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ABSTRACT: A KOH-promoted unusual deoxidative coupling
reaction of β-sulfinyl esters with benzylic trimethylammonium salts
to produce thioethers is discovered for the first time. If quaternary
ammonium salts synthesized from enantiomerically enriched
amines are adopted, highly enantiomerically enriched benzyl
thioethers (>95−99% ee) with configurations opposite to those
of the enantiomerically enriched amines are obtained.

With more and more new bioactive organosulfur
compounds being discovered and used in the clinic,

organosulfur chemistry, especially chiral organosulfur chem-
istry, is developing rapidly.1,2 Sulfinate anions (RSO−),3−5 a
class of new reactive organosulfur intermediates, have recently
displayed valuable applications in enantioselective reactions
and cross-coupling reactions.
Sulfinate anions (RSO−) could react with halogenated aryl

groups to form diaryl sulfoxides under the catalysis of
palladium (Scheme 1a).6 The transition-metal-free arylation
reaction of diaryliodonium salts and sulfenate anions generated
from β-sulfinyl esters was developed by Bolm’s group in 2018
(Scheme 1b).7 In this process, the diaryl sulfoxides were also
formed under mild reaction conditions.
As part of our ongoing research on organosulfur

chemistry,8,9 we tried to explore the reaction between sulfinate

anions (RSO−) and benzyl quaternary ammonium salts to
synthesize chiral benzylic sulfoxides under reaction conditions
similar to those of Bolm’s protocol and Poli’s method.6,7

However, we found that the products were not the expected
benzylic sulfoxides but instead thioethers, which is an
interesting unusual new reaction. In this context, we wish to
report the unusual deoxidative coupling reaction of β-sulfinyl
esters with benzylic trimethylammonium salts (Scheme 1).
First, 3-(toluene-4-sulfinyl)-propionic acid tert-butyl esters

and benzyl quaternary ammonium salts10−12 were used as
template substrates for a preliminary reactivity exploration and
condition optimization (Table 1). In the beginning, the
reaction in toluene with Cs2CO3 as the base went well, and the
target product was obtained with a yield of 60% (Table 1, entry
1). When exploring the effect of the catalyst on the reaction,
we found that the reaction with a transition-metal catalyst or
without a catalyst made little difference (Table 1, entries 2−4).
Then, the effects of various bases on the reaction were further
explored (Table 1, entries 1 and 5−7). The results show that
the reaction could proceed smoothly under weaker bases such
as Cs2CO3 and K2CO3, but strong bases such as tBuOK and
KOH gave higher yields (Table 1, entries 6 and 7 vs 1 and 5,
respectively). Solvent screening demonstrated that acetonitrile
achieved the best result under the reaction conditions (Table
1, entries 7−12). Increasing the temperature to 80 °C greatly
promoted the reaction, affording a highest yield of 90% (Table
1, entries 12−14). Since the boiling point of acetonitrile is 81.6
°C, no higher temperature was tested.
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Scheme 1. Reaction of Some Sulfinate Anions with
Electrophiles
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With the optimized reaction conditions in hand, various
benzylic quaternary ammonium salts, 3-(toluene-4-sulfinyl)-
propionic acid, and tert-butyl ester were investigated. The

outcomes of these transformations are shown in Table 2. The
various benzylic quaternary ammonium salts were tested with
different substituted groups, leading to a transformation into
the desired products in 85−90% yields (3a−3l). In addition,
compound 3j could be used in the synthesis of drug
intermediates and material intermediates 2-(4-chloro-3-meth-
yl-2-pyridylmethylthio)-1H-benzimidazole.
To show that this protocol was applicable to a wider range of

substrates, various β-sulfinyl esters were evaluated (Table 3).
The transformation was performed and provided the
corresponding products in 85%−89% yields (3m−3w).
This deoxidative coupling reaction also provided an

excellent stereospecific synthesis of enantioenriched benzylic
thioethers with am inverse absolute configuration (Table 4).
Importantly, no racemization occurred during this coupling
reaction. The products 5a and 5b have nearly the same
enantiomeric purities as those of the starting (R)- and (S)-
benzylic amines 4a and 4b, respectively. By comparing our
corresponding products as well as the reported optical
rotation21 and HPLC elution order of the highly enantiomeri-
cally enriched product, the absolute configuration of our
product was determined. The obtained target product had a
configuration opposite to that of the highly enantiomerically
enriched benzyltrimethylammonium triflate, suggesting that
the reaction occurred through an SN2-type Walden inver-
sion.12−14

To check the effectiveness of the synthesis method, a gram-
scale reaction was carried out (Scheme 2). The 10 mmol scale
reaction gave the targeted product with a yield of 81%.
To explore the reaction mechanism, we conducted a few

control experiments (Scheme 3). First, experiments based on

Table 1. Optimization of Reaction Conditionsa

entry catalyst base solvent
temperature

(°C)c
yield
(%)b

1 Cs2CO3 toluene 60 60
2 CuI Cs2CO3 toluene 60 65
3 NiCl2 Cs2CO3 toluene 60 60
4 Pd(OAc)2 Cs2CO3 toluene 60 69
5 K2CO3 toluene 60 63
6 t-BuOK toluene 60 76
7 KOH toluene 60 80
8 KOH DMSO 60 88
9 KOH THF 60 79
10 KOH DMF 60 82
11 KOH dioxane 60 81
12 KOH MeCN 60 86
13 KOH MeCN 40 57
14 KOH MeCN 80 90

aUnless otherwise specified, perform the reaction with 1a (1.0 mmol)
and 2a (1.2 mmol) under closed conditions in a test tube with a
sleeve rubber stopper. For entries 1−6, perform the reaction with
Cs2CO3, K2CO3, or t-BuOK (4 equiv). For entries 7−14, perform the
reaction with a KOH (50% aqueous, 20.0 equiv) and solvent (5 mL).
bIsolated yield. cOil bath.

Table 2. Scope of Benzyl Quaternary Ammonium Saltsa

aReaction conditions are as follows: 1a (1 mmol), 2 (1.2 mmol, 1.2 equiv), and KOH (50% aqueous, 20.0 equiv) in MeCN (5 mL) at 80 °C under
air for 24 h.
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radical trapping using 3 equiv of TEMPO were carried out to
suppress this transformation. The results showed that this
transformation did not undergo a free -adical-type reaction.
Second, benzyl chloride was investigated under the standard
conditions, giving the product 3a in an 80% yield. This work
showed that the benzyl quaternary ammonium salts did not
play any role in the deoxygenation reduction of this reaction.
Third, in the absence of benzyl quaternary ammonium salts, 1a
produced products 6 (10% yield) and 7 (90% yield) under the
standard conditions. Both 6 and 7 were isolated and
characterized by NMR (See the Supporting Information).

Based on the above experimental results, we propose a
plausible mechanism (Scheme 4). At the outset of the reaction,
the base KOH-mediated sulfinate 8 was formed via the retro-
Michael Aaddition of the deprotonated β-sulfinyl esters 1. The
oxygen-Michael addition of 8′, the tautomer 8 ,and tert-butyl
acrylate produced the oxygen-Michael addition product 6.15,16

Intermediate 6 aptly carried out disproportionation and turned
into diaryl disulfide 7 and the unstable intermediate 9, which
was decomposed by KOH. In the presence of KOH,
intermediate 7 produced RS− 10 and RSOH 11, which was
turned into 8′. The negatively charged RS− 10 attacked the

Table 3. Scope of β-Sulfinyl Estersa

aReaction conditions are as follows: 1 (1 mmol), 2a (1.2 mmol, 1.2 equiv), and KOH (50% aqueous, 20.0 equiv) in MeCN (5 mL) at 80 °C under
air for 24 h.

Table 4. Scope of the Reaction of Enantioenriched Benzylic Ammonium Salts with β-Sulfinyl Estersa

entry 4b product 5 yield (%) ee (%)

1 rac-4a rac-5a 85
2 (R)-4a (S)-5a 85 95
3 (S)-4a (R)-5a 85 95
4 rac-4b rac-5b 87
5 (R)-4b (S)-5b 88 96
6 (S)-4b (R)-5b 86 99

aReaction conditions are as follows: 1a (1 mmol), 4 (1.2 mmol, 1.2 equiv), and KOH (50% aqueous, 20.0 equiv) in MeCN (5 mL) at 80 °C under
air for 24 h. bThe enantiopurities of (R)- and (S)-1-phenylethylamine, (R)- and (S)-1-(4-bromophenyl)ethan-1-amine, the starting enantioenriched
benzylic amines for the preparation of enantioenriched benzylic ammonium salts (R)- and (S)-4a, and (R)- and (S)-4b are >95%, > 95%, > 96%,
and >99% ee, respectively.

Scheme 2. Gram-Scale Reaction
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benzyl quaternary ammonium salt 4 via an SN2 nucleophilic
substitution to afford the desired highly enantiopure thioether
product 5 with the reverse configuration.
In summary, we have developed an unusual deoxidative

coupling reaction of β-sulfinyl esters with benzylic trimethy-
lammonium salts. This protocol achieves the products of
thioethers with excellent yields. In addition, when enantiomeri-
cally pure benzyl quaternary ammonium salts are used as
reactants, chiral benzyl thioethers with SN2-type reverse
configurations were obtained with extremely high enantiopur-
ities.

■ EXPERIMENTAL SECTION
General Information. The test tube used was dried in an electric

oven at 110 °C. Chemicals were purchased from Aladdin, Adamas,
Aldrich, Alfa Aesar, and Kelong Chemical Co. and used as received
unless other mentioned. Petroleum ether (PE) refers to the fraction
that boils in the 60−90 °C range. Unless otherwise stated, there was
no further purification of the commercial supplier’s products. 1H
NMR spectra were recorded on a Bruker Avance III 400 MHz
instrument. 1H NMR data are reported in δ units (ppm) and were
measured relative to the signals for either residual chloroform (7.26
ppm) or residual acetone (2.05 ppm) in the deuterated solvent unless
otherwise stated. 13C {1H} NMR spectra are reported in (ppm)
relative to deuterated chloroform (77.2 ppm) unless otherwise stated,
and all were obtained with 1H decoupling. Mass spectral data of the
products were collected by a GC-MS analysis with a QP-2010 SE
instrument. All chiral HPLC analyses were performed on an LC3000
I-type high-performance liquid chromatograph (Beijing Gangchen
Technology Co., Ltd.) with Daicel Chiralcel OD-H, Chiralcel OJ-H,
Chiralpak AD-H, and Chiralpak AS-H chiral columns (4.6 mm × 250
mm × 5 μm) using n-hexane/isopropanol as the mobile phase, and
the UV detection was monitored at 254 nm. Optical rotations were
measured on a Autopol IV polarimeter with a sodium lamp at λ = 589
nm and reported as [α]DT (c in grams per 100 mL, solvent).
Quaternary ammonium triflates and β-sulfinyl esters were prepared
according to literature methods.14,17

General Procedure for the Preparation of β-Sulfinyl Esters.
β-Sulfinyl esters were prepared according to literature methods.17

General Procedure for the Deoxidative Coupling of β-
Sulfinyl Esters (3a−3w, 5a, and 5b). To an oven-dried 25 mL test
tube with a standard ground joint equipped with a stir bar were added
benzylic trimethylammonium triflate (enantioenriched benzylic
ammonium salts) (1.2 mmol, 1.2 equiv), β-sulfinyl esters (1 mmol,
1 equiv), KOH (50% aqueous, 20 mmol, 20 equvalents), and
acetonitrile (5.0 mL). The mixture was stirred at 80 °C for 24 h. After
cooling to room temperature, the reaction mixture was quenched by
the addition of a saturated NaCl solution (10 mL). The reaction
mixture was extracted with ethyl acetate (10 mL × 3). The combined
organic phase was dried over anhydrous MgSO4, filtered, and
concentrated in a vacuum on a rotary evaporator. The resulting
residue was purified by silica gel flash chromatography, eluting with
petroleum ether/EtOAc to afford the corresponding products as
either a colorless or yellowish oil or a white or yellowish solid.

Benzyl(4-tolyl)sulfide (3a).18 Colorless oil, 90% yield, 241.3 mg, Rf
= 0.3, in PE; 1H NMR (400 MHz, CDCl3) δ 7.19−7.08 (m, 7H), 6.96
(d, J = 7.9 Hz, 2H), 3.96 (s, 2H), 2.20 (s, 3H); 13C {1H} NMR (101
MHz, CDCl3) δ 137.82, 136.59, 132.50, 130.74, 129.63, 128.86,
128.45, 127.09, 39.82, 21.07; GCMS (EI) m/z (%) 214.00 (46) [M]+,
123.00 (5), 91.00 (100), 77.00 (5) 65 (20).

(2-Bromobenzyl)(4-tolyl)sulfide (3b).19 Yellowish oil, 87% yield,
255.1 mg, Rf = 0.33, in PE; 1H NMR (400 MHz, CDCl3) δ 7.47 (d, J
= 7.7 Hz, 1H), 7.18−7.05 (m, 4H), 7.04−6.96 (m, 3H), 4.08 (s, 2H),
2.23 (s, 3H); 13C {1H} NMR (101 MHz, CDCl3) δ 137.18, 137.05,
132.97, 131.86, 131.58, 130.78, 129.68, 128.71, 127.34, 124.54, 40.45,
21.11.

(4-tert-Butylbenzyl)(4-methylphenyl)sulfide (3c).20 White solid,
85% yield, 229.9 mg, Rf = 0.35, in PE, mp 57−65 °C. ; 1H NMR (400
MHz, CDCl3) δ 7.18 (dt, J = 8.3, 5.9 Hz, 6H), 6.99 (d, J = 8.0 Hz,
2H), 3.99 (s, 2H), 2.23 (s, 3H), 1.22 (s, 9H); 13C {1H} NMR (101
MHz, CDCl3) δ 150.07, 136.32, 134.60, 133.06, 130.23, 129.62,
128.51, 125.44, 39.24, 34.51, 31.37, 21.06.

(2-Fluorobenzyl)(4-tolyl)sulfide (3d).21 Yellowish oil, 89% yield,
206.8 mg, Rf = 0.33, in PE; 1H NMR (400 MHz, CDCl3) δ 7.27−7.17
(m, 4H), 7.11−6.99 (m, 4H), 4.10 (s, 2H), 2.33 (s, 3H); 13C {1H}
NMR (101 MHz, CDCl3) δ 160.77 (d, J = 247.0 Hz), 136.99, 131.85,
131.39, 130.88 (d, J = 3.9 Hz), 129.65, 128.83 (d, J = 8.2 Hz), 125.17
(d, J = 14.8 Hz), 123.97 (d, J = 3.8 Hz), 115.36 (d, J = 21.8 Hz),
32.93 (d, J = 3.1 Hz), 21.09.

(2-Chlorobenzyl)(4-tolyl)sulfide (3e).19 Yellowish oil, 89% yield,
221.4 mg, Rf = 0.29, in PE; 1H NMR (400 MHz, CDCl3) δ 7.30−7.25
(m, 1H), 7.17−6.96 (m, 7H), 4.08 (s, 2H), 2.23 (s, 3H); 13C {1H}
NMR (101 MHz, CDCl3) δ 137.03, 135.55, 134.05, 131.90, 131.55,
130.75, 129.67, 129.64, 128.49, 126.69, 37.73, 21.10.

(3-Methylbenzyl)(4-tolyl)sulfide (3f).22 Colorless oil, 90% yield,
205.5 mg, Rf = 0.24, in PE; 1H NMR (400 MHz, CDCl3) δ 7.16−7.04
(m, 3H), 7.04−6.92 (m, 5H), 3.95 (s, 2H), 2.22 (s, 6H); 13C {1H}
NMR (101 MHz, CDCl3) δ 138.11, 137.60, 136.48, 132.77, 130.56,
129.62, 128.35, 127.89, 125.90, 39.76, 21.38, 21.07.

(3-Methoxybenzyl)(4-tolyl)sulfide (3g).21 Yellowish oil, 88% yield,
215.1 mg, Rf = 0.3, 5% ethyl acetate, in PE; 1H NMR (400 MHz,
CDCl3) δ 7.17−7.07 (m, 3H), 6.98 (d, J = 7.9 Hz, 2H), 6.72 (ddd, J =

Scheme 3. Control Experiments

Scheme 4. A Plausible Mechanism
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13.9, 10.6, 5.0 Hz, 3H), 3.96 (s, 2H), 3.67 (s, 3H), 2.22 (s, 3H); 13C
{1H} NMR (101 MHz, CDCl3) δ 159.65, 139.39, 136.60, 132.53,
130.74, 129.65, 129.44, 121.22, 114.19, 112.91, 55.18, 39.84, 21.07.
(4-Trifluoromethyl)(4-tolyl)sulfide (3h).23 White solid, 86% yield,

242.8 mg, Rf = 0.35, in PE, mp 77−82 °C; 1H NMR (400 MHz,
CDCl3) δ 7.43 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 7.18−
7.07 (m, 2H), 6.99 (d, J = 8.0 Hz, 2H), 3.99 (s, 2H), 2.23 (s, 3H);
13C {1H} NMR (101 MHz, CDCl3) δ 142.18 (d, J = 1.3 Hz), 137.20,
131.45, 131.30, 129.77, 129.28 (d, J = 32.7 Hz), 129.09, 125.36 (q, J =
3.8 Hz), 124.17 (d, J = 272.1 Hz), 39.56, 21.07.
(4-Cyanobenzyl)(4-methylphenyl)sulfide (3i).24 Yellowish solid,

85% yield, 203.4 mg, Rf = 0.18, 5% ethyl acetate, in PE, mp 65−71
°C; 1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 8.3 Hz, 2H), 7.13
(dd, J = 73.0, 20.1 Hz, 6H), 3.96 (s, 2H), 2.23 (s, 3H); 13C {1H}
NMR (101 MHz, CDCl3) δ 143.76, 137.56, 132.20, 131.74, 130.81,
129.83, 129.52, 118.82, 110.85, 39.90, 21.09.
2-(4-Methylphenyl)thiomethyl-pyridine (3j).25 Brown oil, 85%

yield, 182.8 mg, Rf = 0.13, 10% ethyl acetate, in PE; 1H NMR (400
MHz, CDCl3) δ 8.45 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.50 (td, J = 7.7,
1.8 Hz, 1H), 7.23−7.12 (m, 3H), 7.09−6.93 (m, 3H), 4.14 (s, 2H),
2.21(s, 3H); 13C {1H} NMR (101 MHz, CDCl3) δ 157.95, 149.35,
136.60, 136.56, 131.95, 130.53, 129.67, 123.01, 121.98, 41.29, 21.04.
(Naphthalen-2-ylmethyl)(4-tolyl)thioether (3k).26 Yellowish oil,

86% yield, 227.4 mg, Rf = 0.23, in PE; 1H NMR (400 MHz, CDCl3) δ
8.06 (d, J = 8.5 Hz, 1H), 7.78 (dd, J = 8.3, 1.0 Hz, 1H), 7.67 (d, J =
8.0 Hz, 1H), 7.44 (dddd, J = 20.3, 8.0, 6.8, 1.3 Hz, 2H), 7.28−7.11
(m, 4H), 6.99 (d, J = 7.9 Hz, 2H), 4.43 (s, 2H), 2.23 (s, 3H); 13C
{1H} NMR (101 MHz, CDCl3) δ 136.79, 133.99, 133.13, 132.85,
131.50, 131.13, 129.68, 128.81, 128.20, 127.33, 126.21, 125.82,
125.27, 124.00, 37.98, 21.11.
1,2,3,4-Tetrahydro-1-(4-methylphenylthio)naphthalene (3l).13

Colorless oil, 86% yield, 230.6 mg, Rf = 0.25, in PE; 1H NMR (400
MHz, CDCl3) δ 7.36−7.26 (m, 3H), 7.08−6.95 (m, 5H), 4.40 (t, J =
4.1 Hz, 1H), 2.81−2.57 (m, 2H), 2.26 (s, 3H), 2.20−2.06 (m, 1H),
1.98−1.78 (m, 2H), 1.71−1.59 (m, 1H); 13C {1H} NMR (101 MHz,
CDCl3) δ 137.60, 137.32, 135.76, 132.82, 132.38, 130.58, 129.78,
129.28, 127.05, 125.72, 48.27, 29.21, 28.49, 21.20, 18.62.
Benzyl(3-tolyl)sulfide (3m).27 Yellowish oil, 89% yield, 190.8 mg,

Rf = 0.25, in PE; 1H NMR (400 MHz, CDCl3) δ 7.26−6.98 (m, 8H),
6.91 (s, 1H), 4.02 (s, 2H), 2.20 (s, 3H); 13C {1H} NMR (101 MHz,
CDCl3) δ 138.61, 137.56, 136.19, 130.42, 128.88, 128.71, 128.49,
127.20, 127.17, 126.70, 39.03, 21.34.
Benzyl(4-bromophenyl)sulfide (3n).18 White solid, 89% yield,

248.4 mg, Rf = 0.38, in PE, 53−60 °C; 1H NMR (400 MHz, CDCl3)
δ 7.31−7.12 (m, 7H), 7.06 (d, J = 8.5 Hz, 2H), 4.00 (s, 2H); 13C
{1H} NMR (101 MHz, CDCl3) δ 137.06, 135.45, 131.88, 131.51,
128.81, 128.59, 127.36, 120.35, 39.11.
Benzyl(2-tolyl)sulfide (3o).28 Colorless oil, 87% yield, 186.5 mg, Rf

= 0.25, in PE; 1H NMR (400 MHz, CDCl3) δ 7.24−6.96 (m, 9H),
3.99 (s, 2H), 2.23 (s, 3H); 13C {1H} NMR (101 MHz, CDCl3) δ
137.97, 137.31, 135.79, 130.08, 129.01, 128.90, 128.52, 127.22,
126.44, 126.15, 38.36, 20.33.
Benzyl(4-chlorophenyl)sulfide (3p).18 White solid, 89% yield,

208.9 mg, Rf = 0.35, in PE, mp 45−48 °C; 1H NMR (400 MHz,
CDCl3) δ 7.24−7.10 (m, 9H), 4.00 (s, 2H); 13C {1H} NMR (101
MHz, CDCl3) δ 137.14, 134.69, 132.50, 131.45, 128.97, 128.82,
128.57, 127.33, 39.34.
Benzyl(2-fluorophenyl)sulfide (3q).24 Yellowish oil, 88% yield,

192.1 mg, Rf = 0.35, in PE; 1H NMR (400 MHz, CDCl3) δ 7.23−7.07
(m, 7H), 6.95 (ddd, J = 7.9, 7.5, 4.8 Hz, 2H), 4.02 (s, 2H); 13C {1H}
NMR (101 MHz, CDCl3) δ 161.72 (d, J = 245.6 Hz), 137.23, 133.05
(d, J = 1.8 Hz), 128.86, 128.80, 128.48, 127.27, 124.35 (d, J = 3.8
Hz), 122.76 (d, J = 17.8 Hz), 115.62 (d, J = 22.6 Hz), 38.43 (d, J =
2.9 Hz).
Benzyl(4-methoxyphenyl)sulfide (3r).18 White solid, 89% yield,

204.9 mg, Rf = 0.4, 5% ethyl acetate, in PE, mp 42−45 °C; 1H NMR
(400 MHz, CDCl3) δ 7.24−7.05 (m, 7H), 6.75−6.66 (m, 2H), 3.90
(s, 2H), 3.69 (s, 3H); 13C {1H} NMR (101 MHz, CDCl3) δ 159.23,
138.15, 134.10, 128.91, 128.38, 127.00, 126.10, 114.45, 55.32, 41.25.

2-(Benzylthio)benzo[d]thiazole (3s).29 Yellowish oil, 85% yield,
218.8 mg, Rf = 0.4, 5% ethyl acetate, in PE; 1H NMR (400 MHz,
CDCl3) δ 7.82 (d, J = 8.1 Hz, 1H), 7.69−7.62 (m, 1H), 7.42−7.13
(m, 7H), 4.52 (s, 2H); 13C {1H} NMR (101 MHz, CDCl3) δ 166.44,
153.18, 136.20, 135.36, 129.17, 128.74, 127.79, 126.09, 124.32,
121.59, 121.04, 37.75.

2-(Benzylthio)benzo[d]oxazole (3t).30 White solid, 86% yield,
207.5 mg, Rf = 0.3, 5% ethyl acetate, in PE, mp 42−47 °C; 1H NMR
(400 MHz, CDCl3) δ 7.56−7.52 (m, 1H), 7.40−7.33 (m, 3H), 7.28−
7.13 (m, 5H), 4.48 (s, 2H); 13C {1H} NMR (101 MHz, CDCl3) δ
164.56, 151.91, 141.95, 135.87, 129.11, 128.80, 127.95, 124.34,
123.97, 118.51, 109.93, 36.60.

3-(Benzylthio)pyridine (3u).24 Yellowish oil, 85% yield, 171.1 mg,
Rf = 0.18, 5% ethyl acetate, in PE; 1H NMR (400 MHz, CDCl3) δ
8.37 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.41−7.27 (m, 3H), 7.26−7.03
(m, 4H), 6.89 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H), 4.36 (s, 2H); 13C {1H}
NMR (101 MHz, CDCl3) δ 158.85, 149.44, 138.01, 135.99, 129.00,
128.52, 127.12, 122.11, 119.62, 34.46.

Benzyl(cyclopentyl)sulfide (3v).31 Yellowish oil, 86% yield, 173.1
mg, Rf = 0.37, in PE; 1H NMR (400 MHz, CDCl3) δ 7.29−7.09 (m,
5H), 3.66 (s, 2H), 2.93−2.83 (m, 1H), 1.93−1.32 (m, 8H); 13C {1H}
NMR (101 MHz, CDCl3) δ 138.94, 128.79, 128.45, 126.80, 43.06,
36.47, 33.56, 24.94.

Benzyl(butyl)sulfide (3w).32 Colorless oil, 86% yield, 155.1 mg, Rf
= 0.35, in PE; 1H NMR (400 MHz, CDCl3) δ 7.26−7.08 (m, 5H),
3.60 (s, 2H), 2.38−2.23 (m, 2H), 1.51−1.39 (m, 2H), 1.34−1.19 (m,
2H), 0.79 (t, J = 7.3 Hz, 3H); 13C {1H} NMR (101 MHz, CDCl3) δ
138.70, 128.84, 128.45, 126.87, 36.31, 31.34, 31.08, 22.01, 13.70.

(1-Phenylethyl)(4-tolyl)sulfide (rac-5a).13 Yellowish oil, 85% yield,
194.1 mg, Rf = 0.25, in PE; 1H NMR (400 MHz, CDCl3) δ 7.24−7.07
(m, 7H), 6.95 (d, J = 7.9 Hz, 2H), 4.19 (q, J = 7.0 Hz, 1H), 2.21 (s,
3H), 1.53 (d, J = 7.0 Hz, 3H); 13C {1H} NMR (101 MHz, CDCl3) δ
143.39, 137.38, 133.23, 131.30, 129.48, 128.36, 127.33, 127.07, 48.40,
22.21, 21.13; HPLC Chiralcel OJ-H column, λ= 254 nm, hexane/
isopropanol = 90:10, 1.0 mL/min flow rate, tR(major) = 8.14 min,
tR(major) = 16.69 min.

(S)-(1-Phenylethyl) (p-tolyl) sulfide ((S)-5a).13 Yellowish oil, 85%
yield, 194.1 mg, Rf = 0.25, in PE; [α]D

28 = −34.7 (c = 0.03, EtOAc);
HPLC Chiralcel OJ-H column, λ= 254 nm, hexane/isopropanol =
90:10; 1.0 mL/min flow rate, tR(major) = 8.22 min, tR(minor) =
17.13 min.

(R)-(1-Phenylethyl) (p-tolyl) sulfide ((R)-5a).13 Yellowish oil, 85%
yield, 194.1 mg, Rf = 0.28, in PE; [α]D

28 = +39.4 (c = 0.03, EtOAc);
HPLC, Chiralcel OJ-H column, λ= 254 nm, hexane/isopropanol =
90:10, 1.0 mL/min flow rate, tR(minor) = 8.23 min, tR(major) = 17.07
min.

(1-(4-Bromophenyl)ethane)(4-methylphenyl) sulfide (rac-5b).
Colorless oil, 87% yield, 224.6 mg, Rf = 0.35, in PE; 1H NMR (400
MHz, CDCl3) δ 7.40−7.35 (m, 2H), 7.18−7.10 (m, 4H), 7.06- 7.01
(m, 2H), 4.21 (q, J = 7.0 Hz, 1H), 2.30 (s, 3H), 1.58 (d, J = 7.0 Hz,
3H); 13C {1H} NMR (101 MHz, CDCl3) δ 142.58, 137.70, 133.41,
131.40, 130.69, 129.57, 129.02, 120.72, 47.85, 22.03, 21.14. GCMS
(EI) m/z (%) 306.00 (10) [M]+, 183.00 (80), 123.03 (10), 104
(100), 91 (10), 77 (25); HRMS (ESI-TOF) m/z [M + Na]+ Calcd
for C15H15BrNaS

+ 328.9970, found 328.9970; HPLC Chiralcel OJ-H
column, λ= 254 nm, hexane/isopropanol = 99.5:0.5; 0.8 mL/min flow
rate; tR(major) = 14.20 min, tR(major) = 15.88 min.

(S)-(1- (4-Bromophenyl)ethane)(4-methylphenyl) sulfide ((S)-5b).
White solid, 88% yield, 227.1 mg, Rf = 0.35, in PE, mp 49−57 °C;
HPLC Chiralcel OJ-H column, λ= 254 nm, hexane/isopropanol =
99.5:0.5, 0.8 mL/min flow rate, tR(minor) = 13.95 min, tR(major) =
15.54 min.

(R)-(1-(4-Bromophenyl)ethane)(4-methylphenyl) sulfide ((R)-5b).
White solid, 86% yield, 222.0 mg, Rf = 0.38, in PE, mp 45−55 °C;
HPLC Chiralcel OJ-H column, λ= 254 nm, hexane/isopropanol =
99.5:0.5, 0.8 mL/min flow rate, tR(major) = 13.87 min, tR(minor) =
15.57 min.

Procedure for synthesis of compound 6 and 7. To an oven-
dried 25 mL test tube with standard ground joint equipped with a stir
bar were added β-sulfinyl esters (1 mmol, 1 equiv), KOH (50%
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aqueous, 20 mmol, 20 equiv), and acetonitrile (5.0 mL). The mixture
was stirred at 80 °C for 24 h. After cooling to room temperature, the
reaction mixture was quenched by the addition of a saturated NaCl
solution (10 mL). The reaction mixture was extracted with ethyl
acetate (10 mL × 3). The combined organic phase was dried over
anhydrous MgSO4, filtered, and concentrated in a vacuum on a rotary
evaporator. The resulting residue was purified by silica gel flash
chromatography, eluting with petroleum ether/EtOAc to afford the
corresponding products.
2-(tert-Butoxycarbonyl)ethyl 4-methylbenzenesulfenate (6). Col-

orless oil, 10% yield, 26.8 mg, Rf = 0.33, 5% ethyl acetate, in PE; 1H
NMR (400 MHz, CDCl3) δ 7.20 (dd, J = 8.4, 6.4 Hz, 2H), 7.03 (d, J
= 8.0 Hz, 2H), 3.00 (t, J = 7.5 Hz, 2H), 2.43 (t, J = 7.5 Hz, 2H), 2.25
(s, 3H), 1.37 (s, 9H); 13C {1H} NMR (101 MHz, CDCl3) δ 170.11,
135.67, 130.63, 129.91, 128.73, 79.83, 34.63, 28.92, 27.07, 20.01;
HRMS (ESI-TOF) m/z [M + Na]+ Calcd for C14H20O3SNa+

291.1025, found 291.1025.
Di(p-tolyl) disulfide (7).33 Colorless oil, 90% yield, 221.4 mg, Rf =

0.58, in PE; 1H NMR (400 MHz, CDCl3) δ 7.42−7.34 (m, 4H),
7.14−7.07 (m, 4H), 2.32 (s, 6H); 13C {1H} NMR (101 MHz,
CDCl3) δ 137.47, 133.92, 129.81, 128.56, 21.08.
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