Dalton Transactions

PAPER

Check for updates

Cite this: DOI: 10.1039/c8dt04408b

Lewis acid activated CO₂ reduction over a Ni modified Ni-Ge hydroxide driven by visibleinfrared light*

Zhenyu Xin,[†]a Lei Lu,[†]a Bing Wang,^b Xiaohui Wang,^a Kai Zhu,^{*c} Zhe Xu,^a Zhentao Yu,^a Shicheng Yan (* and Zhigang Zou^{a,b}

Improvement of light harvesting and reaction kinetics is of great importance for achieving efficient solardriven CO₂ reduction. Here, a Ni modified low-crystalline Ni-Ge containing hydroxide with Lewis acid sites was synthesized in highly reductive NaBH₄ solution and exhibited 9.3 μ mol q_{cat} ⁻¹ h⁻¹ CO and 3.5 μ mol g_{cat.}⁻¹ h⁻¹ CH₄ generation rates under visible light irradiation, and even achieved a 3.8 μ mol g_{cat} ⁻¹ h⁻¹ CO evolution under infrared light irradiation. The wide-spectrum light harvesting resulted from the light absorption from the localized surface plasmonic resonance of Ni nanoparticles. In addition, the Lewis acid can activate C=O bonds to decrease the kinetic barriers of CO₂ reduction. The design concept that rationally combines the advantages of expanding the spectral response and activating CO₂ may offer a new strategy for efficient solar energy utilization.

Received 6th November 2018 Accepted 4th December 2018 DOI: 10.1039/c8dt04408b

rsc.li/dalton

Introduction

Photocatalytic CO₂ conversion into renewable solar fuels is a promising technique for solving energy shortage and global warming problems.¹ Generally, oxidation of H₂O into oxygen and reduction of CO2 into carbon-based products (CO, CH4 etc.), respectively, driven by photogenerated holes and electrons, are involved in this process. Both the half-reactions require high reaction energy and multi-electron consumption, thus resulting in slow reaction kinetics.² In addition to the kinetic limitations, the light harvesting of a photocatalyst is a thermodynamic limit for the maximum solar-to-chemical energy conversion efficiency. These facts indicate that decreasing kinetic barriers and increasing light harvesting are highly necessary for achieving an efficient CO₂ conversion.³⁻⁶

To decrease the kinetic barriers of the CO₂ reduction reaction, one of the most effective methods is to activate the reactants. Particularly, it has been well demonstrated that the CO₂ molecule can be activated by Lewis acids such as coordinately unsaturated metal ions, generally resulting from the fact that the lone pair electrons of each oxygen atom in CO₂ can be donated to the surface of Lewis acid centers.7 Ti3+ as a Lewis acid on the anatase TiO2 nanotubes allowed the creation of bent CO₂ structures, thus benefiting the dissociation of CO₂.⁸ Similarly, in our previous work, Ge^{2+} on the α -Zn–Ge–O surface could effectively react with CO2 to form carbon intermediate species (CO*), and even split CO₂ into C and O₂.⁹ In addition, the oxygen vacancies (Ovs) can serve as an electron mediator to facilitate the activation of molecules.¹⁰⁻¹³ Accordingly, simultaneously activating CO2 by a solid base and H2O by Ovs affords a two-fold enhancement in CO₂ reduction.¹⁴ This evidence indicates that the activation of CO2 and H2O is indeed important for CO₂ conversion. However, there is a lack of methods to combine molecule activation with efficient light harvesting.

Herein, we aim to develop a strategy that simultaneously decreases the kinetic barriers of the reaction and expands the light harvesting. To confirm this purpose, a composite photocatalyst, a Ni modified low-crystalline Ni-Ge hydroxide with Lewis acid sites, was synthesized by an ion exchange reaction between $Ni(NO_3)_2$ and Na_2GeO_3 in sodium borohydride solution at 273 K. The coordinately unsaturated metal sites (Lewis acid sites) served as active sites for activating CO₂, and the localized surface plasmonic resonance (LSPR) effect of the Ni nanoparticles was used to broaden the optical absorption. A remarkable photocatalytic performance in CO₂ reduction was obtained under irradiation by visible and infrared light. We

View Article Online

^aJiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093, P. R. China. E-mail: yscfei@nju.edu.cn

^bJiangsu Province Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, P. R. China

^cSchool of Information Science and Engineering, Nanjing University Jinling College, No. 8 Xuefu Road, Nanjing, Jiangsu 210089, P. R. China. E-mail: 25898099@qq.com †Electronic supplementary information (ESI) available. See DOI: 10.1039/ c8dt04408b

[‡] These authors contributed equally to this work.

Paper

have confirmed that the surface –OH as a solid proton on the low-crystalline Ni–Ge containing hydroxide could be easily oxidized by photogenerated holes to form H^+ and O_2 and recovered by H_2O , while the reduced $Ge^{\delta+}$ ($0 < \delta < 4$) as a Lewis acid is responsible for the activation of CO_2 , significantly decreasing the reaction barriers. Our findings offer a simple route to introduce Lewis acids as active sites and the LSPR effect for effective utilization of visible-infrared light.

Experimental section

Synthesis of a Ni modified Ni–Ge containing hydroxide photocatalyst

To start with, Na₂GeO₃ powders were prepared by heating a stoichiometric mixture of GeO₂ and Na₂CO₃ at 1173 K for 12 h. After that, NaBH₄ powders (14 mM) were dissolved in the asobtained Na₂GeO₃ aqueous solution (2 mM, 10 mL). The resulting mixed solution was then injected into Ni(NO₃)₂ aqueous solution (3 mM, 20 mL) with ice-water soaking. After magnetic stirring for 20 h in an ice bath, the resulting powders were collected by centrifugation, washing several times with deionized water, and freeze-drying for 48 h (denoted as Ni/Ni₃Ge₂O₅(OH)₄). For comparison, the same procedure without the addition of NaBH₄ was applied to synthesize a single-phase Ni₃Ge₂O₅(OH)₄.

Photocatalyst characterization

The crystallographic structure was identified by powder X-ray diffraction (XRD, Rigaku Ultima III, Japan, Cu Ka radiation) operating at 40 kV and 40 mA. The surface morphology and composition were analyzed using scanning electron microscopy (SEM, FEI Nova Nano SEM 230, USA). High-resolution images and selected area electron diffraction (SAED) patterns were obtained by transmission electron microscopy (TEM, FEI Tecnai G2 F30 S-Twin, USA) operating at 200 kV. Ultraviolet-visible (UV-vis) diffuse reflectance spectra (DRS) were recorded with a UV-vis spectrophotometer (UV-LAMBDA 950, PerkinElmer, USA) and were transformed into the absorption spectra according to the Kubelka-Munk relationship. Quantitative Fourier transform infrared spectroscopy (FT-IR) was performed using a Nicolet Nexus 870 infrared spectrometer (Nicolet, USA) under ambient conditions. Room-temperature steady-state photoluminescence (PL) spectroscopy and PL decay traces were obtained by using a fluorescence spectrofluorometer (HORIBA Fluorolog-3, HORIBA). The chemical state and valence band spectra of photocatalysts were investigated by X-ray photoelectron spectroscopy (XPS) on a PHI5000 Versa Probe (ULVAC-PHI, Japan) with monochromatized Al Ka X-ray radiation (1486.6 eV). The binding energy was determined by reference to the C 1s line at 284.6 eV. The elemental content (*C_x*) was determined by a formula $C_x = \frac{I_x/S_x}{\sum I_i/S_i}$, where

I is the XPS peak area and *S* is the sensitivity factor. The specific surface area was measured by a nitrogen (N_2) adsorp-

tion–desorption technique using an automatic surface area analyzer (Micromeritics Tristar-3000, USA) after dehydration at 423 K for 3 h under N₂ flow. CO₂ adsorption was detected at 273 K based on the Brunauer–Emmett–Teller (BET) method at $P/P_0 = 0.03$. Mott–Schottky plots were determined using an electrochemical workstation (CHI Instruments CHI760E) at frequencies of 200, 500, and 1000 Hz in the dark.

Photocatalytic CO₂ reduction tests

The photocatalytic CO₂ reduction tests were conducted on a glass reactor by dispersing a photocatalyst (50 mg) onto a sample holder (area, 4.2 cm²). The volume of the reaction system was about 230 mL. The light source was a 300 W Xe lamp and the radiation spectrum is shown in Fig. S1.[†] Before the irradiation, the reaction system was evacuated and flushed with CO_2 several times, and then high-purity CO_2 (99.999%) was introduced into the reaction chamber to achieve an ambient pressure. Subsequently, 0.4 mL of deionized water was injected into the chamber as a reductant, thus achieving a saturated vapor pressure (molar gas ratio of CO₂/H₂O was about 29:1). Prior to irradiation, the as-prepared photocatalyst was maintained in the dark for 12 h to reach the adsorption-desorption equilibrium of CO_2 . The amount of O_2 from photocorrosion or CO₂ reduction was online determined using gas chromatography (GC-8A, MS-5A column, thermal conductivity detector, Ar carrier, Shimadzu, Japan). During the reaction, 1 mL gas was extracted by using a sampling needle from the chamber at given intervals for subsequent CO and CH4 concentration analysis by gas chromatography (GC-2014, Shimadzu Corp., Japan).

Results and discussion

X-ray powder diffraction (XRD) analysis (Fig. 1a) showed that a mixture of Ni (JCPDS no. 04-0850) and Ni₃Ge₂O₅(OH)₄ (JCPDS no. 11-0097) was obtained by a reaction of Ni(NO₃)₂ and Na₂GeO₃ in NaBH₄ solution at 273 K (denoted as Ni/Ni₃Ge₂O₅(OH)₄). Single-phase Ni₃Ge₂O₅(OH)₄ crystals were obtained *via* a similar synthetic procedure without adding

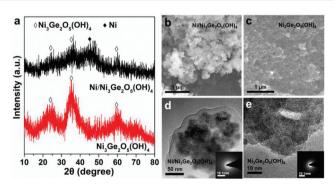


Fig. 1 (a) XRD patterns of Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄. (b) The SEM image and (d) TEM image of Ni/Ni₃Ge₂O₅(OH)₄. The inset showed the SAED patterns of Ni/Ni₃Ge₂O₅(OH)₄. (c) The SEM image and (e) TEM image of Ni₃Ge₂O₅(OH)₄. The inset shows the SAED patterns of Ni₃Ge₂O₅(OH)₄.

NaBH₄ (Fig. 1a). No XRD peaks of Ni could be detected in a sample prepared by directly mixing the NaBH₄ solution and Ni₃Ge₂O₅(OH)₄ (Fig. S2[†]). However, the Ni nanoparticles could be obtained by $NaBH_4$ reduction of $Ni(NO_3)_2$. This evidence suggested that the formation of Ni in Ni/Ni₃Ge₂O₅(OH)₄ had the same crystallization process as the reduction of $Ni(NO_3)_2$ by NaBH₄. Energy dispersive spectroscopy (EDS) revealed that the atomic ratio of Ni:Ge in Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄ was about 1.76 and 1.59, respectively (Fig. S3⁺). The higher Ni content in Ni/Ni₃Ge₂O₅(OH)₄ indicated the formation of Ni nanoparticles. Compared with Ni₃Ge₂O₅(OH)₄, the broadening of XRD peaks indicated a lower crystallinity of Ni/Ni₃Ge₂O₅(OH)₄. To further confirm that the low-crystallinity mixture was indeed composed of Ni and Ni₃Ge₂O₅(OH)₄, the as-prepared sample was heated at 673 K for 1 h under N₂ flow. high-resolution transmission electron microscopy The (HR-TEM) image of Ni/Ni₃Ge₂O₅(OH)₄ after annealing treatment showed two lattice spacings of 0.203 and 0.368 nm, which were assigned to the (111) facet of Ni and the (109) facet of Ni₃Ge₂O₅(OH)₄, respectively (Fig. S4[†]). In addition, HR-TEM observation showed that about 10 nm Ni nanoparticles clung to the Ni₃Ge₂O₅(OH)₄ particles (Fig. S4[†]), corresponding well with the size of Ni particles from NaBH₄ reduction of Ni(NO₃)₂ at 273 K (Fig. S5[†]).

The scanning electron microscopy (SEM) image showed that the Ni/Ni₃Ge₂O₅(OH)₄ sample presented an aggregation of irregular hundred-nanometre spherical particles (Fig. 1b). The morphology of the Ni₃Ge₂O₅(OH)₄ sample was similar to Ni/Ni₃Ge₂O₅(OH)₄ and exhibited a denser aggregation of irregular several-ten nanometer spherical particles (Fig. 1c). For Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄, their low crystallinities were well confirmed by transmission electron microscopy (TEM) observation (Fig. 1d and e). Selected area electron diffraction (SAED) patterns revealed an obvious diffraction ring, suggesting that Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄ were polycrystalline in nature.

Fig. 2a shows the UV-vis absorption spectra. As can be seen, the Ni₃Ge₂O₅(OH)₄ sample presented a strong UV absorption for a wavelength shorter than 320 nm. Other three absorption peaks at 350-500, 600-800 and after 900 nm were mainly attributed to the intermediate-band transition of Ni^{2+,15} For Ni/Ni₃Ge₂O₅(OH)₄, an extraordinary high absorption in the detected wavelength range was observed and overlapped with the absorption edge of Ni₃Ge₂O₅(OH)₄. As we know, Ni has a wide-spectrum range of localized surface plasmonic resonance (LSPR) that enhances the absorption ability and broadens the light response range.16-18 Indeed, the as-prepared Ni nanoparticles by direct reduction of Ni(NO₃)₂ in NaBH₄ aqueous solution showed a strong light absorption in the wavelength range of 300-1500 nm (Fig. S6a[†]). And mixing the Ni and Ni₃Ge₂O₅(OH)₄ nanoparticles showed a similar UV-vis absorption spectrum to Ni/Ni₃Ge₂O₅(OH)₄ (Fig. S6b[†]), indicating that the expanding light absorption mainly originated from the LSPR effect of Ni nanoparticles. Extra light absorption could enhance the charge carrier production, thus improving the CO_2 reduction.

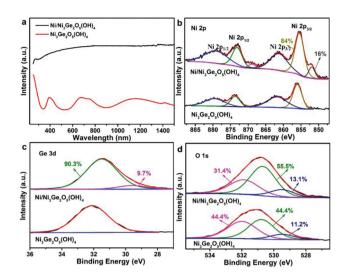


Fig. 2 (a) UV-vis absorption spectra of Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄. (b) Ni 2p, (c) Ge 3d and (d) O 1s XPS spectra of Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄.

The chemical environment of the elements was subsequently analysed by X-ray photoelectron spectroscopy (XPS). Fig. 2b shows that the Ni 2p_{3/2} XPS peaks of Ni/Ni₃Ge₂O₅(OH)₄ at 855.4 and 851.9 eV were respectively assigned to Ni²⁺ and Ni⁰. According to the XPS peak area, the percentage composition of Ni²⁺ and Ni⁰ was respectively calculated to be 84% and 16% in Ni/Ni₃Ge₂O₅(OH)₄. This suggested that the mole ratio of Ni/Ge in Ni/Ni₃Ge₂O₅(OH)₄ was about 1.78, which was in good agreement with the EDS result (Fig. S3[†]). The Ge⁴⁺ species was observed at 31.5 eV for Ni/Ni₃Ge₂O₅(OH)₄ and at 32.1 eV for Ni₃Ge₂O₅(OH)₄, respectively (Fig. 2c). About 0.6 eV lower binding energy was probably attributed to the lower crystallinity of Ni/Ni₃Ge₂O₅(OH)₄ compared to Ni₃Ge₂O₅(OH)₄, as demonstrated in XRD results. Indeed, a higher binding energy of Ge⁴⁺ (33.0 eV) was observed due to the high crystallinity of $Ni_3Ge_2O_5(OH)_4$ (Fig. S7[†]). In addition, the binding energy of reduced Ge^{δ^+} in Ni/Ni₃Ge₂O₅(OH)₄ was observed at 29.6 eV, which was located between 31.5 eV of Ge4+ and 29.0 eV of Ge^{0.19} Quantitative analysis revealed that about 9.7% of the lattice Ge^{4+} was reduced to $Ge^{\delta+}$ during the formation of Ni/ Ni₃Ge₂O₅(OH)₄.

During the crystallization of $Ni_3Ge_2O_5(OH)_4$, the Ge–O tetrahedral sheet and the Ni–OH octahedral sheet condensed to assemble the tetrahedral–octahedral structural layers, in which the hydroxyl in the octahedral sheet was partly substituted for the reactive oxygen atom in the tetrahedral sheet accompanied by the formation of Ge–O–Ni chemical bonds (Fig. S8†).^{20,21} Therefore, the O 1s XPS could be deconvoluted into three peaks (Fig. 2d). Due to the bigger electronegativity of Ge (2.01) than Ni (1.91), the peaks at 529.5 and 530.8 eV were attributed to Ge–O–Ni and Ge–O bonds, respectively.²² The O 1s XPS peak at 532.0 eV was assigned to the Ni–OH bonds.²³ Obviously, compared with $Ni_3Ge_2O_5(OH)_4$, the mole ratio of the Ge–O–Ni and Ge–O bonds on Ni/Ni₃Ge₂O₅(OH)₄ increased,

Paper

while the mole ratio of Ni–OH bonds decreased. This evidence indicated that the Ni–OH bonds were slightly unstable and the dehydroxylation may occur during the formation of Ni/ Ni₃Ge₂O₅(OH)₄. The decreased amount of Ni–OH bonds would induce the increase in the relative mole ratio of Ge–O–Ni and Ge–O bonds, although the formation of Ge^{δ +} decreased the actual mole amount of the coordinated Ge–O bonds. The quantitative FT-IR spectrum analysis (Fig. S9†) revealed that the decreased vibrations of Ge–O (823 cm⁻¹)²⁴ and Ni–OH bonds (3440 cm⁻¹)²⁵ were both observed for Ni/Ni₃Ge₂O₅(OH)₄ compared with Ni₃Ge₂O₅(OH)₄. This fact further suggested that the reduced Ge^{δ +} species formed and the partial dehydroxylation occurred during the formation of Ni/Ni₃Ge₂O₅(OH)₄, probably due to the strong reduction ability of NaBH₄ solution.

The photocatalytic CO₂ reduction tests were carried out over the as-prepared Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄ photocatalysts using H₂O as a reducing agent. Fig. 3 shows the typical time-course curves of CO and CH4 yields. After full arc irradiation by a 300 W Xe lamp for 6 h, the CO and CH₄ yields (Fig. 3a and b) were 186.4 and 30.4 μ mol g_{cat.}⁻¹ over Ni/ Ni₃Ge₂O₅(OH)₄, respectively, about 3.1 and 6.3 times as much as those over $Ni_3Ge_2O_5(OH)_4$ (59.5 µmol $g_{cat.}^{-1}$ for CO and 4.8 μ mol g_{cat.}⁻¹ for CH₄). Under a dark reaction or without a catalyst, no products could be detected. CO and CH4 could only be detected under irradiation, and their yields increased while prolonging the irradiation time, proving that the CO₂ reduction was a light-driven catalytic reaction. In addition, only O₂ could be detected during vacuum irradiation for 6 h without CO_2 as a reactant, excluding the effect of possible organic residues on production detection (Table S1[†]).

The valence band edge of $Ni_3Ge_2O_5(OH)_4$ was determined by valence-band XPS to be 0.60 eV below the Fermi level by the linear extrapolation method (Fig. S10†). The Mott–Schottky plot (Fig. S11b†) suggested that $Ni_3Ge_2O_5(OH)_4$ was a p-type conducting semiconductor and the flat band potential was

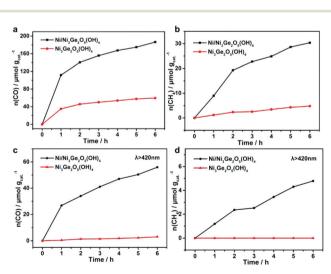


Fig. 3 CO and CH₄ yields for Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄ under full arc (a and b) and visible light irradiation (c and d) for 6 h.

located at 1.70 V *vs.* normal hydrogen electrode (NHE, pH = 7). Therefore, the valence band edge (E_{VB}) of Ni₃Ge₂O₅(OH)₄ was 2.30 V *vs.* NHE, which was powerful enough to oxidize H₂O (0.82 V *vs.* NHE). Combined with the E_g value (3.88 eV) calculated by the UV-vis absorption edge, the conduction band edge (E_{CB}) for Ni₃Ge₂O₅(OH)₄ remained at about -1.58 V *vs.* NHE, was able to reduce CO₂ to form CO (-0.53 V *vs.* NHE) and CH₄ (-0.24 V *vs.* NHE). The E_{VB} and E_{CB} potentials of Ni₃Ge₂O₅(OH)₄ were thermodynamically enough to drive the CO₂ reduction to occur.

For Ni/Ni₃Ge₂O₅(OH)₄, the valence band edge was located at 0.22 eV below the Fermi level, whereas the valence band maximum energy blue-shifted toward the vacuum level at approximately -1.65 eV (Fig. S10[†]). During the formation of $Ni/Ni_3Ge_2O_5(OH)_4$, the strong reduction ability of $NaBH_4$ may induce surface disorder and hence produce the mid-gap states. The disorder-induced mid-gap states could upshift the valence band maximum energy of Ni₃Ge₂O₅(OH)₄, similar to the black TiO₂.^{26,27} The Mott-Schottky plot (Fig. S11a[†]) suggested that the flat band potential of the Ni/Ni₃Ge₂O₅(OH)₄ composite was located at 1.55 V vs. NHE. Therefore, the $E_{\rm VB}$ of Ni/ $Ni_3Ge_2O_5(OH)_4$ was 1.77 V vs. NHE. The E_{CB} of Ni/ Ni₃Ge₂O₅(OH)₄ was expected to downshift due to the formation of $\operatorname{Ge}^{\delta^+}$, which would be demonstrated in the following photocatalytic CO2 reduction tests under infrared light irradiation.

Brunauer–Emmett–Teller (BET) tests showed that the specific surface area for Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄ was 16.15 and 33.26 m² g_{cat.}⁻¹, respectively (Fig. S12a[†]). The larger specific surface area resulted from the smaller particle size of Ni₃Ge₂O₅(OH)₄ than Ni/Ni₃Ge₂O₅(OH)₄. The CO₂ adsorbed amount of Ni/Ni₃Ge₂O₅(OH)₄ (3.65 mg g_{cat.}⁻¹) was obviously lower than that of Ni₃Ge₂O₅(OH)₄ (8.41 mg g_{cat.}⁻¹) (Fig. S12b[†]). The amount of CO₂ adsorbed was normalized by the specific surface area to be 0.25 mg m⁻² for Ni₃Ge₂O₅(OH)₄. This evidence revealed that the CO₂ adsorbed capacity was not the main factor that contributed to the higher CO₂ reduction efficiency over Ni/Ni₃Ge₂O₅(OH)₄.

To check the effect of light absorption on CO₂ reduction, the CO₂ reduction tests were carried out under visible light $(\lambda > 420 \text{ nm})$. As given in Fig. 3c and d, under visible light irradiation, both Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄ samples showed continuously increased CO and CH4 yields while increasing the irradiation time. After irradiation for 6 h, the CO and CH₄ yields were 55.9 and 20.8 μ mol g_{cat.}⁻¹ for Ni/ $Ni_3Ge_2O_5(OH)_4$, about 17 and 25 times higher than those for $\rm Ni_3Ge_2O_5(OH)_4$ (3.1 $\mu mol~g_{cat.}^{-1}$ CO and 0.8 $\mu mol~g_{cat.}^{-1}$ CH_4). The low CO and CH₄ yields over Ni₃Ge₂O₅(OH)₄ were probably attributed to the weak visible light absorption via interband transition of Ni^{2+} , as demonstrated by the UV-vis result. Similarly, an inter-band transition in the defective WO_{3-x} is able to drive CO₂ reduction under infrared light irradiation.²⁸ In addition, steady-state photoluminescence spectra showed that Ni₃Ge₂O₅(OH)₄ exhibited 640 and 770 nm emission peaks under the excitation of 470 nm (Fig. S13[†]), which could be ascribed to the recombination from the intermediate band to the valence band.²⁹ For Ni/Ni₃Ge₂O₅(OH)₄, the broadening emission peak from 620 to 850 nm centered at 750 nm would correspond to the recombination of abundant defects (Fig. S13†).³⁰ The decreased PL intensity for Ni/Ni₃Ge₂O₅(OH)₄ *versus* Ni₃Ge₂O₅(OH)₄ could be ascribed to the effective suppression of radiative charge recombination. Additionally, the average fluorescence lifetimes of Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄ were 4.75 ns and 3.40 ns respectively (Fig. S13†), suggesting the improvement of the efficiency of charge transport.

In our case, the infrared light response ($\lambda > 800$ nm) of $Ni_3Ge_2O_5(OH)_4$ is not able to drive the CO_2 reduction reaction. However, Ni/Ni₃Ge₂O₅(OH)₄ still produced 22.5 µmol g_{cat.}⁻¹ CO and 0.9 $\mu mol~{g_{cat.}}^{-1}~CH_4$ after infrared irradiation for 6 h (Fig. S14[†]). This fact indicated that the carbon-based product formation was probably driven by the hot electrons from the plasma effect of Ni particles. The possible channel of electron transfer for photocatalysis under infrared irradiation was that the LSPR excited electrons in plasmonic metal transferred to the conduction band or mid-gap states of Ni/Ni₃Ge₂O₅(OH)₄ and subsequently took part in the CO₂ reduction reaction.²⁶ With the modification of Ni, the resulting hot electrons increased the charge concentration, thus improving the CO₂ reduction reaction rates. However, no products could be detected over the physically mixed Ni + Ni₃Ge₂O₅(OH)₄ sample under infrared light irradiation. This evidence meant that Ni/ Ni₃Ge₂O₅(OH)₄ was able to drive the half-reaction of water oxidation under infrared light irradiation thermodynamically. As a result, the total CO2 reduction efficiency over Ni/ Ni₃Ge₂O₅(OH)₄ under visible light irradiation was even higher than that over Ni₂Ge₂O₅(OH)₄ under full arc irradiation. The energy of infrared light ($\lambda > 800$ nm) was lower than 1.55 eV, while the location of the Fermi level of Ni metal was 0.65 V vs. NHE. Thus, the E_{CB} for Ni/Ni₃Ge₂O₅(OH)₄ was expected to be downshifted below -0.9 V (NHE), possibly resulting from the formation of reduced Ge^{δ^+} species. Similar Ge^{2^+} inducing E_{CB} downshift was observed in amorphous α-Zn-Ge-O.⁹ Indeed, the formation of CO and CH4 under infrared light irradiation would indicate that the LSPR effect of Ni on Ni/Ni₃Ge₂O₅(OH)₄ was energetically enough for driving the CO₂ reduction reaction to occur, as described in Fig. 4.

XPS results had confirmed that the coordinately unsaturated Ge^{δ^+} , a typical Lewis acid, formed on the Ni/ Ni₃Ge₂O₅(OH)₄. Evidently, after 6 h CO₂ reduction reaction, the content of Ge^{δ^+} further increased and the amount of Ge–O bonds decreased (Fig. 5a and b). The increased amount of Ge^{δ^+} would originate from photogenerated electrons to reduce Ge⁴⁺, as demonstrated in our previous work.⁹ Indeed, the vacuum irradiation of Ni/Ni₃Ge₂O₅(OH)₄ for 6 h induced about 16.1% increase in the content of Ge^{δ^+} species (Fig. 5c and d). The binding energy of Ge⁴⁺ decreased from 31.5 to 31.2 eV, proving that the coordination environment of surface Ge⁴⁺ changed and the element Ge tended to gain electrons under irradiation. In addition, no obvious signal of Ni⁺ as unsaturated metal sites was detected possibly due to the instability of

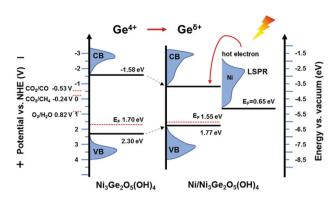


Fig. 4 Schematic energy band diagram for solar $\rm CO_2$ overall splitting into CO and $\rm CH_4.$

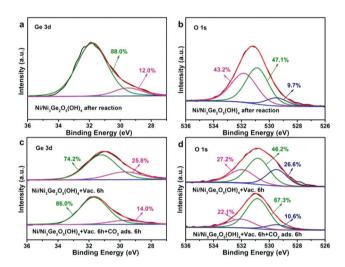


Fig. 5 (a) Ge 3d and (b) O 1s XPS spectra of Ni/Ni₃Ge₂O₅(OH)₄ after reaction. (c) Ge 3d and (d) O 1s XPS spectra of Ni/Ni₃Ge₂O₅(OH)₄ after vacuum irradiation for 6 h (denoted as Ni/Ni₃Ge₂O₅(OH)₄ + Vac.6 h) and of Ni/Ni₃Ge₂O₅(OH)₄ + Vac.6 h after CO₂ adsorption for 6 h (denoted as Ni/Ni₃Ge₂O₅(OH)₄ + Vac.6 h + CO₂ adsorption for 6 h (denoted as Ni/Ni₃Ge₂O₅(OH)₄ + Vac.6 h + CO₂ ads.6 h).

Ni⁺ (Fig. S15†).³¹ Therefore, the activation of the CO₂ molecule during photocatalysis was mainly related to the Ge element. However, no obvious change in Ge 3d XPS spectra and Ni 2p XPS spectra for Ni₃Ge₂O₅(OH)₄ before and after vacuum irradiation was observed (Fig. S16 and S17†), further confirming that the formation of coordinately unsaturated metal sites was related to the low crystallinity of Ni/Ni₃Ge₂O₅(OH)₄.

Generally, the coordinately unsaturated Ge^{δ^+} could serve as active sites to interact with O of CO₂. To check the activation role of Ge^{δ^+} , CO₂ adsorption under dark conditions was carried out after vacuum irradiation of Ni/Ni₃Ge₂O₅(OH)₄. Obviously, the quantitative FT-IR analysis indicated that the intensity of two bands at 1390 and 1560 cm⁻¹ (Fig. 6a), respectively, corresponding to the symmetric and asymmetric stretching vibrations of O=C-O⁻,^{32,33} both increased after the CO₂ adsorption under dark conditions. Meanwhile, the increased intensity of the Ge–O band at 823 cm⁻¹ could be ascribed to

Fig. 6 (a) FT-IR spectra of Ni/Ni₃Ge₂O₅(OH)₄ + Vac.6 h and Ni/Ni₃Ge₂O₅(OH)₄ + Vac.6 h + CO₂ ads.6 h. (b) C 1s XPS spectra of Ni/Ni₃Ge₂O₅(OH)₄ + Vac.6 h + CO₂ ads.6 h. (b) C 1s XPS spectra of Ni/Ni₃Ge₂O₅(OH)₄ + Vac.6 h + CO₂ ads.6 h. The inset in (a) showed the enlarged FT-IR spectra for Ni/Ni₃Ge₂O₅(OH)₄.

the interactions of Ge^{δ^+} and CO_2 . After CO_2 adsorption, the O 1s XPS spectra of Ni/Ni₃Ge₂O₅(OH)₄ with vacuum irradiation showed that the content of Ge–O at 530.8 eV increased (Fig. 5d). Simultaneously, the Ge 3d XPS spectra demonstrated that the binding energy of Ge⁴⁺ increased from 31.2 to 31.7 eV for Ni/Ni₃Ge₂O₅(OH)₄ with pre-irradiation under vacuum before and after CO₂ adsorption, suggesting that the Ge tended to lose electrons due to a strong interaction between CO₂ and Ge^{δ^+} (Fig. 5c). Obviously, electron transfer between unsaturated Ge^{δ^+} and CO₂ occurred.

The peak at 287.8 eV of the C 1s XPS spectrum for CO₂ adsorbed Ni/Ni₃Ge₂O₅(OH)₄ with pre-irradiation under vacuum was attributed to the C=O bonds (Fig. 6b),³⁴ indicative of the formation of C=O species. During the CO_2 reduction reaction, the C 1s XPS spectrum could be deconvoluted into three peaks: 287.8 eV for C=O bonds, 286.4 eV for C-O bonds,³⁵ and 284.6 eV for adventitious standard reference carbon (Fig. 6b). The content of C=O bonds at 287.8 eV decreased and that of C-O bonds at 286.4 eV appeared. This fact meant that CO2 was activated to the C=O species via a strong interaction between O of CO_2 and Ge^{δ^+} on Ni/ Ni₃Ge₂O₅(OH)₄. Subsequently, C=O species were converted into C-O species via the assistance of photoelectrons, which may serve as an important intermediate for the formation of CO and CH₄. For Ni₃Ge₂O₅(OH)₄ without Ge^{δ +}, the content of Ge-O observed from the Ge XPS spectra (Fig. S16[†]) and the FT-IR spectra (Fig. S18[†]) remained unchanged after CO₂ adsorption for 6 h, further confirming the activation effect of $\mathrm{Ge}^{\delta^+}.$

The O₂ generated from photocorrosion under vacuum for 1 h was 1472 µmol $g_{cat.}^{-1}$ for Ni/Ni₃Ge₂O₅(OH)₄ and 37 µmol $g_{cat.}^{-1}$ for Ni₃Ge₂O₅(OH)₄ (Table S1†), respectively. This fact indicated that the low-crystalline Ni/Ni₃Ge₂O₅(OH)₄ was prone to be photocorroded due to its weak constraint of the crystal lattice. Under a CO₂ atmosphere, after visible light irradiation for 1 h the O₂ yield was 897 µmol $g_{cat.}^{-1}$ for Ni/Ni₃Ge₂O₅(OH)₄ and 14 µmol $g_{cat.}^{-1}$ for Ni₃Ge₂O₅(OH)₄, respectively. Obviously, the lower O₂ generation rate resulted from the interactions between CO₂ and Lewis acid sites. The quantitative FT-IR analysis (Fig. 6a) and related O 1s XPS spectra (Fig. 5d) of Ni/ Ni₃Ge₂O₅(OH)₄ after vacuum irradiation showed that the NiOH species decreased obviously, indicating that Ni–OH could be consumed by the photogenerated holes. In other words, the lattice Ni–OH could serve as a proton source. After the H₂O adsorption (Fig. S19†), the FT-IR peak intensity of Ni–OH recovered, suggesting that the –OH can be regenerated by H₂O. The O 1s XPS spectrum (Fig. 5b) and the FT-IR spectrum (Fig. S20a†) of Ni/Ni₃Ge₂O₅(OH)₄ after reaction showed that the content of Ni–OH found no obvious drop-off after the photocatalytic reaction, further confirming the regeneration of Ni–OH during the reaction. For Ni₃Ge₂O₅(OH)₄, the Ni–OH species slightly involved with the photocatalytic CO₂ reduction, as confirmed by the consistent analysis of O 1s XPS spectra (Fig. S16b and S16d†) and FT-IR spectra (Fig. S20b†).

Considering that Ni-OH on Ni/Ni₃Ge₂O₅(OH)₄ could be consumed by photogenerated holes, the CO₂ photoreduction tests were performed under full arc irradiation under highpurity CO₂ in the absence of H₂O. Both CO and CH₄ were detected under irradiation, confirming that Ni-OH could serve as the proton source for CO_2 reduction. In the absence of H_2O_1 , the CO and CH₄ yields over Ni/Ni₃Ge₂O₅(OH)₄ were 343.2 and 51.7 μ mol g_{cat.}⁻¹ after irradiation for 6 h (Fig. 7), which were 1.8 times and 1.7 times as much as those over Ni/ Ni₃Ge₂O₅(OH)₄ with the addition of H₂O. The CO₂ reduction efficiency abnormally increased without the addition of H₂O as the reactant. Under the coexistence of CO₂ and H₂O, competitive molecule adsorption would occur during the reduction reaction of CO_2 by H_2O . The H_2O molecule, which is a strongly polar molecule, would exhibit a stronger interaction with Ge^{δ^+} compared to the quadrupole CO₂ molecule.^{14,36} Therefore, Ge^{δ^+} tended to activate H₂O, resulting in a higher proton releasing, while in turn the activation of CO₂ was limited, thus causing low CO and CH₄ yields over Ni/Ni₃Ge₂O₅(OH)₄ with the addition of H₂O. Similarly, Ni/Ni₃Ge₂O₅(OH)₄ + Vac.6 h showed lower CO and CH4 yields than those of Ni/ $Ni_3Ge_2O_5(OH)_4$ (Fig. 7) due to the limitation of proton releasing. CO2 reduction without the addition of H2O showing

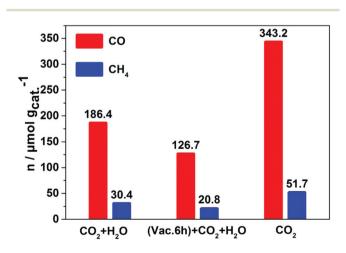


Fig. 7 CO (red line) and CH₄ (blue line) yields for Ni/Ni₃Ge₂O₅(OH)₄, Ni/Ni₃Ge₂O₅(OH)₄ + Vac.6 h and Ni/Ni₃Ge₂O₅(OH)₄ without H₂O as reactants under full arc light irradiation for 6 h.

View Article Online

higher CO and CH_4 yields over Ni/Ni₃GeO₅(OH)₄ was ascribed to the more matching reaction rates.

As a conclusion, proton releasing and CO_2 activation were equally vital for CO_2 photocatalytic reduction. Ge^{δ^+} as a Lewis acid activating chemically inert CO_2 and Ni as a plasmonic promoter enhancing the light absorption improved CO_2 reduction performance over Ni/Ni₃Ge₂O₅(OH)₄. Surface Ni–OH as a proton source offered a new path to release protons for CO_2 reduction. The above experimental results allow us to give deeper insights into the lattice hydroxyl assisted photocatalytic CO_2 reduction and the effect of Ni NPs on photocatalytic performance.

The possible reaction mechanism for enhanced reduction efficiency of CO_2 over Ni/Ni₃Ge₂O₅(OH)₄ to CO and CH₄ under irradiation is shown as follows:

$$Ni/Ni_3Ge_2O_5(OH)_4 + light \rightarrow h^+ + e^-$$
 (1)

$$4h^{+} + 4Ni - OH^{-} \rightarrow 4H^{+} + O_{2} + 2Ni - O^{2-}$$

or
$$4h^+ + 2H_2O \rightarrow 4H^+ + O_2$$

$$\operatorname{Ge}^{4+} + (4 - \delta) \ \mathrm{e}^{-} \to \operatorname{Ge}^{\delta+}$$
 (3)

$$(4 - \delta) \operatorname{CO}_2 + \operatorname{Ge}^{\delta +} \to (4 - \delta) \operatorname{CO}_2^- + \operatorname{Ge}^{4 +}$$

$$(4)$$

$$\begin{array}{l} \text{CO}_2^- + e^- + 2\text{H}^+ \to \text{CO} + \text{H}_2\text{O} \\ \text{or} \quad \text{CO}_2^- + 7e^- + 8\text{H}^+ \to \text{CH}_4 + 2\text{H}_2\text{O} \end{array} \tag{5}$$

$$2H_2O + 2Ni - O^{2-} \rightarrow 4Ni - OH^-$$
(6)

From the above mechanism, photogenerated electrons to reduce Ge^{4+} to form $Ge^{\delta+}$ as a Lewis acid and photogenerated holes to oxidize Ni–OH can occur under light irradiation. The abundant $Ge^{\delta+}$ as a Lewis acid is energetically favorable for the adsorption of CO_2 into C=O species. Ni–OH is used as another proton source and is regenerated by H₂O. The CO_2 activation and –OH utilization as a proton source can effectively accelerate this light-driven reaction and achieve excellent photocatalytic performance. In addition, the LSPR of Ni over the photocatalyst enables the use of visible light and infrared light to improve the solar-to-chemical conversion. Therefore, the design concept for Ni/Ni₃Ge₂O₅(OH)₄, which is easy to introduce $Ge^{\delta+}$ and possesses adequate –OH and LSPR properties, provides a novel pathway to enhance photocatalytic activity.

Conclusions

In summary, the low crystalline hydroxide plasmonic photocatalyst with a weak lattice constraint for oxygen atoms is rationally prepared as a highly efficient catalyst for visible light or infrared light CO₂ reduction. The LSPR of metallic Ni tremendously expands the range of spectral response. $Ge^{\delta+}$ activates C=O bonds to decrease the energy barriers of CO₂ reduction. The surface lattice hydroxyl is not only joint with the formation of $Ge^{\delta+}$ but also simultaneously acting as a proton source for CO₂ reduction to divert the path of proton releasing from kinetically sluggish water oxidation. Consequently, the low crystalline $Ni/Ni_3Ge_2O_5(OH)_4$ exhibits remarkable visible-light and infrared-light photocatalytic performance especially compared with $Ni_3Ge_2O_5(OH)_4$. The design concept of simultaneously activating CO_2 , promoting proton releasing and expanding the range of spectral response can be a new strategy for efficient solar energy utilization. This work might encourage the study on composite material design to establish the coupling of different modifications of materials.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported primarily by the National Basic Research Program of China (2013CB632404), the National Natural Science Foundation of China (51872135, 51572121, 21603098, and 21633004), the Natural Science Foundation of Jiangsu Province (BK20151265, BK20151383, and BK20150580), the program B for outstanding PhD candidate of Nanjing University (201702B084), the Postdoctoral Science Foundation of China (2017M611784) and the Fundamental Research Funds for the Central Universities (021314380133 and 021314380084).

References

- 1 K. Li, X. An, K. Park, M. Khraisheh and J. Tang, *Catal. Today*, 2014, **224**, 3–12.
- 2 W. Tu, Y. Zhou and Z. Zou, *Adv. Mater.*, 2014, **26**, 4607–4626.
- 3 S. Wang, S. Yan, X. Ma and J. Gong, *Energy Environ. Sci.*, 2011, 4, 3805–3819.
- 4 O. Bikondoa, C. Pang, R. Ithnin, C. Muryn, H. Onishi and G. Thornton, *Nat. Mater.*, 2006, 5, 189–192.
- 5 I. Thomann, B. Pinaud, Z. Chen, B. Clemens, T. Jaramillo and M. Brongersma, *Nano Lett.*, 2011, 11, 3440–3446.
- 6 T. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. Ragsdale and F. Armstrong, J. Am. Chem. Soc., 2010, 132, 2132–2133.
- 7 V. Indrakanti, D. Kubicki and H. Schobert, *Energy Environ. Sci.*, 2009, **2**, 745–758.
- 8 G. Ramesha, J. Brennecke and P. Kamat, ACS Catal., 2014, 4, 3249–3254.
- 9 B. Wang, X. Wang, L. Lu, C. Zhou, Z. Xin, J. Wang, X. Ke, G. Sheng, S. Yan and Z. Zou, ACS Catal., 2017, 8, 516–525.
- H. Kristoffersen, J. Hansen, U. Martinez, Y. Wei, J. Matthiesen, R. Streber, R. Bechstein, E. Lægsgaard, F. Besenbacher, B. Hammer and S. Wendt, *Phys. Rev. Lett.*, 2013, **110**, 146101.
- 11 J. Ding, Z. Dai, F. Qin, H. Zhao, S. Zhao and R. Chen, *Appl. Catal.*, *B*, 2017, **205**, 281–291.

- 12 H. Li, J. Shang, Z. Ai and L. Zhang, J. Am. Chem. Soc., 2015, 137, 6393–6399.
- 13 H. Li, J. Shang, H. Zhu, Z. Yang, Z. Ai and L. Zhang, ACS Catal., 2016, 6, 8276–8285.
- 14 L. Lu, B. Wang, S. Wang, Z. Shi, S. Yan and Z. Zou, *Adv. Funct. Mater.*, 2017, **27**, 1702447.
- 15 N. Kuleshov, V. Shcherbitsky, V. Mikhailov, S. Kück, J. Koetke, K. Petermann and G. Huber, *J. Lumin.*, 1997, 71, 265.
- 16 X. Meng, T. Wang, L. Liu, S. Ouyang, P. Li, H. Hu, T. Kako, H. Iwai, A. Tanaka and J. Ye, *Angew. Chem., Int. Ed.*, 2014, 126, 11662.
- 17 Z. Xiong, X. Chen, X. Wang, L. Peng, D. Yan, H. Lei, Y. Fu, J. Wu, Z. Li, X. An and W. Wu, *Appl. Surf. Sci.*, 2013, 268, 524.
- 18 H. Liu, T. Dao, L. Liu, X. Meng, T. Nagao and J. Ye, Appl. Catal., B, 2017, 209, 183.
- 19 R. Shalvoy, G. Fisher and P. Stiles, *Phys. Rev. B: Solid State*, 1977, **15**, 1680.
- 20 A. Krasilin and E. Khrapova, *Russ. J. Appl. Chem.*, 2017, **90**, 22.
- 21 Y. Yang, Q. Liang, J. Li, Y. Zhuang, Y. He, B. Bai and X. Wang, *Nano Res.*, 2011, 4, 882.
- 22 K. Li and D. Xue, J. Phys. Chem. A, 2006, 110, 11332.
- 23 I. Casella, M. Guascito and M. Sannazzaro, J. Electroanal. Chem., 1999, 462, 202.

- 24 S. Rivillon, Y. Chabal, F. Amy and A. Kahn, *Appl. Phys. Lett.*, 2005, **87**, 253101.
- 25 S. Yang, X. Wu, C. Chen, H. Dong, W. Hu and X. Wang, *Chem. Commun.*, 2012, **48**, 2773.
- 26 X. Chen, L. Liu, Y. Peter and S. Mao, *Science*, 2011, 331, 746–750.
- 27 L. Shi, Z. Li, T. Dao, T. Nagao and Y. Yang, J. Mater. Chem. A, 2018, 6, 12978–12984.
- 28 L. Liang, X. Li, Y. Sun, Y. Tan, X. Jiao, H. Ju, Z. Qi, J. Zhu and Y. Xie, *Joule*, 2018, 2, 1004.
- 29 C. Yang, M. Qin, Y. Wang, D. Wan, F. Huang and J. Lin, *Sci. Rep.*, 2013, **3**, 1286.
- 30 L. Ye, K. Deng, F. Xu, L. Tian, T. Peng and L. Zan, *Phys. Chem. Chem. Phys.*, 2012, **14**, 82–85.
- 31 L. Van Robbroeck, E. Goovaerts and D. Schoemaker, *Phys. Status Solidi B*, 1985, **132**, 179–187.
- 32 V. Nadtochenko, A. Rincon, S. Stanca and J. Kiwi, J. Photochem. Photobiol., A, 2005, 169, 131.
- 33 K. Ogura, M. Kobayashi, M. Nakayama and Y. Miho, J. Electroanal. Chem., 1998, 449, 101.
- 34 Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang, Y. Liu, G. Zou,
 Y. Dai, M. Whangbo and B. Huang, *Adv. Mater.*, 2018, 30, 1704342.
- 35 J. Hou, H. Cheng, O. Takeda and H. Zhu, Angew. Chem., Int. Ed., 2015, 127, 8600.
- 36 F. Brandani and D. Ruthven, *Ind. Eng. Chem. Res.*, 2004, **43**, 8339.