis. Prominent examples include the production 

of sitagliptin2 and islatravir3. Usually, the enzymes used in these 

processes are highly engineered and show exceptional activity 

and selectivity for a given task, features which often result in a 

narrow substrate scope. While this specialization is useful for 

biocatalysts in the production stage, it limits the utility of en-

zymes in the initial phases of drug discovery, where broad sub-

strate scopes are key to rapidly generating diverse molecules.4 

    An emerging strategy for the incorporation of biocatalysis 

into earlier stages of drug development is the enzymatic synthe-

sis of a core motif that can be further derivatized.5–8 An enanti-

opure core motif can be generated with high selectivity, fol-

lowed by the use of reactions commonly applied in diversity-

oriented synthesis to derivatize the molecule. One chiral motif 

found in several pharmaceutical and agrochemical compounds 

is the substituted cyclopropane.9–11 The Arnold lab and others 

have shown that heme proteins can catalyze cyclopropanation 

via carbene transfer12, and engineered heme proteins have been 

used to generate the cyclopropane-containing pharmaceuticals 

levomilnacipran,13 ticagrelor,14,15 and grazoprevir16.  

To bring the benefits of biocatalytic cyclopropanation to 

early drug discovery, we envisioned a chemoenzymatic ap-

proach in which a tandem enzymatic cyclopropanation-chemi-

cal derivatization sequence would enable preparation of diverse 

enantiopure cyclopropanes. To this end, we engineered heme 

proteins which catalyze carbene transfer to vinyl boronic acid 

pinacol ester (1) from ethyl diazoacetate (EDA, 2) to produce 

cis- and trans-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-

cyclopropanecarboxylic acid ethyl ester (3) with high diastereo- 

and enantioselectivity (Figure 1). Unlike small-molecule ap-

proaches for the stereoselective construction of cyclopropyl-

boronates,17–21 this biocatalytic approach avoids the need for 

chiral ligands, expensive transition-metal catalysts, or highly 

reactive substrates. It also reduces waste in the form of organic 

solvents and undesired regio- and stereoisomers. The boronate 

functional group in 3 allows for the rapid generation of enanti-

opure cyclopropanes using Suzuki-Miyaura coupling.22–24 This 

method provides a new avenue for using biocatalysts in medic-

inal chemistry and other processes where the rapid generation 

of molecular diversity is desired. 

To find a starting enzyme having some level of the desired 

cyclopropanation activity, we screened a panel of heme proteins 

(including variants of cytochromes P411 (serine-ligated P450s), 

cytochromes c, and globins) for the ability to produce 3 using 

EDA as a carbene precursor for the cyclopropanation of 1 (Sup-

porting Information Table S1). We found that the Rhodother-

mus marinus nitric oxide dioxygenase (RmaNOD) variant 

RmaNOD Q52A catalyzed the desired reaction with low activ-

ity (17 total turnovers (TTN)) to preferentially produce trans-3 

(20:80 cis:trans diastereomeric ratio (dr)). The Q52A mutation 

was found during engineering for unactivated alkene cyclopro-

panation25 and is analogous to mutations found to enhance my-

oglobin-catalyzed cyclopropanation reactions.26  

With RmaNOD Q52A as a starting point and using a crystal 

structure we obtained of RmaNOD Q52V (PDB ID: 6WK3) to 

guide selection of amino-acid residues in the distal heme pocket  
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Figure 1. Directed evolution of RmaNOD for production of cyclo-

propylboronate 3. All reactions were performed with whole E. coli 

resuspended in 20 mM MOPS buffer (pH = 7) to OD600=30, 20 mM 

1, 40 mM 2, anaerobic conditions, 5% EtOH cosolvent. Experi-

mental details are provided in the Supporting Information, Materi-

als and Methods section. (a) Diastereomeric ratio (%cis) and total 

turnover number (TTN) of the evolutionary lineage toward produc-

tion of cis-3. (b) Diastereomeric ratio (%trans) and TTN of the evo-

lutionary lineage of trans-3 production.  

for mutagenesis, we began iterative rounds of single-site-satu-

ration mutagenesis and screening and recombined the beneficial 

mutations (Supporting Information). In an initial round of site-

saturation mutagenesis, we discovered that mutation Y32T 

caused an inversion of diastereoselectivity to favor production 

of cis-3 and boosted overall enzymatic activity 24-fold (420 

TTN, 90:10 dr, >99% enantiomeric excess (ee)). One further 

round of single- site-saturation mutagenesis and recombination 

yielded the variant RmaNOD Y32T Y39H L48R Q52A R79W 

(RmaNOD THRAW), which exhibited both higher activity and 

diastereoselectivity than RmaNOD Y32T Q52A while main-

taining high enantioselectivity (Figure 1a). At analytical scale, 

RmaNOD THRAW produces cis-3 with a dr of 94:6, ee of 

>99%, and TTN of 1300. 

In parallel to the evolution of the cis-lineage, we also focused 

on engineering an enzyme that produces trans-3. Starting from 

RmaNOD Q52A, we performed three sequential rounds of sin-

gle-site-saturation mutagenesis and recombination to generate 

RmaNOD L20W Q52A L56I L60H L101N I105M (RmaNOD 

WAIHNM), which produces trans-3 with a dr of <1:99, ee of 

>99%, and TTN of 2000 (Figure 1b). As we would expect, the 

most impactful mutations identified in both the cis- and trans- 

lineages are found at first-shell residue positions (Supporting 

Information Figures S1 and S3). Mutations to first-shell resi-

dues can be expected to affect substrate and reactive intermedi-

ate binding, leading to changes in diastereoselectivity and ac-

tivity. Future mechanistic studies might elucidate why these 

mutations exert the observed effects. 

We performed a gram-scale reaction using RmaNOD 

THRAW. Whole E. coli cells (OD600=30 in 1x M9-N, 60 mM 

1, 120 mM 2, anaerobic conditions, 5% EtOH cosolvent, details 

in Supporting Information, Compound Synthesis and Charac-

terization) expressing RmaNOD THRAW were used to produce 

3.7 g of cis-3 (>99% ee, 95:5 dr, 36% isolated yield, 41% iso-

lated yield based on recovered starting material). Some of the 

chiral product was converted to the potassium trifluoroborate 

salt (4, Figure 2a), which was crystallized to determine that the 

absolute stereochemistry of the enzymatic product was (1R,2S) 

(Supporting Information). During preparative-scale reactions, 

we found that 3 in aqueous buffer partially converted to the pi-

nacol-deprotected form, cyclopropylboronic acid. We found 

that the deprotected boronic acid could either be re-protected 

with additional pinacol or converted into the trifluoroborate salt 

(Supporting Information, Compound Synthesis and Character-

ization).  

We also sought to improve access to the final product by sim-

plifying both the catalyst formulation and the product isolation 

procedure. Currently most biocatalytic carbene-transfer reac-

tions are catalyzed using freshly prepared whole E. coli cells 

harboring engineered heme proteins.12 While reactions run us-

ing whole cells are straightforward to perform, the whole cells 

have a multi-day preparation prior to use, have a short shelf life, 

and require biological infrastructure not available to many 

chemists. In contrast, using lyophilized biocatalysts enables 

preparation of a large batch of catalyst (e.g. via fermentation) 

which can be shelf-stable29 and used by researchers without cell 

culture experience. We found that both RmaNOD THRAW and 

RmaNOD WAIHNM function as lyophilized enzyme in whole 

E. coli cells resuspended in aqueous buffer, and that they could 

be used in preparative-scale reactions (Supporting Information 

section, Materials and Methods).  

A challenging step in the isolation of 3 was efficient separa-

tion of 3 from the two EDA dimers, diethyl maleate and diethyl 

fumarate, via silica column chromatography. We therefore 

modified the procedure to isolate the product from starting ma-

terial and EDA dimer byproducts without the use of chromatog-

raphy. After aqueous work-up and extraction of the crude reac-

tion mix into organic solvents, unreacted 2 can be removed un-

der reduced pressure. Then, to efficiently separate the cyclopro-

pane product from the maleate and fumarate byproducts, 3 can 

be derivatized in crude extract to form 4.30 The trifluoroborate 

salt is then easily separated from the remaining impurities  
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Figure 2. Derivatization of cis-3. (a) Conversion of cis-3 to the tri-

fluoroborate salt (4). Products are drawn with absolute stereochem-

istry, which was determined as (1R,2S) from X-ray diffraction ex-

periments on 4. (b) Conversion of cis-3 to a variety of aryl cyclo-

propanes using stereoretentive Suzuki-Miyaura coupling. Isolated 

yields are reported for the derivatization step.  

(Supporting Information section, Materials and Methods). 

Through the combination of using lyophilized whole cells har-

boring RmaNOD THRAW and the improved product isolation 

procedure, we prepared (1R,2S)-4 on 1 mmol scale at 52% iso-

lated yield. 

Using diverse coupling partners, many compounds could be 

produced from cis- and trans-3 or their respective trifluorobo-

rate derivatives. In addition to cross-coupling reactions, conver-

sions of cyclopropylboronates to cyclopropylamines and cyclo-

propanols are known.20,22,23,27,28 As a proof of concept, chiral 

product from the gram-scale reaction was used in stereoreten-

tive Suzuki-Miyaura coupling reactions to produce select aro-

matic cyclopropanes 5a–5d (Figure 2b). These examples 

demonstrate that Suzuki-Miyaura cross-coupling with cis-3 tol-

erates different functional groups (5a, 5b, 5d), bulky aromatic 

groups (5c), and heterocycles (5d), with complete retention of 

stereochemistry. The full synthetic pathway to compounds 5a–

5d demonstrates how combining small-molecule and biocata-

lytic systems takes advantage of the stereoselectivity of biocat-

alysts and the general activity of small-molecule catalysts. 

While we have focused on cross-coupling reactions on purified 

cyclopropylboronates, one could consider performing these 

derivatizations immediately following the enzymatic reaction. 

Work by Lipshutz and coworkers has shown that cross-coupling 

reactions can be carried out in aqueous buffer using specialty 

surfactants.31 Further reaction optimization could provide a 

one-pot, two-step system utilizing these surfactants, in which 

the enzymatic cyclopropanation is followed by cross-coupling 

to provide the desired derivatized cyclopropane product. 

By coupling the specificity of biocatalysts with the broad 

substrate scope of small-molecule catalysts, this study presents 

a chemoenzymatic approach that rapidly generates diverse en-

antiopure cyclopropane-containing compounds, a strategy that 

could be useful for preparing chiral small-molecule libraries at 

the early stages of drug discovery.  
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Figure 1. Directed evolution of RmaNOD for production of cyclopropylboronate 3. All reactions were 
performed with whole E. coli resuspended in 20 mM MOPS buffer (pH = 7) to OD600=30, 20 mM 1, 40 mM 

2, anaerobic conditions, 5% EtOH cosolvent. Experimental details are provided in the Supporting 
Information, Materials and Methods section. (a) Diastereomeric ratio (%cis) and total turnover number 

(TTN) of the evolutionary lineage toward production of cis-3. (b) Diastereomeric ratio (%trans) and TTN of 
the evolutionary lineage of trans-3 production. 
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Figure 2. Derivatization of cis-3. (a) Conversion of cis-3 to the trifluoroborate salt (4). Products are drawn 
with absolute stereochemistry, which was determined as (1R,2S) from X-ray diffraction experiments on 4. 
(b) Conversion of cis-3 to a variety of aryl cyclopropanes using stereoretentive Suzuki-Miyaura coupling. 

Isolated yields are reported for the derivatization step. 
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