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ABSTRACT: A monodentate directing group, 2-chlorotetrafluor-
oethylsulfinylmide (-NHSOCF,CF,Cl), for inert C(sp®>)—H bond
activation is reported. This directing group shows efficient ability in
Pd(II)-catalyzed C(sp®)—H olefination. The desired olefination
products undergo subsequent Michael addition and in situ
expulsion of the auxiliary to provide the free NH p-lactam
products. Preliminary mechanistic studies reveal that the auxiliary
group is crucial for C(sp*)—H activation.

T ransition-metal-catalyzed C—H olefination has attracted a
tremendous amount of interest, as this family of synthetic
methods can enable rapid construction of bioactive molecules."
Nevertheless, the activation of aliphatic C(sp®>)—H bonds
remains challenging, due to the combination of high pK, (pK,
> 40) and high bond dissociation energy (BDE > 400 kJ/
mol).” Moreover, selectively targeting only one C—H bond
among many alternative C—H bonds in a similar chemical
environment is difficult.’ In recent years, using a directing
group strategy, several C(sp®)—H olefination precedents have
been reported with Pd catalysts Usin iheterocyclic directing
groups (e.g, pyridine™ or pyrazole™) or cyclic aliphatic
amines ~® as directing groups, Sanford, Yu, and Gaunt
developed straightforward C(sp®)—H olefinations that afforded
open-chain or cyclized products (Figure 1a).* A removable
directing group strategy has also proven to be successful,” as
initially reported by Yu in the S-C(sp®)—H olefination of
N-perfluorinated aryl amides.> Similar types of auxiliaries have
also facilitated y-C(sp®)—H olefination of amine/amide
substrates with the aid of pyridine- or quinoline-based ligands,
providing lactams or pyrrohdlnes after subsequent intra-
molecular cyclization.”®™ Maiti achieved y-C(sp*)—H olefina-
tion to give open- chain products with widely used bidentate 8-
aminoquinoline’ as the directing group (Figure 1b).*
Though these seminal breakthroughs demonstrated the
ability to achieve reactivity and selectivity in C(sp’>)—H
olefination, the removal of these exogenous auxiliaries is
required, which generally involves tedious concession steps
and/or harsh conditions.” To overcome this problem, Yu
reported a free carboxylic acid-directed ligand-enabled p-
C(sp®)—H olefination in 2018. This transformation provided
y-lactones by the subsequent 1,4-addition (Figure 1c),” but the
synthesis of y-lactams via facile C(sp*)—H activation is not
compatible. Very recently, Yu reported that native amides are
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Figure 1. Direct olefination of inert C(sp®)—H.
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also capable of directing f-C(sp*)—H olefination to provide
open-chain products, but the removal of the directing group is
still problematic.” The application of a traceless directing
group strategy, which is well established in aryl C(sp*)—H
activation,'’ would be highly enabling in C(sp*)—H function-
alization but remains underdeveloped.'’ Herein, we report a
self-cleaving amide auxiliary, 2-chlorotetrafluoroethylsulfinyl
(SORy), and its application in C(sp*)—H olefination. In this
transformation, the auxiliary group (SOR) is automatically
removed from the desired products during the course of the
reaction, thus providing a straightforward protocol for
synthesizing free NH y-lactams, an important bioactive core
structure.'” The N-2-chlorotetrafluoroethylsulfinyl (NHSOR;)
auxiliary originates from an abundant industrial waste product,
ICF,CF,Cl, and can thus be easily prepared on a large scale.
Liu and Ellman have independently reported ele§ant uses of
this auxiliary in asymmetric nucleophilic addition.”

We began the study by examining the reaction of N-2-
chlorotetrafluoroethanesulfinyl pivalamide (la) and ethyl
acrylate (2a) (Scheme 1). When using 10 mol % Pd(OAc),
as the catalyst, 2 equiv of AgOAc as the oxidant, and
hexafluoro-2-propanol (HFIP) as the solvent, the desired
product 3a, resulting from C(sp®)—H olefination and the
subsequent Michael addition, was afforded in 14% yield (entry
1). The addition of a base to the reaction mixture significantly
increased the yield of 3a. For example, the use of 2 equiv of
NaTFA gave 3a in 52% yield (entry 2), and the use of CsF
afforded 3a in 72% yield (entry 3). To our delight, we isolated

Scheme 1. Optimization of the Reaction Conditions”

X CO:Et (2a)

o o Pd(OAc) (10 mol%) o 0 o
%N,SCFZCFZG Oxidant (2 equiv.) >&q;scF2(:FZCI+ >&€i
H Base (2 equiv.)

H Sol., 120 °C,12 h CO,Et CO,Et
1a 3a 4a
Entry Base Oxidant Solvent Yield (%)°

3a 4a
1 None AgOAc HFIP 14 n.d.
2 NaTFA AgOAc HFIP 52 n.d.
3 CsF AgOAc HFIP 72 12

( 4 Na,CO, AgOAC HFIP nd.  81(78) )

5 K,CO3 AgOAc HFIP n.d. 18
6 Cs,CO; AgOAc HFIP n.d. 10
7 NaHCO, AgOAc HFIP 5 38
8 Na,CO; Ag,CO; HFIP n.d. n.d.
9 Na,CO, Ag,0 HFIP n.d. n.d.
10 Na,CO; AgTFA HFIP trace n.d.
11 Na,CO, Cu(OAc), HFIP n.d. 22
12¢ Na,CO; AgOAc HFIP n.d. 80
13 Na,CO; AgOAc DCE 20 n.d.
14 Na,CO; AgOAc MeCN n.d. n.d.
15 Na,CO; AgOAc PhCH; 20 n.d.
169 Na,CO; AgOAc HFIP 38 28
17¢ Na,CO, AgOAc HFIP 30 nd.

“Reaction conditions: 1a (0.2 mmol), 2b (0.6 mmol), Pd(OAc), (10
mol %), oxidant (2 equiv), base (2 equiv), HFIP (2 mL). bYields were
determined by 'H NMR analysis relative to the CH,Br, internal
standard. “Under a N, or an O, atmosphere. 9100 °C. °80 °C.

lactam 4a as a second product in 12% yield, which indicated
that the polyfluoroalkylsulfinyl auxiliary (SOR;) was removed
in situ under the reaction conditions. Next, we extensively
screened various bases, hoping to achieve the convenient
synthesis of y-lactam by using this auxiliary as a self-cleaving
directing group in C(sp*)—H olefination (for details, see the
Supporting Information). It turned out that the yield of 4a
could be increased to 81% (78% isolated yield) when using 2
equiv of Na,COj; as the base (entry 4). Other bases, such as
K,CO;, Cs,CO; and NaHCO;, were found not only to
strongly inhibit the formation of 4a but also to depress
alkenylation of la (entries S—7). We examined various
oxidants, only to find that AgOAc was optimal and that
other Ag* or Cu?" salts were less effective or ineffective for the
formation of 3a or 4a (entries 8—11). Under these conditions,
the reaction was equally effective under either N, or O,
atmospheres (entry 12), indicating that AgOAc is likely
playing a key role in reoxidizing the Pd catalyst. Other solvents,
such as MeCN, PhCHj, and DCE, gave only 3a in low yields
or did not lead to product formation (entries 13—1S5,
respectively). The decreased reaction temperature resulted in
lower yield of 4a or incomplete conversion of the starting
material (entries 16 and 17). On the basis of these findings, we
chose entry 4 as the optimal conditions.

Different polyfluoroalkylsulfinyl (SOR,) auxiliaries were next
tested under the optimal conditions (Scheme 2). Pivalamide
with a -CF; auxiliary afforded a 35% yield of 4a, and the -C,F,
and -C4F,; auxiliaries provided 4a in 62% and 56% yields,
respectively. All of these auxiliaries were less efficient than
-CF,CF,C], demonstrating the unique proprieties of this

group.

Scheme 2. Efficiencies of Different Auxiliaries

Pd(OAc), (10 mol%) o

o] AgOAc (2 equiv.) %&
CO,Et

Na,CO; (2 equiv.)

%)’LOEt
HFIP, 120 °C,10 h

1a (0.1 mmol) 2b (3 equiv.) 4a

Entry Rf NMR Yield of 4a
1 —CF; 35%
2 —CF,CF,CI 76%
3 —C,Fy 62%
4 —Cg¢Fq3 56%

Having optimized the conditions, we evaluated the substrate
scope for this transformation. Various a,a-dialkyl-substituted
propionic amides bearing the N-2-chlorotetrafluoroethylsulfin-
yl (NHSORf) auxiliary were examined, and the desired y-
lactams were afforded in moderate to good yields via C(sp*)—
H activation (Scheme 3). The linear substituents on the
propionic amides, such as methyl, ethyl, 1-propyl, 2-propyl,
and 1-butyl, were compatible with this protocol and afforded
the desired y-lactams in 56—78% yield (4a—4e). The
connectivity of 4a was confirmed by X-ray diffraction. a,a-
Diethyl-substituted propionic amide provided a 50% yield of
4f. Spirocyclic propionic amide was tolerated under the
reaction conditions, and the desired product 4g was achieved
in 51% yield. A substrate bearing a methoxy group was also
suitable, offering a 52% yield of the desired product 4h with a
1.5:1 diastereoselectivity. Phenyl substituents at the f3, y, or &
position of the propionic amides were well tolerated (4i—4n),
and halogen substituents (i.e., -F, -Cl, and -Br) could be readily
accommodated on these aryl species (4i—4k and 4m). Though
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Scheme 3. Substrate Scope for f-C(sp®)—H Olefination®
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40, 85%

“Reaction conditions: 1a (0.2 mmol), 2b (3 equiv), Pd(OAc), (10
mol %), AgOAc (2 equiv), Na,CO; (2.0 equiv), HFIP (2 mL), 120
°C, 12 h.

low yields were obtained with f-aryl-substituted substrates,
moderate yields were provided when the aromatic rings were
instead located at the y or § positions, and the desired products
were obtained in 52—60% vyields (41—4n). This in situ
removable directing group could also be applied to aryl
C(sp*)—H olefination, when a,a-dimethyl-a-phenyl amide was
used as the starting material; under the optimal reaction
conditions, C—H olefination took place at the aryl C(sp*)—H
bond, providing the corresponding benzo-fused d-lactam in
85% vyield (40).

The scope of the acrylate substrates was next examined with
N-2-chlorotetrafluoroethanesulfinyl pivalamide (1a). Various
acrylates were tolerated and provided the corresponding
products in moderate to good yields (Scheme 4). For simple
acrylates, such as methyl, tert-butyl, iso-butyl, cyclohexyl, and
benzyl acrylate, C(sp®)—H olefination took place smoothly and
provided the desired products in 66—75% vyields (Sa—Se,
respectively). The reaction also performed well for acrylates
that contain various functional groups; for example, methoxyl,
2-furanyl, and hydroxyl groups on the alkoxy fragment of the
acrylates were compatible and provided the corresponding y-
lactams in 70—73% yields (Sf—Sh). A cyano group on the
acrylate was tolerated, albeit in a lower yield (5i). Hexafluoro-
2-propanyl acrylate afforded the desired coupling product in
60% yield (5j). When phenyl acrylate was used as the starting
material, the reaction delivered a 62% yield of Sj as the final
product, rather than the expected phenyl ester product, most
likely due to the alcoholysis with the HFIP solvent. Similarly,

Scheme 4. Substrate Scope for Acrylates”

Pd(OAc), (10 mol%) 9
Y 9 AgOAc (2 equiv.)
gOAc (2 equiv.
S > NH
*LN CF,CF,CI * VLOR Base (2 equiv.)
HFIP, 120 °C, 8 h, CO,R
1a 2a-2| 5a-5k
o o o
CO,Me CO,"Bu CO,'Bu
5a, 73% 5b, 71% 5¢, 73%
o o o
€O,Cy C0O,Bn o
~0
5d, 66% Se, 75% MeO  5f, 71%
o o o
%H >§§H u
(o) [o] [o} [o]
O—/ o wd — % ~ o
NC
59, 73% 5h, 70% 5i, 40%
o o o
NH NH NH
+
o o o
Fc—< 0 Fc— 0 Fc—~ 0
CF; CF;
R = CH(CF3),, 5j, 60% 5k, 35%" g0
R=Ph,  5,62% R = CH,CF, 5, 35%

“Reaction conditions: 1a (0.2 mmol), 2b (3 equiv), Pd(OAc), (10
mol %), AgOAc (2 equiv), Na,CO; (2.0 equiv), HFIP (2 mL), 120
°C, 12 h. bZ,Z,Z—Triﬂuoroethyl acrylate was used, resulting in a
mixture of 5k (35%) and 5j (35%).

2,2, 2-trifluoroethyl acrylate afforded a mixture of free NH y-
lactam §j (35%) and S5k (35%) under these conditions.

Because self-cleaving directing groups have rarely been
reported in C—H functionalization research, several experi-
ments were conducted to shed light on the mechanistic details
of this reaction. First, when the reaction was performed in the
absence of acrylate, the starting material 1a was recovered in
81% isolated yield, and a trace amount of pivalamide 6 was
detected (eq 1). This result indicates that 1a is relatively stable
under the reaction conditions. Furthermore, when pivalamide
6 was used as the starting material in lieu of la under the
standard conditions, 6 was recovered, and no C(sp®>)—H
activation products were detected (eq 2). This observation
suggests that amide la containing the polyfluoroalkylsulfinyl
(SORy) auxiliary is the active substrate in C(sp*)—H activation,
rather than pivalamide 6. On the basis of this insight, we
reasoned that the cleavage of the auxiliary group likely takes
place after the C(sp’)—H activation/olefination sequence,
though we have never isolated the C(sp’)—H activation/
olefination product(s). Finally, when we used the optically
enriched 1a (94% ee) as the starting material, we obtained the
desired y-lactam product in 47% ee, in 71% isolated yield (eq
3). This result also supports the notion that the auxiliary group
is expelled after completion of the C(sp®)—H olefination/
cyclization cascade.

On the basis of these results, we propose a plausible reaction
mechanism for this Pd-catalyzed self-cleaving polyfluoroalkyl-
sulfinyl (SOR)) auxiliary-directed C(sp*)—H olefination/
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cyclization process (Scheme 5). The Pd" catalyst coordinates
to the polyfluoroalkylsulfinylamide and activates the proximal
methyl C(sp®>)—H bond to afford a five-membered palladacycle
intermediate A. The coordination of acrylate and 1,2-migratory
insertion of the Pd—C(sp’) bond into the olefin generate
intermediate C. Subsequent A-H elimination provides
olefinated intermediate D; the Pd" catalyst is regenerated by
Ag" to close the catalytic cycle. Olefinated intermediate D
undergoes intramolecular Michael addition and in situ cleavage
of the auxiliary to give the final y-lactam product.

Scheme 5. Proposed Mechanism

o o o
o o [0] 2
s — NR, -
>HLN' Ry Pd'LX, PddL,
: | CO,Et
Ry CO,Et Product
BH D
C-H Activation Elimination
o o
iy
N"°R;
g 9 H
Fa-L LPd" > CO,Et
t c
A 1,2-Migratory
Insertion
o o
N"°R;
A co,Et Pt
T NcosEt

B

In summary, a new self-cleaving monodentate polyfluor-
oalkylsulfinyl (SOR)) auxiliary for Pd(II)-catalyzed aliphatic
C(sp®)—H bond olefination and tandem cyclization has been
developed. This transformation provides a practical procedure
for synthesizing NH free y-lactams. Initial mechanistic
investigations reveal that the polyfluoroalkylsulfinyl (SOR;)
auxiliary is crucial for C(sp*)—H activation.
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