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Introduction

N-Arylpyrazoles are important intermediates used in the syn-
thesis of many agrochemicals, pharmaceuticals, and func-
tional materials.1,2 The N-arylpyrazole structural unit can be 
obtained by several synthetic methods, among which transi-
tion-metal-catalyzed amination of aryl halides is one of the 
most direct and powerful.3–5 In contrast to expensive cata-
lysts such as palladium and rhodium complexes, low-cost 
copper catalysts are attracting considerable attention due to 
their potential use in industrial and practical applications.6–9 
Many copper/ligand systems have been reported, most of 
which utilize CuI as the catalyst and other Cu sources (e.g. 
Cu2O, CuCl). However, the copper/ligand catalytic processes 
have not been well-determined; in particular, the structures 
of the Cu(I) pre-catalysts are rarely investigated.8,9

It is well-known that N-heterocyclic carbenes (NHCs) 
have strong σ-donating and modest π-accepting abilities, 
which make them widely used as ligands in catalysis and 

materials science.10–13 Recently, Thompson’s group reported 
luminescent Cu(I)−NHC complexes, and these complexes 
exhibited moderate-to-high emission efficiency.14,15 We have 
also reported several cationic, heteroleptic, four-coordinate 
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Cu(I)−NHC complexes with high emission efficiency and 
tunable emission wavelengths by modifying the structure of 
NHC ligands.16,17 In view of these findings and our continu-
ing interest in the synthesis of NHC complexes as well as 
their application in coupling reactions,18,19 we were inter-
ested to investigate whether the obtained Cu(I)–NHC com-
plexes were active for aminations. Thus, we prepared a new 
photoluminescence Cu(I)–NHC complex and examined its 
catalytic activity in the amination of pyrazoles.

Results and discussion

Synthesis and structure

The new four-coordinate Cu(I)–NHC complex 1 was pre-
pared using the method reported by our group (Scheme 
1)16,17 and characterized by elemental analysis, mass spec-
troscopy (MS), and 1H, 31P, and 13C NMR spectroscopy. It 
is very stable to air and moisture in a solid state at room 
temperature. The nuclear magnetic resonance (NMR) spec-
trum of 1 was consistent with the proposed structure, and 
the signal for the carbene carbon atom was observed at 
158.7 ppm in the 13C NMR spectrum. Furthermore, its 
detailed structure was confirmed by X-ray diffraction anal-
ysis. Single crystals were obtained through slow evapora-
tion of an acetone solution at room temperature. The crystal 
structure of 1 is shown in Figure. 1. The Cu in the complex 
is in a typical distorted tetrahedral environment and is 
bonded to two P atoms of POP, a C atom, and the N atom of 
the NHC (Br-Pyim) ligand. The imidazolylidene ring and 
the pyridine ring of the NHC ligand are nearly coplanar and 
the dihedral angle is 6.4°. The bond lengths of Cu−C, 
Cu−N, and Cu(I)−P are similar to those of reported related 
four-coordinate Cu complexes.14–17

Absorption and emission

In CH2Cl2 solution, complex 1 exhibits three absorption 
bands as shown in Figure. 2. The intense high-energy 
absorption bands at 232 and 280 nm are ligand-centered 
(LC) π-π* transitions. The weaker absorption band at 
340 nm can be assigned to the charge transfer (CT) transi-
tions, which should include metal-to-ligand charge transfer 
(MLCT) and ligand-to-ligand (LLCT) transitions, accord-
ing to previous reports.16,17 It does not show luminescence 
in organic solutions at room temperature;20 however, as a 
crystalline powder it shows intense yellow-green emission 
with a photoluminescence (PL) spectrum at 555 nm at room 
temperature (298 K). The absolute PL quantum yield and 

emission lifetime were measured to be 26% and 76.0 μs, 
respectively. At a low temperature of 77 K, the PL peak of 1 
appears at 570 nm which is red-shifted by about 16 nm 
compared to that acquired at 298 K. In addition, the emis-
sion lifetime was measured to be 231.3 μs at 77 K, which 
increased by a factor of 3 compared to that acquired at 
298 K (Figure 2, inset). These results imply that emission of 
this complex at room temperature is thermally activated 
delayed fluorescence (TADF).

Amination

1-(2-N-Heteroaryl)-1H-pyrazole derivatives as N,N ligands 
have found widespread applications in the fields of supramo-
lecular chemistry and crystal engineering. Coupling reac-
tions of N-heteroaryl halides have become one of the most 
valuable synthetic processes for N-heterocyclic com-
pounds.21,22 For example, 2-chloro pyridines and 2-chloropy-
rimidines are important coupling partners in these 
reactions.23–25 However, the amination of 2-N-heteroaryl hal-
ides with pyrazoles has been relatively less reported.26,27 So, 
we have investigated the catalytic activity of complex 1 for 
the N-arylation of 2-N-heteroaryl chlorides with pyrazoles.

Initially, the use of complex 1 as a catalyst for the  
coupling reaction of 2-chloro-5-methylpyridine with 1H- 
pyrazole was examined. Using 0.5 mol% of 1 in dioxane 
at 110 °C for 12 h provided the desired product 2. The 
results from this study are summarized in Table 1. After 
screening a variety of bases (entries 1–6), KOtBu was 
found to give the best result, while NaOtBu gave a moder-
ate yield. A survey of solvents indicated that dioxane was 
much better than other solvents such as tetrahydrofuran 
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Scheme 1. Synthesis of four-coordinate Cu(I)–NHC complex 1.

Figure 1. X-ray crystal structure of 1. H atoms, CH3COCH3, 
and PF6− are omitted for clarity. Selected bond lengths (Å) and 
angles (°) are as follows: Cu–N1 2.309(3), Cu–C8 1.964(3), 
Cu–P1 2.2566(9), Cu–P2 2.2693(10), and N1–Cu–C8 77.55(13), 
C8–Cu–P1 122.89(10), P1–Cu–P2 114.41(3), and P2–Cu–N1 
121.96(8).
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(THF), dimethylformamide (DMF), and dimethyl sulfox-
ide (DMSO) (entries 7–10). Toluene also afforded a good 
yield. In addition, CuI/Br-HPyimPF6 and CuI/POP were 
poorly active under the same reaction conditions (entries 
11 and 12). However, CuI/Br-HPyimPF6/POP generated 
the product in a 72% yield, showing a synergistic ligand 
effect between the NHC and POP ligands in the amination 
(entry 13).28–31

Compared with 1H-pyrazole, 3,5-dimethyl-1H-pyrazole 
showed no deleterious effect on these reactions. Under the 
optimized reaction conditions, the amination of 3,5-dime-
thyl-1H-pyrazole with 2-chloro-5-methylpyridine gave 
product 3 in a good yield (89%). In subsequent experiments, 

the coupling of a variety of electronically and structurally 
2-N-heteroaryl chlorides with pyrazoles catalyzed by com-
plex 1 was carried out (Table 2). Products 4a,b were obtained 
from 2-chloropyridine in good yields (92% and 90%). For 
electron-rich 2-chloropyridine derivatives, the yields of the 
coupled products 5 and 6 were 84%–91%. As expected, the 
coupling reactions of activated 2-chloropyridine derivatives 
gave the products 7–10 in excellent yields (90%–96%). 
Finally, we investigated the couplings of 2-chloropyrimi-
dine and 2-chloropyrazine and found them to be efficient 
coupling partners in this system giving products 11 and 12 
in good yields.

Conclusion

A new photoluminescent four-coordinate Cu–NHC com-
plex has been synthesized and characterized. The complex 
demonstrates efficient TADF in the solid state at room tem-
perature. In addition, we have developed an efficient 
method for the amination of N-heteroaryl chlorides with 
pyrazoles catalyzed by this Cu–NHC complex. This proto-
col provides an efficient access to a variety of substituted 
1-(2-N-heteroaryl) -1H- pyrazoles.

Figure 2. Absorption and photoluminescence (PL) spectra 
of 1. The inset is the emission decay behavior of 1 in the solid 
state at 298 and 77 K.

Table 1. Optimization of the reaction conditions for the 
amination of 2-chloro-5-methylpyridine with 1H-pyrazole.a

N

N

NN

Cl HN

N

Cat Cu

2

Entry Base Solvent Catalyst (mol%) Yield (%)b

1 Na2CO3 Dioxane 1 (0.5) 28
2 K2CO3 Dioxane 1 (0.5) 42
3 KOH Dioxane 1 (0.5) 53
4 K3PO4 Dioxane 1 (0.5) 36
5 NaOtBu Dioxane 1 (0.5) 75
6 KOtBu Dioxane 1 (0.5) 91
7 KOtBu Toluene 1 (0.5) 86
8 KOtBu THF 1 (0.5) 49
9 KOtBu DMF 1 (0.5) 37

10 KOtBu DMSO 1 (0.5) 54
11 KOtBu Dioxane CuI (0.5)/Br-HPyimPF6 (1) 38
12 KOtBu Dioxane CuI (0.5)/POP (1) 25
13 KOtBu Dioxane CuI (0.5)/Br-HPyimPF6 

(1)/POP (1)
72

THF: tetrahydrofuran; DMF: dimethylformamide; DMSO: dimethyl 
sulfoxide.
aReaction conditions: 2-chloro-5-methylpyridine (1.0 mmol), 1H-pyrazole 
(1.1 mmol), base (2.0 mmol), solvent (3 mL), 110 °C, 12 h.
bIsolated yield.

Table 2. Aminations of 2-N-heteroaryl chlorides with 
pyrazoles catalyzed by 1.a
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11a, 90%; 11b, 87%
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12a, 94%; 12b, 91%

aReaction conditions: 2-N-heteroaryl chloride (1.0 mmol), pyrazole 
(1.1 mmol), 1 (0.5 mol%), KOtBu (2.0 mmol), dioxane (3 mL), 110 °C, 12 h.
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Experimental

Materials and equipment

Solvents were dried and freshly distilled prior to use. All 
other chemicals were commercially available, expect for 
1-(6-bromopyridin-2-yl)-3-benzylimidazolium hexafluoro-
phosphate (Br-HPyimPF6), which was prepared according 
to the published procedure.16,17 Elemental analyses were 
determined with a Carlo Erba 1160 Elemental Analyzer. 
Mass spectra were measured on a LC-MSD-Trap-XCT 
instrument. 1H, 31P, and 13C NMR spectra were recorded on 
a Bruker DPX-400 spectrometer (400, 162, and 100 MHz, 
respectively) with tetramethylsilane (TMS) as an internal 
standard. The absorption and PL spectra were recorded on 
a Hitachi U-3010 UV-Vis spectrophotometer and a Hitachi 
F-4500 fluorescence spectrophotometer.

Synthesis of [Cu(Br-Pyim)(POP)](PF6) 1

Under an N2 atmosphere, Br-HPyimPF6 (1 mmol), copper 
powder (1.2 mmol), and bis[2-(diphenylphosphino)phenyl]
ether (POP, 1 mmol) were stirred in CH3CN (10 mL) at 
70  C overnight. After cooling, the resulting mixture was fil-
tered, and then the filtrate was collected and evaporated 
under vacuum. The residue was dissolved in dichlorometh-
ane/ethanol, and the product was obtained as yellow crys-
tals by slow evaporation of the solvent. Yield: 63%. 1H 
NMR (400 MHz, CD3CN): δ 7.76–7.85 (m, 2H), 7.61–7.68 
(m, 1H), 7.34–7.49 (m, 16H), 7.09–7.15 (m, 6H), 7.00–7.04 
(m, 6H), 6.85–6.98 (m, 5H), 6.49–6.52 (s, 2H), 4.55 (s, 
2H). 13C NMR (100 MHz, CD3CN): δ 158.7, 151.6, 143.1, 
141.7, 136.7, 134.6, 133.0, 131.1, 131.2, 129.8, 129.7, 
129.6, 128.8, 128.0, 125.9, 125.8, 124.0, 118.3, 55.0. 31P 
NMR (162 MHz, CD3CN): δ −9.9 (s), −144.2 (q). MS-ESI+: 
m/z = 914.1 (M–PF6)

+. Anal. Calcd for C51H40BrCuF6N3OP3: 
C, 57.7; H, 3.8; N, 4.0. Found: C, 57.9; H, 3.5; N, 4.2%.

General procedure for the amination

In a Schlenk tube, a mixture of the catalyst 1 (0.5 mol%), 
2-N-heteroaryl chloride (1.0 mmol), pyrazole (1.1 mmol), 
and KOtBu (2.0 mmol) in dioxane (3 mL) was evacuated 
and charged with nitrogen. The reaction mixture was heated 
at 110 °C for 12 h. After being cooled and quenched with 
water, the mixture was extracted with CH2Cl2. The solvent 
was evaporated and the resulting residue was purified by 
flash chromatography on silica gel. The products 4a, b,32 
5a,33 5b,34 7a,35 11a,36 11b,37 and 12a38 are known com-
pounds and characterized by comparison of their data with 
those reported in the literature. Other products were charac-
terized by elemental analysis, MS, and 1H and 13C NMR.

5-Methyl-2-(1H-pyrazol-1-yl)pyridine (2): 1H NMR (400 MHz,  
CDCl3): δ 8.52 (d, J = 2.4 Hz, 1H), 8.22 (s, 1H), 7.87 (d, 
J = 8.2 Hz, 1H), 7.72 (s, 1H), 7.62 (d, J = 8.2 Hz, 1H), 6.45 
(d, J = 1.6 Hz, 1H), 2.35 (s, 3H). 13C NMR (100 MHz, 
CDCl3): δ 149.8, 148.0, 141.8, 139.4, 131.0, 126.9, 112.1, 
107.6, 18.0. MS-ESI+: m/z = 159.1. Anal. Calcd for C9H9N3: 
C, 67.9; H, 5.7; N, 26.4. Found: C, 68.2; H, 5.3; N, 26.9%.

5-Methyl-2-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine (3): 1H 
NMR (400 MHz, CDCl3): δ 8.26 (s, 1H), 7.70 (d, J = 6.8 Hz, 
1H), 7.60 (d, J = 6.8 Hz, 1H), 5.99 (s, 1H), 2.36 (s, 3H), 2.28 
(s, 3H), 2.24 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 149.8, 
146.1, 139.4, 131.0, 126.9, 112.1, 110.8, 107.6, 29.8, 15.7, 
13.8. MS-ESI+: m/z = 187.1. Anal. Calcd for C11H13N3: C, 
70.6; H, 7.0; N, 22.4. Found: C, 71.0; H, 6.7; N, 22.6%.

2-Methoxy-6-(1H-pyrazol-1-yl)pyridine (6a): 1H NMR 
(400 MHz, CDCl3): δ 8.53 (s, 1H), 7.72 (m, 2H), 7.53 (d, 
J = 7.6 Hz, 1H), 6.64 (d, J = 8.4 Hz, 1H), 6.46 (d, J = 1.2 Hz, 
1H), 3.99 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 163.3, 
149.6, 142.0, 141.1, 127.1, 107.8, 107.4, 103.9, 53.6. MS-
ESI+: m/z = 175.1. Anal. Calcd for C9H9N3O: C, 61.7; H, 
5.2; N, 24.0. Found: C, 61.9; H, 4.9; N, 24.3%.

2-Methoxy-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine 
(6b): 1H NMR (400 MHz, CDCl3): δ 7.66 (t, J = 8.0 Hz, 
1H), 7.42 (d, J = 7.7 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 5.99 
(s, 1H), 3.93 (s, 3H), 2.69 (s, 3H), 2.29 (s, 3H). 13C NMR 
(100 MHz, CDCl3): δ 162.8, 151.6, 149.9, 141.3, 140.7, 
109.1, 107.1, 107.0, 53.9, 15.0, 13.8. MS-ESI+: m/z = 203.1. 
Anal. Calcd for C11H13N3O: C, 65.0; H, 6.5; N, 20.7. Found: 
C, 65.3; H, 6.1; N, 20.9%.

4-Methoxy-2-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine 
(7b): 1H NMR (400 MHz, CDCl3): δ 8.19 (d, J = 6.0 Hz, 1H), 
7.36 (s, 1H), 6.68 (t, J = 5.6 Hz, 1H), 5.98 (s, 1H), 3.90 (s, 3H), 
2.61 (s, 3H), 2.29 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 
167.4, 155.4, 149.7, 141.8, 141.1, 109.0, 107.9, 100.3, 55.5, 
14.6, 13.7. MS-ESI+: m/z = 203.1. Anal. Calcd for C11H13N3O: 
C, 65.0; H, 6.5; N, 20.7. Found: C, 65.4; H, 6.2; N, 21.1%.

4-(Trifluoromethyl)-2-(1H-pyrazol-1-yl)pyridine (8a): 1H 
NMR (400 MHz, CDCl3): δ 8.64 (s, 1H), 8.20 (d, J = 8.3 Hz, 
1H), 7.99 (t, J = 7.7 Hz, 1H), 7.78 (s, 1H), 7.56 (d, J = 7.5 Hz, 
1H), 6.51 (d, J = 1.3 Hz, 1H). 13C NMR (100 MHz, CDCl3): 
δ 151.7, 148.6 (q, J = 36.2 Hz), 142.9, 140.2, 127.7 (q, 
J = 285.6 Hz), 117.7 (q, J = 2.2 Hz), 115.4 (q, J = 1.0 Hz), 
108.6. MS-ESI+: m/z = 213.1. Anal. Calcd for C9H6F3N3: C, 
50.7; H, 2.8; N, 19.7. Found: C, 50.9; H, 2.5; N, 19.9%.

4-(Trifluoromethyl)-2-(3,5-dimethyl-1H-pyrazol-1-yl)pyri-
dine (8b): 1H NMR (400 MHz, CDCl3): δ 8.56 (d, J = 4.4 Hz, 
1H), 8.20 (s, 1H), 7.33 (d, J = 7.8 Hz, 1H), 6.03 (s, 1H), 2.68 
(s, 3H), 2.32 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 155.6, 
150.9, 148.6, 142.3, 141.2 (q, J = 33.6 Hz), 129.0, 124.6 (q, 
J = 276.4 Hz), 115.8 (q, J = 1.2 Hz), 111.5 (q, J = 1.6 Hz), 15.0, 
13.7. MS-ESI+: m/z = 241.1. Anal. Calcd for C11H10F3N3: C, 
54.8; H, 4.2; N, 17.4. Found: C, 55.1; H, 4.0; N, 17.7%.

6-(Trifluoromethyl)-2-(1H-pyrazol-1-yl)pyridine (9a): 1H 
NMR (400 MHz, CDCl3): δ 8.60 (m, 2H), 8.28 (s, 1H), 7.80 
(s, 1H), 7.41 (d, J = 4.8 Hz, 1H), 6.52 (s, 1H). 13C NMR 
(100 MHz, CDCl3): δ 151.5, 146.8 (q, J = 32.2 Hz), 142.8, 
140.5, 127.6, 123.0 (q, J = 272.6 Hz), 117.6 (q, J = 2.6 Hz), 
115.3 (q, J = 1.4 Hz), 108.4. MS-ESI+: m/z = 213.1. Anal. 
Calcd for C9H6F3N3: C, 50.7; H, 2.8; N, 19.7. Found: C, 
50.9; H, 2.3; N, 20.0%.
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6-(Trifluoromethyl)-2-(3,5-dimethyl-1H-pyrazol-1-yl)pyri-
dine (9b): 1H NMR (400 MHz, CDCl3): δ 8.14 (d, 
J = 8.4 Hz, 1H), 7.93 (t, J = 8.2 Hz, 1H), 7.49 (d, J = 7.6 Hz, 
1H), 6.04 (s, 1H), 2.71 (s, 3H), 2.32 (s, 3H). 13C NMR 
(100 MHz, CDCl3): δ 167.4, 155.4, 153.0, 151.8, 150.5, 
149.8, 141.8 (q, J = 30.8 Hz), 122.4 (q, J = 268.2 Hz), 114.0 
(q, J = 1.8 Hz), 109.1 (q, J = 1.0 Hz), 100.3, 14.6, 13.7. MS-
ESI+: m/z = 241.1. Anal. Calcd for C11H10F3N3: C, 54.8; H, 
4.2; N, 17.4. Found: C, 55.0; H, 3.8; N, 17.8%.

5-Chloro-2-(1H-pyrazol-1-yl)pyridine (10a): 1H NMR 
(400 MHz, CDCl3): δ 8.53 (s, 1H), 8.37 (s, 1H), 7.96 (d, 
J = 8.8 Hz, 1H), 7.80–7.75 (m, 2H), 6.49 (d, J = 1.6 Hz, 1H). 
13C NMR (100 MHz, CDCl3): δ 149.9, 146.7, 142.5, 138.5, 
129.1, 127.2, 113.4, 108.3. MS-ESI+: m/z = 179.0. Anal. 
Calcd for C8H6ClN3: C, 53.5; H, 3.4; N, 23.4. Found: C, 
53.7; H, 3.0; N, 23.9%.

5-Chloro-2-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine 
(10b): 1H NMR (400 MHz, CDCl3): δ 8.36 (s, 1H), 7.86 
(d, J = 8.8 Hz, 1H), 7.75 (d, J = 7.2 Hz, 1H), 6.01 (s, 1H), 
2.63 (s, 3H), 2.30 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 
152.0, 151.2, 146.1, 141.8, 138.0, 128.4, 116.5, 109.5, 
14.7, 13.7. MS-ESI+: m/z = 207.1. Anal. Calcd for 
C10H10ClN3: C, 57.8; H, 4.9; N, 20.2. Found: C, 57.6; H, 
4.6; N, 20.6%.

2-(3,5-Dimethyl-1H-pyrazol-1-yl)pyrazine (12b): 1H NMR 
(400 MHz, CDCl3): δ 9.26 (s, 1H), 8.39 (d, J = 3.0 Hz, 2H), 
6.06 (s, 1H), 2.66 (s, 3H), 2.33 (s, 3H). 13C NMR (100 MHz, 
CDCl3): δ 151.2, 149.9, 142.5, 141.2, 140.7, 138.4, 110.0, 
14.6, 13.8. MS-ESI+: m/z = 174.1. Anal. Calcd for C9H10N4: 
C, 62.1; H, 5.8; N, 32.2. Found: C, 62.5; H, 5.5; N, 32.6%.

Crystal structure determination

Crystallographic data for complex 1 were collected on an 
Xcalibur Eos Gemini diffractometer with Mo-Kα radiation 

(λ = 0.71073 Å) at ambient temperature. The data were cor-
rected for Lorentz polarization factors as well as for absorp-
tion. The structure was solved by direct methods and 
refined by full-matrix least-squares methods on F2 with the 
SHELX-97 program.39 Crystal data, as well as details of 
data collection and refinements of 1, are summarized in 
Table 3. The Cambridge Crystallographic Data Centre 
(CCDC) deposition number is 1583423. These data can be 
obtained free of charge from the CCDC via www.ccdc.cam.
ac.uk/datarequest/cif.
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