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Graphical Abstract 

 

 

Highlights 

 

 gem-Difluoroolefins were synthesized from alcohols by a one-step process. 

 Cheap DMSO plays important roles in this convenient transformation. 

 Given the ubiquity of hydroxyl group, the protocol may find synthetic applications. 

 

 

Abstract 

 

The development of efficient protocols for the synthesis of gem-difluoroolefins has 

received increasing attention. Given the ubiquity of hydroxyl group in biologically 

active molecules and synthetic intermediates, we developed a one-step protocol for 

the conversions of alcohols into gem-difluoroolefins. The reactions of alcohols with 

Ph3P
+CF2CO2

-/Burgess reagent in DMSO occurred smoothly to afford the final 

products in moderate to high yields. DMSO is not only necessary for the oxidation 

process, but also important for the stabilization of phosphonium ylide by trapping 

difluorocarbene. 
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1. Introduction 

   As fluorine element possesses many special properties, such as high electronegativity, small 

atomic radius, and low polarizability, the incorporation of fluorine atoms into organic molecules 

may significantly change their physicochemical properties [1]. For example, the presence of 

fluorine atoms in pharmaceuticals can increase their metabolic stability and enhance lipophilicity 

[2-3]. Many fluorinated groups have been identified as isosteres of various functional groups and 

thus have been usually incorporated into pharmaceuticals [4-6]. gem-Difluoroolefinic moiety has 

proved to be an isostere of carbonyl group [4, 7], and it serves as an important motif in a phase II 

drug candidate, Seletracetam [8]. Furthermore, gem-difluoroolefins have been widely used as 

versatile intermediates for the preparations of fluorinated compounds [9-10]. Therefore, 

significant efforts have been directed towards the development of efficient methods for the 

synthesis of gem-difluoroolefins. 

   Some synthetic strategies have been well established, including coupling of difluorocarbene 

with other carbenes generated from diazo compounds (Scheme 1, eq 1), defluorination of 

trifluoromethyl alkenes via an SN2’ type displacement (eq 2), the incorporation of a 

gem-difluoroolefinic moiety by using a gem-difluoroolefin building block (eq 3), and 

gem-difluoroolefination of carbonyls (eq 4) [11-12]. Although the coupling with difluorocarbene 

can efficiently construct the C=CF2 bond, the use of potentially explosive diazo compounds is 

required (eq 1) [13-15]. SN2’ displacement of trifluoromethyl alkenes can be used to synthesize 

various functionalized gem-difluoroolefins, but suffers from the tedious synthesis of CF3-alkenes 

(eq 2) [16-18]. gem-Difluoroolefin building blocks may be used for coupling or nucleophilic 

reactions, but the need for the synthesis of the building blocks may limit the wide applications of 

this strategy [12, 19]. gem-Difluoroolefination of carbonyls, including Wittig reaction [20-22], 

Julia Reaction [23] or Julia-Kocienski reaction [24-26], and Horner–Wadsworth–Emmons reaction 

[27], is an attractive and straightforward strategy. Apparently, it is also desirable to install the 

gem-difluoroolefinic moiety from other functional groups which are commonly found in natural 

products or widely used in organic synthesis. 
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Scheme 1 The Synthesis of gem-Difluoroolefins 

 

   The hydroxyl group is commonly found in natural products, biologically active molecules, and 

synthetic intermediates. Given the ubiquity of hydroxyl group, dehydroxylative functionalization 

of alcohols has received increasing attention. We have been interested in both the dehydroxylation 

of alcohols [28-31] and the efficient synthesis of gem-difluoroolefins [15, 22, 25]. In continuation 

of our research interest, herein we describe a one-step synthesis of gem-difluoroolefins from 

alcohols by using Ph3P+CF2CO2
- (PDFA), a reagent developed by us recently [32], as a 

phosphonium ylide precursor. 

 

2. Results and discussion 

   Since aldehydes can undergo a Wittig reaction smoothly with PDFA [22], the presence of an 

oxidant in a PDFA/alcohol system may lead to the conversion of the alcohol into a 

gem-difluoroolefin via the oxidation of the alcohol to an aldehyde followed by a Wittig reaction. 

Therefore, a variety of oxidants were screened for the conversion of alcohol 1a into 

gem-difluoroolefin 3a (Table 1). Most oxidants were not effective at all for this transformation 

(entries 1-8). Burgess reagent has found widespread applications in organic synthesis [33], and it 

has been reported that it can easily oxidize alcohols in DMSO [34]. To our delight, a 14% yield 

was obtained by using Burgess reagent as the oxidant (entry 8). The yield was increased slightly 

with lowering the reaction temperature (entries 9-10), and a reaction temperature of 40 oC gave the 

desired product in 35% yield (entry 10). A brief survey of reaction solvents revealed that DMSO 

was a better choice (entry 10 vs entries 12-16). Increasing the loading of Burgess reagent did not 

increase the yield (entry 17). The yield was significantly increased by increasing the loading of 

PDFA (entries 18-19). A 92% yield was obtained by prolonging the reaction time to 20 h (entry 

20). Increasing the reaction scale to 0.8 mmol did not lead to a decrease in the yield (entry 21). 
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Table 1. The optimization of reaction conditionsa 

 

entry molar ratiob [O] solvent yield (%)c 

1d 1:1.5:1.3 PhI(OCOCF3)2 DMSO 4 

2d 1:1.5:1.3 PhI(OAc)2 DMSO 3 

3d 1:1.5:1.3 Dess Martin reagent DMSO 8 

4d 1:1.5:1.3 K2Cr2O7 DMSO ND 

5d 1:1.5:1.3 tBuOOH DMSO ND 

6d 1:1.5:1.3 K2S2O8 DMSO ND 

7d 1:1.5:1.3 KMnO4 DMSO ND 

8d 1:1.5:1.3 4 DMSO 14 

9e 1:1.5:1.3 4 DMSO 20 

10 1:1.5:1.3 4 DMSO 35 

11f 1:1.5:1.3 4 DMSO 32 

12 1:1.5:1.3 4 DMF ND 

13 1:1.5:1.3 4 DMAc ND 

14 1:1.5:1.3 4 NMP ND 

15 1:1.5:1.3 4 THF ND 

16 1:1.5:1.3 4 p-xylene ND 

17 1:1.5:2 4 DMSO 29 

18 1:2:1.3 4 DMSO 46 

19 1:3:1.3 4 DMSO 67 

20i 1:3:1.3 4 DMSO 92 

21ij 1:3:1.3 4 DMSO 92 

aReaction conditions: 1a (0.2 mmol), 2 and [O] in solvent (1 mL) at 40 oC for 11 h under a N2 

atmosphere; bMolar ratio of 1a:2:[O]; cThe yields were determined by 19F NMR spectroscopy; 
dThe reaction temperature was 80 oC; eThe reaction temperature was 60 oC; fThe reaction 

temperature was 30 oC; iThe reaction time was 20 h; jThe reaction conditions: 1a (0.8 mmol), 2 

(2.4 mmol) and Burgess reagent (1.04 mmol) in DMSO (4 mL) at 40 oC for 20 h under a N2 

atmosphere.   

 

   With the optimal reaction conditions in hand (Table 1, entry 21), we then investigated the 

substrate scope of the one-step conversion of alcohols into gem-difluoroolefins. As shown in 

Scheme 2, electron-rich and -neutral benzyl alcohols could be smoothly converted into the desired 

products in moderate to high yields. In the case of the electron-deficient benzyl alcohols, low 

yields were obtained (3i-3j). The electron-withdrawing substituents may increase the 

electrophilicity of the CH=CF2 moiety, and thus the desired gem-difluoroolefins may be further 

attacked by nucleophiles in the reaction system to give complex side products, resulting in the low 

yields. The compatibility of this method with halide groups (3d-3f) may allow for further coupling 
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reactions. Heteroaryl alcohols also showed a good reactivity (3l). For the conversions of alkyl 

alcohols, these reaction conditions only gave low yields (3n). 

 

Scheme 2 The one-step synthesis of gem-difluoroolefins from alcohols. Reaction conditions: 1 

(0.8 mmol), 2 (2.4 mmol) and Burgess reagent (1.04 mmol) in DMSO (4 mL) at 40 oC for 20 h 

under a N2 atmosphere. Isolated yields are shown. aThe yield was determined by 19F NMR 

spectroscopy.  

 

   As shown in Table 1, many reaction solvents were examined, but the reaction occurred only in 

DMSO. DMSO is necessary for the oxidation of alcohols with Burgess reagent, a process which 

has been reported before (Scheme 3) [34]. We believe that DMSO is also quite important for the 

stabilization of phosphonium ylide (Ph3P+CF2
-). Decarboxylation of PDFA can occur under 

warming conditions to generate the phosphonium ylide, and there is an equilibrium between this 

ylide and difluorocarbene due to the weak strength of the P-CF2 bond [35]. Difluorocarbene is a 

highly reactive species and thus side reactions may readily take place, which would lead to the 

consumption of phosphonium ylide. However, DMSO, the reaction solvent, may easily trap 

difluorocarbene to form an oxonium ylide, Me2S=O+CF2
- [36]. The formation of the oxonium 

ylide can stabilize difluorocarbene via the equilibrium between this ylide and difluorocarbene. If 

difluorocarbene is stabilized, the capture of difluorocarbene by Ph3P could regenerate 

phosphonium ylide. Therefore, the reaction solvent DMSO plays an important role in the 

stabilization of phosphonium ylide. 
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Scheme 3 A plausible reaction mechanism 

 

3. Conclusions 

   In summary, we have described a one-step synthesis of gem-difluoroolefins from alcohols by 

using PDFA as a phosphonium ylide reagent. The reactions proceeded smoothly via the oxidation 

of alcohols with Burgess reagent to give aldehydes and the subsequent Wittig reaction of 

aldehydes with PDFA. The reaction solvent, DMSO, is not only necessary for the oxidation 

process, but also important for the stabilization of the phosphonium ylide. The convenient 

transformation may find utility in the structural modifications of biologically active molecules. 

4. Experimental section 

4.1 General remarks 

1H, 13C and 19F NMR spectra were detected on a 400 MHz or 300 MHz NMR spectrometer. 

Data for 1H NMR, 13C NMR and 19F NMR were recorded as follows: chemical shift (δ, ppm), 

multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, coupling constant (s) in 

Hz). Chemical shifts of 1H NMR spectra are reported in ppm relative to TMS (0 ppm), chemical 

shifts of 19F NMR spectra are reported in ppm relative to CFCl3 as the external standard (0 ppm), 

and chemical shifts of 13C NMR spectra are reported in ppm relative to CDCl3 (-77.0 ppm) as the 

reference. 

4.2 General procedure for the one-step process: 

Into a 10 mL sealed tube were added alcohol 1 (0.8 mmol), Ph3P+CF2CO2
- (855.2 mg, 2.4 

mmol), Burgess reagent (1.04 mmol) and anhydrous DMSO (4 mL) under a N2 atmosphere. The 

tube was sealed and the resulting mixture was stirred at 40 oC for 20 h. After being cooled to room 
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temperature, the mixture was filtered through a plug of Celite, and the solid was washed with 

DCM. The combined organic phase was washed with brine (10 mL × 3) and water (10 mL × 3) 

and dried with Na2SO4. The solvent was removed by concentration under vacuum, and the residue 

was subjected to flash column chromatography to give the final product. 

4.3 Characterization of the products: 

4-(2,2-difluorovinyl)-1,1'-biphenyl (3a) [22], 84% yield; 1H NMR (400 MHz, CDCl3) δ 7.76 

– 7.67 (m, 4H), 7.60 – 7.45 (m, 5H), 5.42 (dd, J = 26.4, 3.8 Hz, 1H). 19F NMR (376 MHz, CDCl3) 

δ -81.81 (dd, J = 30.7, 26.4 Hz, 1F), -83.71 (dd, J = 30.7, 3.7 Hz, 1F). 13C NMR (101 MHz, 

CDCl3) δ 156.5 (dd, J = 298.6, 288.5 Hz), 140.6 (s), 139.9 (t, J = 2.4 Hz), 129.5 (t, J = 6.4 Hz), 

128.9 (s), 128.1 (dd, J = 6.4, 3.6 Hz), 127.54 (s), 127.50 (s), 127.1 (s), 82.1(dd, J = 29.2, 13.5 Hz). 

 

2-(2,2-Difluorovinyl)naphthalene (3b) [35], 93% yield; 1H NMR (400 MHz, CDCl3) δ 

7.86-7.83 (m, 3H), 7.79 (s, 1H), 7.58 – 7.47 (m, 3H), 5.47 (dd, J = 26.3, 3.9 Hz, 1H). 19F NMR 

(376 MHz, CDCl3) δ -81.89 (dd, J = 30.8, 26.3 Hz, 1F), -83.60 (dd, J = 30.8, 3.8 Hz, 1F). 13C 

NMR (101 MHz, CDCl3) δ 156.6 (dd, J = 298.7, 288.5 Hz), 133.5 (s), 132.4 (t, J = 1.5 Hz), 128.5 

(s), 127.9 (t, J = 6.4 Hz), 127.89 (s), 127.7 (s), 126.8 (dd, J = 6.3, 5.0 Hz), 126.5 (s), 126.2 (s), 

125.4 (dd, J = 6.7, 2.4 Hz), 82.6 (dd, J = 29.3, 13.3 Hz). 

 

1-bromo-4-(2,2-difluorovinyl)benzene (3c) [35], 76% yield; 1H NMR (400 MHz, CDCl3) δ 

7.46 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 5.23 (dd, J = 25.9, 3.6 Hz, 1H). 19F NMR (376 

MHz, CDCl3) δ -81.31 (dd, J = 29.1, 26.1 Hz, 1F), -83.14 (dd, J = 29.2, 3.4 Hz,1F). 13C NMR 

(101 MHz, CDCl3) δ 156.5 (dd, J = 298.7, 289.2 Hz), 132.0 (s), 129.4 (dd, J = 7.0, 5.9 Hz), 129.3 

(dd, J = 6.5, 3.6 Hz), 121.0 (t, J = 2.6 Hz), 81.7 (dd, J = 29.9, 13.6 Hz). 

 

1-(2,2-difluorovinyl)-2-iodobenzene (3d) [37], 60% yield; 1H NMR (400 MHz, CDCl3) δ 

7.87 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 

5.58 (dd, J = 25.0, 3.6 Hz, 1H). 19F NMR (376 MHz, CDCl3) δ -82.34 (dd, J = 25.8, 3.5 Hz, 1F), 

-83.90 (t, J = 25.8 Hz, 1F). 13C NMR (101 MHz, CDCl3) δ 156.8 (dd, J = 298.7, 288.9 Hz), 139.6 

(s), 134.0 (dd, J = 7.9, 6.0 Hz), 128.9 (s), 128.8 (d, J = 1.3 Hz), 128.5 (s), 99.7 (dd, J = 5.7, 1.9 

Hz), 86.5 (dd, J = 32.1, 12.6 Hz). 

 

     1-(2,2-difluorovinyl)-4-iodobenzene (3e) [38], 83% yield; 1H NMR (400 MHz, CDCl3) δ 

7.66 (d, J = 8.4 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 5.21 (dd, J = 26.0, 3.6 Hz, 1H). 19F NMR (376 

MHz, CDCl3) δ -80.81 (t, J = 27.3 Hz, 1F), -82.73 (dd, J = 28.5, 3.4 Hz, 1F). 13C NMR (101 MHz, 

CDCl3) δ 156.5 (dd, J = 298.9, 289.4 Hz), 137.9 (s), 130.0 (dd, J = 6.9, 6.1 Hz), 129.4 (dd, J = 6.4, 

3.6 Hz), 92.3 (t, J = 2.7 Hz), 81.8 (dd, J = 29.8, 13.5 Hz). 

 

1-bromo-3-(2,2-difluorovinyl)benzene (3f) [35], 70% yield; 1H NMR (400 MHz, CDCl3) δ 

7.47 (s, 1H), 7.36 (d, J = 7.7 Hz, 1H), 7.25-7.16 (m, 2H), 5.21 (dd, J = 25.8, 3.5 Hz, 1H). 19F 

NMR (376 MHz, CDCl3) δ -80.55 (t, J = 27.1 Hz, 1F), -82.49 (dd, J = 27.5, 3.5 Hz, 1F). 13C NMR 

(101 MHz, CDCl3) δ 156.6 (dd, J = 300.4, 290.3 Hz), 132.6 (t, J = 6.9 Hz), 130.6 (dd, J = 6.7, 3.6 

Hz), 130.3 (s), 130.2 (s), 126.3 (dd, J = 6.4, 3.4 Hz), 122.9 (s), 81.5 (dd, J = 30.0, 13.4 Hz). 

 

Jo
ur

na
l P

re
-p

ro
of



    1-(2,2-difluorovinyl)naphthalene (3g) [15], 68% yield; 1H NMR (400 MHz, CDCl3) δ 7.99 (d, 

J = 7.7 Hz, 1H), 7.90 (d, J = 7.3 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.63 (d, J = 6.7 Hz, 1H), 7.60 – 

7.47 (m, 3H), 5.91 (d, J = 24.4 Hz, 1H). 19F NMR (376 MHz, CDCl3) δ -83.23 (dd, J = 29.3, 2.8 

Hz, 1F), -85.04 (dd, J = 29.0, 24.7 Hz, 1F). 13C NMR (101 MHz, CDCl3) δ 156.8 (dd, J = 296.1, 

288.1 Hz), 133.8 (s), 131.6 (d, J = 3.6 Hz), 128.8 (s), 128.1 (s), 126.6 (dd, J = 6.6, 1.6 Hz), 126.5 

(s), 126.1 (s), 125.6 (s), 123.9 (s), 78.8 (dd, J = 29.1, 15.7 Hz). 

 

    1-(2,2-difluorovinyl)-4-phenoxybenzene (3h) [39], 71% yield; 1H NMR (400 MHz, CDCl3) δ 

7.43 – 7.30 (m, 4H), 7.16 (t, J = 7.2 Hz, 1H), 7.10 – 6.96 (m, 4H), 5.28 (dd, J = 26.2, 3.8 Hz, 1H). 

19F NMR (376 MHz, CDCl3) δ -83.58 (dd, J = 34.0, 26.3 Hz, 1F), -85.26 (dd, J = 34.0, 3.7 Hz, 

1F). 13C NMR (101 MHz, CDCl3) δ 157.1 (s), 156.4 (t, J = 2.3 Hz), 156.2 (dd, J = 297.2, 287.5 

Hz), 129.9 (s), 129.1 (dd, J = 6.4, 3.5 Hz), 125.4 (dd, J = 6.7, 6.0 Hz), 123.6 (s), 119.2 (s), 119.1 

(s), 81.6 (dd, J = 29.4, 14.0 Hz). 

 

   methyl 4-(2,2-difluorovinyl)benzoate (3i) [37], 43% yield; 1H NMR (400 MHz, CDCl3) δ 8.00 

(d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 5.33 (dd, J = 26.0, 3.6 Hz, 1H), 3.91 (s, 3H). 19F 

NMR (376 MHz, CDCl3) δ -79.22 (dd, J = 25.8, 24.0 Hz, 1F), -81.15 (dd, J = 23.9, 3.6 Hz, 1F). 

13C NMR (101 MHz, CDCl3) δ 166.8 (s), 156.9 (dd, J = 300.5, 290.8 Hz), 135.3 (dd, J = 7.8, 6.4 

Hz), 130.1 (s), 128.7 (t, J = 2.3 Hz), 127.6 (dd, J = 6.7, 3.6 Hz), 82.2 (dd, J = 29.8, 13.1 Hz), 52.3 

(s). 

 

1-(2,2-difluorovinyl)-4-(trifluoromethyl)benzene (3j)[38], 42% yield; 1H NMR (400 MHz, CDCl3) δ 

7.59 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 5.34 (dd, J = 25.9, 3.4 Hz, 1H). 19F NMR (376 MHz, 

CDCl3) δ -62.70 (s), -79.65 (t, J = 25.2 Hz), -81.31 (dd, J = 24.7, 3.4 Hz). 13C NMR (126 MHz, CDCl3) 

δ 157.0 (dd, J = 299.9, 290.7 Hz), 134.3 (t, J = 7.2 Hz), 129.2 (q, J = 33.5 Hz), 127.9 (dd, J = 6.5, 3.6 

Hz), 125.8 (q, J = 3.7 Hz), 124.2 (q, J = 271.8 Hz), 81.8 (dd, J = 30.1, 13.4 Hz). 

 

   1-(tert-butyl)-4-(2,2-difluorovinyl)benzene (3k) [24], 53% yield; 1H NMR (400 MHz, CDCl3) 

δ 7.41 (d, J = 8.9 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 5.29 (dd, J = 26.5, 3.8 Hz, 1H), 1.37 (d, J = 

2.0 Hz, 9H). 19F NMR (376 MHz, CDCl3) δ -83.09 (dd, J = 33.3, 26.5 Hz, 1F), -85.09 (dd, J = 

33.3, 3.7 Hz, 1F). 13C NMR (101 MHz, CDCl3) δ 156.4 (dd, J = 297.7, 287.5 Hz), 150.2 (t, J = 3.6 

Hz), 127.6 (dd, J = 7.2, 5.9 Hz), 127.5 (dd, J = 6.1, 3.5 Hz), 125.8 (s), 82.0 (dd, J = 28.8, 13.8 Hz), 

34.7 (s), 31.4 (s). 

 

   2-(2,2-difluorovinyl)benzo[b]thiophene (3l) [25], 60% yield; 1H NMR (400 MHz, CDCl3) δ 

7.79 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 8.6 Hz, 1H), 7.37 – 7.28 (m, 2H), 7.20 (s, 1H), 5.63 (dd, J = 

25.6, 2.1 Hz, 1H). 19F NMR (376 MHz, CDCl3) δ -78.85 (dd, J = 25.5, 22.9 Hz, 1F), -84.77 (dd, J 

= 22.9, 1.9 Hz, 1F). 13C NMR (101 MHz, CDCl3) δ 156.7 (dd, J = 299.3, 291.0 Hz), 139.69 (s), 

139.67 (dd, J = 5.3, 2.1 Hz), 132.5 (t, J = 7.2 Hz), 124.7 (s), 124.5 (s), 123.3 (s), 122.7 (dd, J = 7.2, 

4.7 Hz), 122.1 (s), 78.5 (dd, J = 33.4, 16.5 Hz). 

 

    5‐ (2,2‐ difluorovinyl)benzo[d][1,3]dioxole (3m) [24], 66% yield; 1H NMR (400 MHz, 

CDCl3) δ 6.90 – 6.86 (m, 1H), 6.80 – 6.73 (m, 2H), 5.96 (s, 2H), 5.20 (dd, J = 25.9, 3.9 Hz, 1H). 

19F NMR (376 MHz, CDCl3) δ -83.88 (dd, J = 35.7, 25.9 Hz, 1F), -86.09 (dd, J = 35.8, 3.9 Hz, 
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1F). 13C NMR (101 MHz, CDCl3) δ 156.0 (dd, J = 296.8, 286.9 Hz), 148.1 (s), 146.7 (t, J = 2.2 

Hz), 124.3 (t, J = 6.3 Hz), 121.7 (dd, J = 5.3, 4.7 Hz), 108.6 (s), 107.8 (dd, J = 7.8, 2.8 Hz), 101.3 

(s), 82.1 (dd, J = 29.9, 13.7 Hz). 
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