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ABSTRACT: Herein we propose a new approach for deducing the topology of metal-organic frameworks (MOFs) assembled 
from organic ligands of low symmetry, which we call net-clipping. It is based on the construction of nets by rational 
deconstruction of edge-transitive nets comprising higher-connected molecular building blocks (MBBs). We have applied net-
clipping to predict the topologies of MOFs containing zigzag ligands. To this end, we derived 2-connected (2-c) zigzag ligands 
from 4-c square-like MBBs by first splitting the 4-c nodes into two 3-c nodes and then, clipping their two diagonally connecting 
groups. We demonstrate that, when this approach is applied to the 17 edge-transitive nets containing square-like 4-c MBBs, 
net-clipping deduces generation of ten nets with different underlying topologies. Moreover, we report that literature and 
experimental research corroborate successful implementation of our approach. As proof-of-concept, we employed net-
clipping to form three new MOFs built with zigzag ligands, each of which exhibits the deduced topology.

Reticular chemistry, defined as the “process of 
assembling judiciously designed rigid molecular building 
blocks (MBBs) into predetermined ordered structures 
(networks), which are held together by strong bonding”,1,2 
has become essential in the design and synthesis of porous 
metal-organic frameworks (MOFs). Its success lies in 
precise analysis of the geometry and connectivity of the 
MBBs as well as in classification of their assemblies into 
different topologies.3 Thus, over the past two decades, 
application of the mathematic discipline of topology to 
MBBs4,5 [or secondary building units (SBUs)]2,6 has enabled 
synthesis of myriad MOFs based on reticulation of edge-
transitive nets or their derived nets. Complementarily to 
these approaches, researchers have recently devised new 
design strategies to further expand rational design of MOFs, 
including supermolecular building blocks (SBBs)7–9 and 
supermolecular building layers (SBLs).9,10 These strategies 
also include the merged-net approach, which is based on 
merging two edge-transitive nets into one minimal edge-
transitive net, a useful strategy for rational design of mixed-
linker MOFs.11

Herein we report a new design approach that, unlike the 
rational, bottom-up construction of edge-transitive nets, is 
based on the top-down deconstruction of edge-transitive 
nets. Our group recently reported that the combination of 
certain building blocks can induce structural irregularity 

(known as geometry mismatch)12 that complicates rational 
design of MOFs, as has been observed with use of less-
symmetric, 2-connected (2-c) groups such as bent,13 twisted 
14 or zigzag ligands/MBBs.15 In addition, the various 
possibilities of orientation of non-linear ligands around 
inorganic MBBs lead to a high number of theoretical 
possibilities for polymorphism and therefore, a low 
structural predictability (Figure S1).16,17 However, as high 
symmetry would likely be mostly favored, we reasoned that 
less-symmetric ligands could be derived from more-
symmetric MBBs of higher connectivity by simply reducing 
the connectivity of the latter. For example, a zigzag ligand 
can be formed by removing the two diagonally connecting 
groups of the two 3-c nodes derived from a 4-c MBB (Figure 
1a). Accordingly, we reasoned that MOF structures made of 
less-symmetric ligands could be anticipated via rational 
clipping of the connecting groups of more-symmetric MBBs 
in edge-transitive nets. This new approach, which we have 
called net-clipping, provides further insights to our recent 
works on transversal reticular chemistry15 and geometry 
mismatch12 and can facilitate rational design of MOFs built 
up from less-symmetric MBBs. 

We propose use of net-clipping to rationalize/anticipate 
the MOFs that could be built from zigzag ligands. To this 
end, among the 54 edge-transitive nets (with D-symbol size 
≤ 32) reported by O’Keeffe et al.,18 we first selected the 
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seventeen nets assembled from 4-c square-like MBBs. 
These nets are formed by combining a 4-c MBB with other 
polygonal and polyhedral MBBs (Table 1). Next, we derived 
these nets by splitting the 4-c nodes into two 3-c nodes 
(Figure 1).19 This node splitting step is important to reduce 
the symmetry of the 4-c MBBs and convert them into 
rectangular shapes, from which the two zigzag ligands can 
be originated by clipping the two diagonally connecting 
groups (Figure 1).20 Notably, this process led to 39 derived 
nets.21 Importantly, reducing the symmetry of some of the 
initial edge-transitive nets (nbo, ssb, pts, scu and ftw) leads 
to two-symmetrically different 4-c planar nodes. In these 
cases, as the two types of nodes can be split distinctly, more 
than two derived nets can be formed.

We then applied net-clipping to the derived nets by 
erasing the two diagonally connecting groups to mimic the 
presence of a zigzag-shaped MBBs (Figure 1b; Figures S4-
S20). The ten resultant nets are summarized in Table 1. We 
concluded that most 3D nets (pto, ssb, pts, pth, she, soc, 
stp, scu and ftw) are clipped into other 3D nets (srs, lvt, dia, 
qtz, hxg, crs, acs, bcu and fcu, respectively); that some 3D 
nets (nbo, lvt and ssb) are clipped into the 2D sql net; and 
that the remaining nets (tbo, rhr, ssa, sqc, csq and shp) 
cannot be clipped into other nets. Interestingly, we found a 
common feature among all these latter edge-transitive nets: 
the presence of a 6-cycle22 that comprises three 3-c nodes 
(derived from three 4-c nodes) and three other MBBs and 
that frustrates the net clipping in a fully zigzag fashion 
(Figures S21,S22).

Once we had theoretically deduced the MOF structures 
that could be formed using zigzag ligands, we 
experimentally assessed our net-clipping approach. To this 

end, we chose two types of MOFs assembled from 
combining a 4-c MBB with a 4-c square-like MBB or a 12-c 
cuboctahedral MBB. Then, we combined the zigzag ligand 
analogs (derived from the 4-c MBB) with the corresponding 

Figure 1. a) Schematic of the deconstruction of a 4-c square 
MBB in a zigzag building block by splitting the node into two 
3-c triangles in different axes (node splitting), and then 
removing two diagonally connections (net-clipping). b) 
Schematic showing an example of our approach (node 
splitting + net clipping) applied to an edge-transitive net 
built from 4-c and 6-c triangular prism MBBs. 

Table 1. Net-clipping of all the derived nets from 4-c 
square nodes in the 17 selected edge-transitive nets.

MBB Main Topology Derived Net Clipped 
Net

tbo tbd
xaa

pto ptd srs

nbo
fof

sqlfog
tfb

rhr ucp
sqc12288*

lvt lil sql
lim

ssa

sty
Initial 

structure; 
Bond sets: 
1,3:bbp**

ssb

stu sql
stw
stj lvt
stx

pts

dmd

diadmg
dmh

tfi

pth hst qtz
3,4T45***

she sqc12215* hxg

soc cdj crs
edq

stp ttp acs
ttx

scu
tty

bcucut

3,3,8T132***

sqc
sqc3520*

sqc3782*

csq xly
xlz

ftw
kle

fcukxe
ttv

shp ced
cec

* Topologies corresponding to the Systre code in the 
Epinet database. 

** Topology corresponding to the subnet transformation 
symbols nomenclature.

*** Topologies corresponding to the TOPOS symbols 
nomenclature.
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polyhedral MBBs to synthesize two new MOFs, whose 
topologies we compared with those that we had deduced by 
net-clipping. Note that, in two other cases, to further 
support the net-clipping approach, we used MOF structures 
already reported in the literature (MOFs made by 
combining a 4-c MBB with 4-c tetrahedral or 8-c cubic 
MBBs).

We began with the nbo MOF PCN-10 (derived net: fof), 
which is built by connecting 4-c square-like Cu(II) paddle-
wheel MBBs through 4-c 3,3’,5,5’-azobenzene-

tetracarboxylate (3,3’,5,5’-ABTC) ligands.23 In this case, net-
clipping deduced the formation of a 2D sql MOF (Table 1). 
Remarkably, replacing 3,3’,5,5’-ABTC with the 
corresponding zigzag 3,3’-azobenzene-dicarboxylate (3,3’-
ABDC) ligand, afforded the expected 2D sql MOF (Figure 
2a,top). This entailed reaction of copper(II) nitrate salt and 
H2(3,3’-ABDC) in N,N-dimethylformamide (DMF) under 
solvothermal conditions, which yielded green needle-
shaped crystals of Cu-sql-3,3’-ABDC. Single-crystal X-ray 
diffraction (SCXRD) revealed formation of a ABCD packing 

Figure 2. Schematic of the net-clipping approach applied to formation of MOFs from (a) 3,3’,5,5’-ABTC ligand to zigzag 3,3’-
ABDC combined with (top) 4-c paddle-wheel Cu(II) MBBs and (bottom) 8-c cubic Zr(IV)-based MBBs; and from (b) 3,3’,5,5’-
BPTC to 3,3’-BPDC ligand combined with (top) 4-c tetrahedral In(III)-based MBBs and (bottom) 12-c cuboctahedral Tb(III)-
based MBBs. 
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of a 2D-network of formula Cu2(3,3’-ABDC)2 (H2O)2, which 
crystallizes in the C2/m space group (Figure 2). As expected, 
the building unit in Cu-sql-3,3’-ABDC is the Cu(II) paddle-
wheel unit. In this framework, each of these units is 
connected to four others through four bridging zigzag 3,3’-
ABDC ligands, adopting a 4-c sql underlying topology 
(Figure 2a,top).

Interestingly, our net-clipping approach is further 
corroborated by the fact that an isostructural sql MOF made 
by linking Zn(II) paddle-wheel units by 3,3’-ABDC ligands 
had previously been described by Liang et al.24 Similarly, 
two other independently, previously reported structures 
reinforce our approach: NOTT-204,25 a pts MOF (derived 
net: tfi) built by linking the 4-c 3,3’,5,5’-biphenyl-
tetracarboxylate (3,3’,5,5’-BPTC) ligand and the 4-c 
tetrahedral In(III)-based MBB; and InOF-4,26 a dia-MOF 
made of connecting the same 4-c tetrahedral In(III)-based 
MBBs through the zigzag 3,3’-biphenyl-dicarboxylate (3,3’-
BPDC) ligand. Interestingly, both of these MOF structures 
are related by net-clipping, which deduced formation of a 
clipped dia topology from a pts topology (Table 1 and 
Figure 2b,top).

Next, we shifted our attention to another MOF assembled 
from the 4-c 3,3’,5,5’-ABTC ligand and a higher-connected 
MBB, the 8-c cubic Zr6O4(OH)4(OOC-R)8(H2O)4(OH)4 
hexanuclear MBB.27 This MOF shows the scu topology, in 
which we reasoned that replacement of 3,3’,5,5’-ABTC with 
3,3’-ABDC would generate a clipped bcu MOF (Table 1). 
Interestingly, our group recently reported that combination 
of this 8-c MBB with a series of zigzag ligands, including 3,3’-
ABDC, leads to formation of MOFs with the bcu topology 
(Figure 2a,bottom), which further supports net-clipping.15

 Recently, Eddaoudi et al. reported that combining 4-c 
ligands (e.g. 3,3’,5,5’-ABTC or 3,3’,5,5’-BPTC) with 12-c 
cuboctahedral rare earth metal (RE) MBBs affords RE-ftw-
MOFs (derived net: kle).28 From this topology, net-clipping 

predicts formation of a MOF with the fcu underlying 
topology. To investigate this, we used the zigzag 3,3’-BPDC 
ligand as a substitute for the 4-c 3,3’,5,5’-BPTC ligand. 
Reaction of terbium(III) nitrate salt and H2(3,3’-BPDC) in 
the presence of 2-fluorobenzoic acid in DMF under 
solvothermal conditions yielded transparent octahedral 
crystals of Tb-fcu-3,3’-BPDC. SCXRD revealed formation of 
a 3D net with formula [(CH3)2NH2]2[Tb6(μ3-OH)8(3,3’-
BPDC)6(H2O)4], which crystallizes in the P21/n space group. 
As we had expected, the presence of 2-fluorobenzoic acid as 
modulator29 enabled formation of the hexanuclear RE MBB 
in Tb-fcu-3,3’-BPDC. In this framework, each of these MBBs 
is connected to twelve others, through twelve bridging 
zigzag 3,3’-BPDC groups, adopting overall a 12-c fcu 
topology (Figure 2b, bottom). Note that, compared to the 
archetypical 12-c Zr-fcu-4,4’-BPDC (known as UiO-67),30 
Tb-fcu-3,3’-BPDC shows a less-symmetric, distorted 
structure. We attributed this feature to the transversal 
parameter of the zigzag ligand as well as to the different 
metal-based MBBs, in which Zr(IV) ions had been replaced 
with Tb(III) ions, thereby a slightly different coordination 
environment (Figures S30,S31).

Once we had confirmed the feasibility of our net-clipping 
approach, we applied it to synthesize a new acs-MOF built 
with a zigzag ligand. To this end, we synthesized a rigid 
zigzag 1,5-naphtalenedicarboxate (1,5-NDC) ligand and 
selected the well-known [Fe(III)]3O trimeric unit as the 
trigonal prism MBB.31 We synthesized this zigzag ligand 
because, to our knowledge, a stp MOF assembled from the 
corresponding 4-c 1,4,5,8-naphtalenetetracarboxylate 
ligand and a 6-c trigonal prism MBB - for which net-clipping 
deduced formation of an acs topology - have never 
previously been reported. First, H2(1,5-NDC) was 
synthesized from the corresponding diamine-derivative via 
several functional group interconversions (see SI). Then, 
the Fe(III) trimeric unit was synthesized in an acetic acid 
solution, according to a literature protocol.32 Finally, the 
pre-formed Fe(III) unit was reacted with H2(1,5-NDC) and 
acetic acid in DMF under solvothermal conditions for 48 h. 
After this period, orange hexagonal crystals suitable for 
SCXRD were collected. SCXRD revealed formation of a 3D 
structure with formula Fe3(μ3-O)(1,5-NDC)3(H2O)2(OH), 
which crystallizes in the P-63m space group. In Fe-acs-1,5-
NDC, each trimer is connected to six others through six 
zigzag 1,5-NDC ligands, adopting the 6-c acs underlying 
topology (Figure 3). Note that the structure of Fe-acs-1,5-
NDC, although slightly distorted, is similar to that of MOF-
235/MIL-88B,33,34 which also exhibits an underlying acs 
topology.

In summary, we have proposed and validated a new 
approach, net-clipping, for rational design of MOFs made of 
zigzag ligands. First, we demonstrated the relationship 
between these ligands and more symmetric 4-c ligands. 
Next, we studied the edge-transitive nets with 4-c nodes 
with associated square vertex figure, and their derived nets, 
to identify the possible outcomes. Then, we applied our net-
clipping approach to deduce the different topologies that 
should be accessible upon assembly of zigzag ligands with 
different polyhedral MBBs. Finally, we demonstrated the 
feasibility of net-clipping through the successful design and 
assembly of three novel MOFs based on MBBs with different 

Figure 3. Crystal structure of Fe-acs-1,5-NDC, showing a) 
the zigzag connection between the Fe-trimers; b) the 
trigonal bipyramid cage; and c) the channels formed 
through the c axis.

a)

c)

b)
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connectivities: Cu-sql-3,3’-ABDC (4-c, paddle wheel), Fe-
acs-1,5-NDC (6-c, trimer) and Tb-fcu-3,3’-BPDC (12-c, 
hexamer). Our approach enriches the repertoire for 
topological predictions, and we anticipate the application of 
net-clipping to bent ligands, via clipping of 4-c MBBs in 
other ways, as well as its eventual use with MBBs of other 
connectivity.
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