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Regiocontrolled halogenative cleavage of 2-methyltetrahydrofuran with various B-bromoboranes, by a predomi-
nantly SN2-type mechanism favouring the formation of primary bromide, is described. A comparative study of
the relative reactivities of BH2Br·SMe2, BHBr2·SMe2, BBr3, (MeO)2BBr, and MeOBBr2 revealed that the newly
synthesized (MeO)2BBr is a highly promising regioselective reagent, especially at lower temperatures.
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Regioselective cleavage of unsymmetrical ethers is a highly
promising transformation in organic synthesis. 1-Bromo-
4-pentanol appears to be a very useful synthetic interme-
diate in natural product syntheses.[1] It can be achieved
directly by the regiocontrolled brominative cleavage of
2-methyltetrahydrofuran by taking advantage of the different
steric environments of the two ethereal C–O bonds. Several
reagents including MgBr2/Ac2O,[2] RCOX/PdII/R3SnX,[3]

RCOX/PtII,[4] MeCOCl/NaI,[5] ROCl/ZnCl2,[6] PhCOCl/Hg/
Al,[7] and ROCl/BiCl3,[8] are available for the selective
O-acylative ring opening of 2-methyltetrahydrofuran and
subsequent trapping of carbo-cations with halides, leading
to the formation of predominantly secondary alkyl halides.
Primary halides have also been obtained by the regioselective
cleavage of 2-methyltetrahydrofuran using (n-C4H9)4N+Br−
or I−/BF3 etherate,[9] AlCl3/NaI,[10] Me3SiCl/NaI,[11] and
tert-BuCOCl/NaI.[5] Boron halides and B-Br-9-BBN are
well recognized as ether-cleaving reagents.[12] The BBr3-
assisted halogenative cleavage of 2-methyltetrahydrofuran
yielded bromohydrins in a non-regioselective fashion. Guin-
don et al.[13] achieved the regiocontrolled ring opening of
2-methyltetrahydrofuran in a 3.5 : 1 regioisomeric ratio of
1-bromopentan-4-ol and 4-bromopentan-1-ol with dimethyl-
boron bromide (Me2BBr) at 0◦C. Our longstanding interests
in developing new boron-based reagents for organic syn-
thesis persuaded us to synthesize the structurally modified
B-bromoboranes (MeO)2BBr 4 and MeOBBr2 5. Consider-
ing the synthetic importance of 1-bromo-4-pentanol and its
ester derivatives, we undertook a comparative study of the
regioselective brominative cleavage of 1-methyltetrahydro-
furan with various B-bromoboranes. The preliminary results
of this study with newly synthesized reagents (MeO)2BBr
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and MeOBBr2, along with the commercially available
BH2Br·SMe2, BHBr2·SMe2, and BBr3, are described in this
Communication.

Dimethoxyboron bromide,(MeO)2BBr 4,[14]and methoxy-
boron dibromide, MeOBBr2 5, were prepared by treating
trimethylborate, (MeO)3B, with boron tribromide, BBr3 3,
in appropriate ratios in either CH2Cl2 or n-pentane at −78
or 0◦C (Scheme 1). The 11B NMR spectrum showed a sharp
peak at δB 22.6 (>95% chemical purity) for (MeO)2BBr in
CH2Cl2 solvent, with the complete disappearance of BBr3

(δB 41.0) and (MeO)3B (δB 18.0). A sharp 11B NMR signal
was seen at δB 26.0 for MeOBBr2.

First, the regioselective cleavage of 2-Me-THF 6 was stud-
ied with the commercially available reagent BH2Br·SMe2 1.
The cleavage of 6 with 1 provided a mixture of regioiso-
meric bromohydrins (yield 80%), 1-bromopentan-4-ol 7, and
4-bromopentan-1-ol 8 (3:1) in CH2Cl2 at room temperature
in 24 h (Scheme 1, Table 1). No significant cleavage (<5%)
occurred at −35◦C for 24 h. The replacement of a hydrogen
atom with an electronegative bromine atom (BHBr2·SMe2

2) resulted in an enhanced reactivity of the reagent, but
slightly lower regioselectivity (7:3). Boron tribromide, which
is highly reactive, afforded a mixture of 7 and 8 (3:2)
under identical reaction conditions (as for BH2Br·SMe2 and
BHBr2·SMe2). The 11B NMR study revealed that the cleav-
age of 2-Me-THF 6 with BBr3 was complete in 0.5 h in
CH2Cl2 at room temperature.

Next, we proceeded to test the effectiveness of these
two newly synthesized B-bromoboranes, (MeO)2BBr 4 and
MeOBBr2 5, in the regioselective cleavage of cyclic ether 6.
During our study on regio- and chemoselective ring open-
ing of epoxides,[14,15] (MeO)2BBr displayed relatively
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Scheme 1. Regiocontrolled brominative cleavage of 2-methyltetrahydrofuran with (MeO)2BBr.

Table 1. Regiocontrolled cleavage of 2-methyltetrahydrofuran with various bromoboranes

Br

OH

7

OH

Br

8

Entry Reagent Reaction conditionsA Yield [%]B

1 BH2Br·SMe2 0◦C → RT, 24 h 76 24 80
2 BH2Br·SMe2 −78◦C → RT, 18 h 76 24 55
3 BH2Br·SMe2 −35◦C, 24 h – – <5
4 BHBr2·SMe2 0◦C → RT, 24 h 69 31 88
5 BHBr2·SMe2 −78◦C → RT, 16 h 72 28 88
6 BHBr2·SMe2 0◦C, 21 h 71 29 80
7 BBr3 RT, 1.75 h 55 45 95
8 BBr3 −78◦C → RT, 18 h 62 38 93
9 (MeO)2BBr RT, 0.25 h 71 29 85
10 (MeO)2BBr −78◦C → RT, 16 h 80 20 91
11 (MeO)2BBr −25◦C, 21 h 76 24 83
12 (MeO)2BBr −78◦C, 5 h 88 12 20
13 (MeO)2BBr −43◦C, 20 h 85 15 90
14 MeOBBr2 −78◦C → RT, 16 h 67 33 90

A 1.20 equiv. of reagent used.
B Regioselectivity and chemical yields were determined by 1H NMR spectroscopy using biphenyl as an
internal standard.

higher reactivity by cleaving 7-oxanorbornane into trans-
4-bromocyclohexan-1-ol in 1 h at −78◦C, but Me2BBr took
4 h at 0◦C. (BH2Br·SMe2 1 failed even after 4 h at −78◦C;
it could only cleave at room temperature in 16–24 h.) As
expected, this new reagent 4 very efficiently cleaved cyclic
ether 6 in less than 15 min at room temperature. The observed
lower regioselectivity (2.4:1) can be attributed to such higher
reactivity of this reagent. An optimal chemical yield (90%)
with regioselectivity (5.65:1) was achieved when the reac-
tion was conducted at −43◦C for 20 h. The cleavage was
slow at −78◦C (only 18–20% conversion after 5 h). Finally,
the cleavage of 2-Me-THF 6 was studied with the new
reagent 5 under identical conditions (at −78◦C, 12 h, then

slow warming, 12 h), which provided a regioisomeric mix-
ture of 7 and 8 (2:1) in comparison with (MeO)2BBr 4
(3.7:1).

In conclusion, B-bromoboranes react with unsymmetri-
cal cyclic ether 2-methyltetrahydrofuran in a regiocontrolled
fashion by a predominantly SN2-type reaction pathway,
affording primary bromide. The temperature of the reac-
tion has a strong effect on the regioselectivity, especially
with dimethoxyboron bromide 4. Dimethoxyboron bromide
appears to be the reagent of choice. The simple and conve-
nient method of preparation of these reagents, shorter reaction
times, high reactivities, and simple workup procedures should
make these reagents highly practical in synthetic organic
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chemistry. Further studies into the use of these new and other
structurally modified reagents will be reported.

Experimental

Manipulations and reactions with air-sensitive compounds were carried
out under nitrogen. Glassware was oven-dried, assembled while hot, and
cooled in a stream of dry nitrogen gas. 1H, 13C, and 11B NMR spec-
tra were recorded on a Varian–Gemini 300 MHz multinuclear NMR
spectrometer. The 11B NMR chemical shifts are reported as δ rela-
tive to BF3·OEt2. The starting substrate, 2-methyltetrahydrofuran 6,
BH2Br·SMe2 1, BHBr2·SMe2 2, BBr3 3, and B(OCH3)3 were purchased
from Aldrich. Dichloromethane (CH2Cl2) was distilled over P2O5 and
stored under nitrogen.

Preparation of Methoxyboron Dibromide 5

The new reagent, methoxyboron dibromide 5, was prepared by mix-
ing trimethyl borate (1.0 equiv.) with boron tribromide (2.0 equiv.) in
either dichloromethane or n-pentane at −78 or 0◦C under nitrogen. The
11B NMR spectrum showed a sharp peak at δB 26.0 (>95% chemical
purity) for MeOBBr2 in CH2Cl2 with the complete disappearance of
BBr3 (δB 41.0) and (MeO)3B (δB 18.0).

Regioselective Cleavage of 2-Methyltetrahydrofuran 6
with (MeO)2BBr 4

To a cooled stirred solution of (MeO)2BBr 4 (6.0 mmol) in anhydrous
CH2Cl2 (20 mL) at −43◦C under nitrogen atmosphere, was slowly
added neat 2-methyltetrahydrofuran 6 by syringe. The resulting reac-
tion mixture was stirred at −43◦C for 20 h, and then treated with water
(10 mL). The aqueous layer was extracted with CH2Cl2 (3 × 20 mL),
organic extracts were combined, dried (Na2SO4), filtered, and evapo-
rated under vacuum. The regioselectivity (7:8 5.65:1) was determined
on the basis of 1H NMR spectroscopic data by integrating and com-
paring the protons attached to either –OH or –Br present in both
regioisomers. The chemical yield (90%) was determined by 1H NMR
spectroscopy using biphenyl as an internal standard. 7 and 8: δH (CDCl3)
4.15 (m, CHOH), 3.85 (m, CHBr), 3.65 (t, CH2OH), 3.45 (t, CH2Br),
2.10–1.80 (m, CH2CH2CH2), 1.73 (d, CH(OH)CH3), 1.70–1.50 (m,
CH2CH2CH2), 1.21 (d, CH(Br)CH3).
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