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ABSTRACT: The structural resolution of a bound ligand-receptor complex is a key asset to efficiently 

drive lead optimization in drug design. However, structural resolution of many drug targets still remains 

a challenging endeavor. In the absence of structural knowledge, scientists resort on structure-activity 

relationship (SAR) to promote compound development. In this study we incorporated ligand-based 

knowledge to formulate a docking scoring function which evaluates binding poses for their agreement 

with known SAR. We showcased this protocol by identifying the binding mode of the 

pyrazoloquinolinone (PQ) CGS-8216 at the benzodiazepine binding site of the GABAA receptor. 

Further evaluation of the final pose by molecular dynamics and free energy simulations revealed a close 

proximity between PQ’s pending phenyl ring and γ2D56 congruent with the low potency of carboxy-

phenyl analogues. Ultimately, we introduced the γ2D56A mutation and in fact observed a 10-fold 

potency increase in the carboxy-phenyl analogue, providing experimental evidence in favour of our 

binding hypothesis. 
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INTRODUCTION 

The structural resolution of ligand-receptor complexes dramatically accelerates the elaborate 

multiparameter optimization of a lead structure in drug discovery. The gained insight into binding mode 

provides a rational basis to drive potency and selectivity improvements1. Moreover, medicinal chemists 

can use the binding orientation of the ligand to optimize ADME parameters, such as solubility and 

metabolic stability, without disrupting essential ligand-receptor interactions1,2. In addition, this 

information can assist to identify molecular determinants leading, for instance, to agonist and antagonist 

behavior of ligands 3. 

However, structural elucidation of a bound complex itself is a time-consuming endeavor and failed for 

many important drug targets4. In the absence of protein structure information scientists can use different 

methods to investigate lead compounds. Two prominent approaches are (1) homology modeling and 

structure-based design5, as well as (2) structure-activity relationships6 (SAR) derived from biological 

evaluation of compound libraries. 

Among other factors, the success of homology modeling and subsequent structure-based design 

depends on the sequence similarity between target and template proteins and the resolution of the 

template structure7. With decreasing structural certainty of the target protein, the chance to correctly 

identify the correct binding mode declines8. In general, docking algorithms have been shown to be able 

to explore the conformational space sufficiently well to generate the correct binding orientation, 

however scoring functions often fail to correctly rank them9 . In this context the proper algorithmic 

representation of complex processes like entropy, solvation and protein flexibility remains a big 

challenge in pose scoring10,11. However, more elaborate methods like molecular dynamics (MD) 

simulations and free energy simulations (FES) describe these processes more accurately and should 

perform better in such specific cases12,13. Nevertheless, over the last years the Drug Design Data 

Resource (D3R) challenges14 for protein-ligand pose and affinity predictions have shown impressively 

that there is no one method 'to rule them all'. In the latest D3R Grand Challenge the two best performing 

methods for pose prediction were molecular docking and MD simulations (according to the D3R Grand 
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Challenge 2)15. Thus, a combined methodology implementing the best of both worlds might be a 

promising approach.  

In the absence of a reliable structural model, scientists focused on the identification of structure-

activity relationships derived from biological profiling of scaffold analogues to drive lead optimization6. 

In this context the GABAA receptors represent prominent examples of clinically important targets for 

drugs like benzodiazepines (BZ), barbiturates, neuroactive steroids, anesthetics and anticonvulsants16. In 

mammals, GABAA receptors are a heterogeneous group of pentameric receptors assembled from a pool 

of nineteen possible subunits. In the central nervous system the majority of receptors is composed of 

two α, two β and one γ subunits (Figure 1A)17. BZs exert their anxiolytic, muscle-relaxant, sedative-

hypnotic and anticonvulsant effects by binding to an allosteric site located at the extracellular α+/γ− 

subunit interface (Figure 1B, C)18. Generally, a high number of different chemotypes was developed 

that targets various high affinity BZ-binding sites in the search for selective agents to be used, e.g. for 

anxiolysis19. Exhaustive SAR-analyses were performed for several compound classes which led to an 

high amount of pharmacological activity data20–23.  

Among the promising chemotypes, the PQs displayed high potential as non-sedative anxiolytics and 

as benzodiazepine antagonists respectively23. From this development two valuable tool compounds, 

CGS-8216 (Figure 1D) and its chloro-derivative CGS-9896, emerged for in vitro and ex vivo work24. 

Pharmacokinetic issues and inconclusive in vivo profiling of partial agonism and antagonism across 

different GABAA receptor subtypes precluded further developments of these compounds into clinics25. 

Recent work indicated that modulatory effects of many PQs in most αβγ receptors are predominantly 

exerted via an alternative allosteric binding site at the “homologues” α+/β− interface26  while effects at 

the high affinity BZ-sites in most subtypes are “antagonistic”, i.e. flumazenil-like27,28. Thus, revisiting 

the PQs as valuable class of benzodiazepine antagonists due to their sub-nanomolar affinity towards the 

α+/γ− interfaces appears to be promising.  
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Figure 1: (A) Side view and (B) top view of an α1β3γ2 GABAA receptor homology model based on the 

human β3 homopentameric crystal structure 4COF without the intracellular domain. The agonist 

binding sites (GABA) at the β3+/α1− interfaces and the benzodiazepine binding site (BZ site) at the 

α1+/γ2− interface are indicated by arrows. α subunits are depicted in yellow, β subunits in red and the γ 

subunit in blue. (C) α1+/γ2− extracellular interface shaped by loops A-C of the α+ side and loops D-G 

of the γ2− side. (D) 2D representation of CGS-8216. 

CGS-8216 (2-phenyl-2H-pyrazolo[4,3-c]quinolin-3(5H)-one) has been widely used as an essential 

tool compound for the benzodiazepine binding site. In the past 30 years, scientists have synthesized and 

tested PQ analogues as BZ-site ligands leading to a highly differentiated SAR of this scaffold23,29. 

Interestingly, the PQs show both, characteristics of ‘continuous’ as well as ‘discontinuous’ SAR30, 

depending on the respective scaffold substitution sites. Continuous SAR is characterized by a flat 

activity hypersuperface - here even large structural changes on a molecular scaffold only slightly 

influence the biological response. Discontinuous SAR, in contrast, is described by a hilly activity 

hypersuperface, small structural changes can lead to drastic changes in potency.  
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 6

The described scenario, low-reliability in protein structural information on the one hand and SAR 

knowledge on the other hand is common for many scaffolds binding to membrane-bound drug targets. 

While the combination of ligand-based approaches, such as, 3D-shape-matching, pharmacophore 

mapping and 2D-QSAR with structure-based approaches are widely applied in virtual screening31–33, 

they are less common to assist binding mode prediction. Varela et al34 utilized 3D-similarity and 

machine learning to augment binding mode prediction. In another study35, the authors coupled 

electronic reactivity calculation, multiple-instance learning and molecular docking to predict CYP-

mediated sites of metabolism. However, most ligand-, structure-based combinations that rely on SAR 

data from a congeneric series, analyze only a small number of poses, mostly a single, best-score pose36–

38. Hence, a potential pose with high SAR congruence but a slightly higher energetic scoring value 

might be missed by such a procedure. 

Given the current challenges of molecular docking into homology models10 and the simultaneous 

availability of a highly differentiated SAR for PQ23, we developed in this study a protocol which 

integrates the ligand based knowledge in the process of docking pose evaluation. For this purpose, we 

formulated a SAR scoring function which enabled the systematic assessment of a large CGS-8216 

docking pose library for their SAR congruency. The favorite binding hypothesis, characterized by a high 

SARScore, was reconfirmed by sophisticated MD analysis composed of relative free energy calculations39 

and stability analysis. Ultimately, we provide experimental evidence for our binding hypothesis by 

synthesis and testing of PQ analogues in radioligand displacement assays. In line with our 

computationally derived binding hypothesis, the PQ-analogue carrying a carboxy-phenyl moiety 

showed a 10-fold potency increase in the α1β3γ2-D56A mutant compared to the α1β3γ2 receptor wild 

type. 
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 7

 

METHODS 

Homology model of the α1β3γ2α1β3γ2α1β3γ2α1β3γ2 GABAA receptor. In order to determine the binding mode of PQs at 

the extracellular α1+/γ2− interface (benzodiazepine binding site) a homology model based on 4COF40 

was created consisting of two α1, two β3 and one γ2 subunits using Modeller41 as described 

previously42. The transmembrane domains of the heteropentamer were truncated to obtain a model 

consisting of the extracellular domains only in order to accelerate MD simulations.  

Molecular Docking with GOLD. Molecular docking was performed using GOLD v1.6.2
43. The 

putative binding site was defined by a cut-off distance of 11.5 Å around the residue S204 of the C-loop 

of the α1 subunit. Further, we selected ten amino acids with flexible side chains (γ2Y58, γ2F77, 

γ2T142, α1H101, α1Y159, α1V202, α1S204, α1S205, α1T206 and α1Y209) and set a soft potential to 

increase to backbone flexibility of the C-loop (α1S204, α1S205, α1T206 and α1G207). The ligand 

CGS-8216 was minimized using the MMFF94 force field44 within MOE2016.0845 prior to docking. To 

ensure convergence of the sampling, 100 genetic algorithm runs were performed and the GoldScore46 

scoring function was used to retain the 100 best scored poses. Finally, each ligand-receptor complex of 

the final pose pool was minimized using the LigX energy minimize tool within MOE to relieve potential 

clashes caused by the soft potential protocol in the docking procedure.  

Post-docking derivatization and SAR scoring. The post-docking derivatization was conducted by a 

customized SVL script using the MOE-SVL built-in function sm_Build. This function enables the 

addition and deletion of atoms on a molecular scaffold. On the basis of the 3D coordinates of each CGS-

8216 docking pose (p1 - p100), an array of eight (2-9) analogue placements with sm_Build was created. 

This step expanded the dataset from initial 100 CGS-8216 docking poses to 800 additional post-docking 

derived analogue placements.  

Steric clash energies (clashbb and clashsc) were calculated for the derivatized placements pi>>cpd 2-4 

and pi>>cpd 6-9 using the MOE built in SVL function pro_CheckVDWContacts. The function returns 
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 8

clash scores defined as repulsion interaction energy (kcal/mol) for the respective analogue placement. 

The H-bond interaction strength (hbond) between the N5 nitrogen in CGS-8216 docking poses and the 

binding site were calculated using the SVL built-in function prolig_Calculate.  

Interatomic distance (d) calculation. The distances between atoms of the carboxylate moiety of 

pi>>cpd 5 placements and the carboxylate group atoms of the closest aspartate or glutamate residue 

were calculated using the SVL built-in function aDist. From these distances the shortest interatomic 

distance between the carboxylate group of the ligand and the receptor was kept. 

The SAR scoring function is composed of four subfunctions: InAct.clash, N5.eval, pcarboxy.dist and 

Act.clash. Each of these take the post-docking engineered analogue geometries, pi>>cpd 2-9 as its input 

(Figure S1) to evaluate the SAR agreement of a docking pose. To assess the SAR of steric hindrance 

(R6, R6-7), the InAct.clash evaluates clash energies of pi>>cpd 2-3 placements (Figure S1B). As the 

protocol does not include a minimization step after the post-docking derivatization, clashes with rigid 

structures such as backbone and Cβ atoms (clashbb) and sidechain atoms (clashsc) were weighted 

distinctly. The N5.eval function evaluates both, potential steric hindrance or a disrupted hydrogen bond 

interaction with quinoline nitrogen (Figure S1C). The PQ-SAR suggests a strong electrostatic repulsion 

between the 4’-carboxylate moiety and the pocket environment. The pcarboxy.eval function evaluates if 

the 4’-carboxylate moiety of pi>>cpd 5 is placed in the vicinity (< 4 Å) of an aspartate or glutamate 

carboxylate moiety (Figure S1D) by simple distance calculation. The steric tolerance at R7-8, R8, R8-9 

and R4’ (Figure 2) was assessed via the Act.clash subfunction, utilizing the clash energies of pi>>cpd 6-

9 placements (Figure S1E).  

Multidimensional Scaling (MDS) of the pose space. The SVL-exchange script MOL_RMSD.SVL47  

was used to compute the RMSD matrix of the 100 CGS-8216 docking poses. The matrix served as input 

for MDS to visualize the geometric similarity between poses. The MDS was conducted within the R 

environment48 utilizing the mds function of the smacof R package49. The first two dimensions were used 

to visualize the pose space. 
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 9

Molecular dynamics simulations and postprocessing. The CHARMM-GUI web interface50 was used 

to solvate the homology model of the intracellular GABA-ligand complex and to set up the simulations. 

All MD simulations were carried out with CHARMM51, utilizing the CHARMM/openMM coupling52,53. 

Parameters and molecular topologies for the ligands were generated based on the CGenFF force field54  

obtained from ParamChem (https://cgenff.paramchem.org/). The protein-ligand complexes were 

solvated in cubic boxes of TIP3P water55. Ions were added to compensate the net charge of the protein-

ligand complex and to set the ion concentration to 0.15 M KCI. Electrostatic interactions were 

computed using the particle-mesh-Ewald method56. SHAKE was used to keep all bonds involving 

hydrogen atoms rigid.  

After initial equilibration for 500 ps with a 1 fs time step, each system was simulated for 50 ns using 

Langevin dynamics at 303.15 K; the pressure was kept around 1 atm by a Monte Carlo barostat. The 

time step of the production calculation was 2 fs; coordinates were saved every 10 ps, resulting in 5,000 

coordinate sets per simulation. For every system ten MD simulations started from the same initial 

coordinates but with different, randomly seeded velocities were performed. The stability of the 

simulations was monitored by computing root mean square deviations for the protein and ligand, using 

the MDAnalysis package57, as well as visual inspection of the trajectories. The RMSDs were calculated 

as follows: all coordinates saved during the MD were fitted against the starting structure based on the 

coordinates of the Cα-atoms of the protein. Using the starting structure as reference, we computed for 

these reoriented coordinates the RMSD of the Cα-atoms for the protein and the RMSD of the heavy 

atoms of the ligand. For further calculation the average of the RMSD values of the ligand for the 

different coordinate sets of a simulation is used (subsequently called L-RMSD in accordance with Liu et 

al.
58). The protein and ligand RMSD plots of the simulations (RMSD vs simulation time) are available 

in the SI section. Two tests were performed using the L-RMSD: first, the average of the L-RMSD 

values of the 10 independent simulations was calculated, i.e. one L-RMSD value was generated that 

represents the 10 simulations and indicates the stability of the ligand for the binding ode. This value is 

indicated in the manuscript by using angular brackets and typed as <L-RMSD>. Furthermore, the 
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 10

number of MD simulations that have a L-RMSD value below a threshold value (in this manuscript we 

used 2.0 Å in accordance with Liu et al.58) were also evaluated. This test is a further indicator for the 

stability of the ligand in the binding pocket - if the L-RMSD value of the majority of the simulations is 

below the threshold a single simulation with a high L-RMSD value can be set in context. 

Additionally, the types of protein-ligand interactions (ionic interactions, hydrophobic interactions, 

aromatic and hydrogen bond interactions) were analysed for the MD simulations of the different poses 

using an interaction matrix.  This matrix was generated by obtaining a structure-based pharmacophore 

model for every saved coordinate set of the MD simulation for a specific binding site and subsequently 

analysing the frequency of the individual features. The pharmacophore feature definitions are in 

accordance with the definitions used by LigandScout59. 

The maximum possible frequency value corresponds to the length of the simulation, i.e., for 50 ns the 

maximum number a specific feature can appear is 5,000. Since the ten MD simulations for each pose 

were accumulated in a single interaction map, the maximum number an interaction could be formed was 

50,000. The columns of the interaction matrix indicate all amino acid residues that are involved in an 

interaction at some point during the MD simulation, the rows designate different parts of the ligand and 

the color in the matrix indicate how often a specific amino acid was involved in a specific 

pharmacophore feature. In this way it is possible to analyze the number of interaction partners and also 

their frequency.  

The naming for the columns was in accordance with the following conventions: the letter before the 

colon indicate the type of interaction. H for hydrophobic, HBA and HBD for hydrogen bond 

acceptor/donor, PI for positive ionizable interaction and AR for aromatic interaction. This was followed 

by the one letter residue code and by the residue number of the amino acid. The naming for the rows are 

in accordance to the labels using in Figure 1. Interactions that appear in fewer than 300 coordinate sets 

(out of 50,000) were discarded. The interaction map was generated using the python package 

matplotlib60 and the chemoinformatic toolkit CDPkit (https://github.com/aglanger/cdpkit). 
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Free Energy Calculations. Relative free energy differences61,62 between 5 and 10 were computed 

employing the usual thermodynamic cycle63 shown in Figure S2; i.e., we computed the alchemical free 

energy difference between 5 and 10 in the binding pocket and in solution, respectively. The calculations 

were carried out for each of the two binding modes considered. To compute the free energy differences 

of interest, the use of intermediate states in addition to the physical end states of 5 and 10 was required 

(Figure S3). The technical details and simulation protocols as well as individual results (Table S1) are 

summarized in the SI section. 

Benchmark molecular docking protocols. In total, six different docking protocols were utilized to 

dock CGS-8216 into the α1β3γ2 GABAA homology model. From each protocol the best scored pose 

was kept for comparison studies. The best performing GoldScore46 and ChemScore46 poses were filtered 

from the initial GOLD docking run. In MOE2016.08 the structure preparation protocol was utilized to 

initialize the system. Then the InducedFit protocol within MOEdock was used to dock CGS-8216 using 

the default parameters. The best scored poses according to the London dG64 and the GBVI/WSA dG65 

scoring function were kept. Within the Schrödinger Suite 2015.03 the Protein Preparation Wizard was 

used to prepare the protein for Schrödinger’s Induced Fit docking protocol66 utilizing default parameters 

including the Glide SP scoring function.  

Molecular docking was also performed using Autodock Vina67 .For the molecular docking run 

standard parameters were used, protein flexibility was regarded using flexible side chains (γ2Y58, 

γ2F77, γ2T142, α1H101, α1Y159, α1V202, α1S204, α1S205, α1T206 and α1Y209) and the 

exhaustiveness level was set to 16. 

GABAA receptor subunits and mutated subunits. cDNA’s of rat GABAA receptor subunits α1, β3 

and γ2S were cloned as described68. Mutant γ2S-D56A was constructed using the Q5 Site-Directed 

Mutagenesis Kit (New England Biolabs) following manufacturer’s instruction. We used the wild-type 

rat γ2-pCI vector as template and the primers ATTCATACAGcTATGTACGTGAAC and 
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TAATGTTGGTTTCACTCC resulting in a substitution of amino acid D56 (GAT) to A (GCT). The 

mutated subunit was confirmed by sequencing. 

Culturing of human embryonic kidney 293 cells. Human embryonic kidney (HEK) 293 cells 

(American Type Culture Collection ATCC® CRL-1574TM) were maintained in Dulbecco’s modified 

Eagle medium (DMEM, high glucose, GlutaMAXTM supplement, Gibco 61965-059, ThermoFisher, 

Waltham, Massachusetts, USA) supplemented with 10 % fetal calf serum (Sigma-Aldrich F7524, St. 

Louis, Missouria, USA), 100 U/ml Penicillin-Streptomycin (Gibco 15140-122, ThermoFisher, 

Waltham, Massachusetts, USA) and MEM (Non-Essential Amino Acids Gibco 11140-035, 

ThermoFisher, Waltham, Massachusetts, USA) on 10cm Cell culture dishes (Cell+, Sarstedt, 

Nürnbrecht, Germany) at 37 °C and 5 % CO2. HEK293 cells were transfected with cDNAs encoding rat 

GABAA-receptor subunits subcloned into pCI expression vectors. The ratio of plasmids used for 

transfection with the calcium phosphate precipitation method 69 were 3 µg α1 : 3 µg β3 and 15 µg γ2 

per 10 cm dish. Medium was changed 4-6 hours after transfection. Cells were harvested 72 days after 

transfection by scraping into phosphate buffered saline. After centrifugation (10 min, 3 000 g, 4 °C) 

cells were resuspended in TC50 (50 mM Tris-Citrate pH=7.1), homogenized with an ULTRA-

TURRAX® (IKA, Staufen, Germany) and centrifuged (10 min, 3 000 g). Membranes were frozen at -20 

°C until use. 

Radioligand binding assay. [3H]Flunitrazepam (specific activity 83 Ci/mmmol) was purchased from 

Perkin Elmer NEN (New England Nuclear) (Waltham, Massachusetts, USA). Diazepam (7-chloro-1,3-

dihydro-1-methyl-5-phenyl-2H-1,4, benzodiazepine-2-one) from Nycomed (Opfikon, Switzerland). 

Standard chemicals came from Sigma-Aldrich (St. Louis, Missouri, USA). Frozen membranes were 

thawed, resuspended in TC50 and incubated for 90 min at 4 °C in a total of 500 µL of a solution 

containing 50 mM Tris/citrate buffer, pH=7.1, 150 mM NaCl and 2 nM [3H]Flunitrazepam in the 

absence of presence of either 5 µM diazepam (to determine unspecific binding) or various 

concentrations of receptor ligands (dissolved in DMSO, final DMSO-concentration 0.5 %). Membranes 

were filtered through Whatman GF/B filters and the filters were rinsed twice with 4 mL of ice-cold 50 
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mM Tris/citrate buffer. Filters were transferred to scintillation vials and subjected to scintillation 

counting after the addition of 3 mL Ultima gold liquid scintillation cocktail. Nonspecific binding 

determined in the presence of 5 µM Diazepam was subtracted from total [3H]Flunitrazepam binding to 

result in specific binding. In order to determine the equilibrium binding constant KD of 

[3H]Flunitrazepam for the various receptor-subtypes, membranes were incubated with various 

concentrations of [3H]Flunitrazepam in the absence or presence of 5 µM Diazepam. Saturation binding 

experiments were analyzed using the equation Y=Bmax*X/(KD+X). Nonlinear regression analysis of 

the displacement curves used the equation: log(inhibitor) vs. response - variable slope with Top=100 % 

and Bottom=0 % Y=100/(1+10^((logIC50-x)*Hillslope)). Both analyses were performed using 

GraphPad Prism version 5.0a for Mac OS X, GraphPad Software, La Jolla California USA, www. 

graphpad.com. Drug concentrations resulting in half maximal inhibition of specific [3H]Flunitrazepam 

binding (IC50) were converted to Ki values by using the Cheng-Prusoff relationship 69,70 Ki= 

IC50/(1+(S/KD)) with S being the concentration of the radioligand (2 nM) (KD values (MW ± SEM, n = 

3-4): α1β3γ2S-WT = 7.2 ± 0.2 nM, α1β3γ2S-D56A = 10.3 ± 1.7 nM). 

Synthesis. Commercially available reagents were used without further purification. Reactions were 

monitored by thin layer chromatography with silica gel 60 F254 plates (E. Merck, Darmstadt, Germany). 

1H and 13C NMR spectra were recorded on Bruker Avance Ultrashield 400 (1H: 400 MHz, 13C: 101 

MHz) or Bruker Avance IIIHD 600 spectrometer equipped with a Prodigy BBO cryo probe (1H: 600 

MHz, 13C: 151MHz). Chemical shifts are reported in parts per million (ppm) and were calibrated using 

DMSO-d6 as internal standard. Multiplicities are denoted by s (singlet), br d (broad doublet), d 

(doublet), dd (doublet of doublet) and m (multiplet). Melting points were determined with a Büchi 

Melting Point B-545 apparatus. HR-MS was measured on an Agilent 6230 LC TOFMS mass 

spectrometer equipped with an Aglient Dual AJS ESI-Source. The chromatographic purities of the 

tested compounds were determined by HPLC analyses on a Nexera system from Shimadzu equipped 

with 2 binary LC-30AD pumps plus degassers, a CTO-20 column oven and a SPD-M30A PDA 

detector. Analytical separation was made using a KINETEX C18 column with 1.7 µm pore size and 2.1 

Page 13 of 46

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 14

x 50 mm length. As solvents HPLC grade water and acetonitrile plus 0.1% formic acid were used 

(method: gradient of 5% à 95% acetonitrile in water, 12 min, 40°C, 0.5 mL flow, injection volume 3 

µL). The purity of all final compounds was >95% (see SI for HPLC analysis). 

Diethyl 2-(((4-methoxyphenyl)amino)methylene)malonate. 4-Methoxyaniline (5 g, 36.9 mmol, 1 eq.) 

and diethyl(ethoxymethylene)malonate (7.46 mL, 36.9 mmol, 1 eq.) were dissolved in toluene (50 mL) 

and the reaction mixture was heated to reflux. After 22 h the solvent was removed under reduced 

pressure and the residue was purified by column chromatography (gradient of 10%-30% EtOAc in LP) 

to give the desired product as yellow crystals (7.90 g, 26.9 mmol, 73%). 1H NMR (400 MHz, CDCl3) δ 

1.31 (t, J = 7.1 Hz, 3H), 1.37 (t, J = 7.1 Hz, 3H), 3.80 (s, 3H), 4.23 (q, J = 7.1 Hz, 2H), 4.29 (q, J = 7.1 

Hz, 2H), 6.86 – 6.94 (m, 2H), 7.05 – 7.10 (m, 2H), 8.43 (d, J = 13.9 Hz, 1H), 10.98 (br d, J = 13.8 Hz, 

1H). 13C NMR (101 MHz, CDCl3) δ 14.5, 14.6, 55.7, 60.1, 60.4, 92.6, 115.1, 119.0, 132.9, 152.8, 157.3, 

166.0, 169.4. TLC (PE/EtOAc = 3/1): Rf = 0.63. Mp: 32-34 °C.  

Ethyl 6-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylate. Diethyl 2-(((4-

methoxyphenyl)amino)methylene)malonate (2.5 g, 8.52 mmol) was dispersed in diphenylether (15 mL), 

flushed with argon for 5 min and heated to 235 °C for 1 h. The reaction mixture was poured into LP, the 

formed precipitate was collected by filtration and washed with LP/EtOAc (1/1, 3 x 40 mL) to yield the 

desired product as brown powder (1.14 g, 4.62 mmol, 54%). 1H NMR (600 MHz, DMSO-d6) δ 1.27 (t, J 

= 7.1 Hz, 3H), 3.84 (s, 3H), 4.20 (q, J = 7.1 Hz, 2H), 7.34 (dd, J = 8.9, 3.0 Hz, 1H), 7.56 (d, J = 3.0 Hz, 

1H), 7.58 (d, J = 9.0 Hz, 1H), 8.49 (d, J = 6.7 Hz, 1H), 12.30 (br d, J = 6.7 Hz, 1H). 13C NMR (151 

MHz, DMSO-d6) δ 14.4, 55.5, 59.5, 105.5, 108.7, 120.6, 122.2, 128.5, 133.4, 143.7, 156.6, 165.0, 172.9. 

TLC (2% MeOH in CH2Cl2): Rf = 0.33. Mp: 265-267 °C. 

Ethyl 4-chloro-6-methoxyquinoline-3-carboxylate. Ethyl 6-methoxy-4-oxo-1,4-dihydroquinoline-3-

carboxylate (400 mg, 1.62 mmol) was dispersed in POCl3 (3 mL) and heated to reflux. After 2 h the 

reaction mixture was poured onto ice, neutralized with satd. NaHCO3, extracted with CH2Cl2 (3 x 20 

mL), washed with brine (1 x 20 mL), dried over Na2SO4, filtered and evaporated. The residue was 

purified by FC (gradient of 5%-15% EtOAc in LP to give the desired product as colorless crystals (284 
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mg, 1.08 mmol, 66%). 1H NMR (400 MHz, CDCl3) δ 1.30 – 1.56 (m, 3H), 3.92 (s, 3H), 4.43 (q, J = 7.1 

Hz, 2H), 7.40 (dd, J = 9.2, 2.5 Hz, 1H), 7.53 (d, J = 2.5 Hz, 1H), 7.96 (d, J = 9.2 Hz, 1H), 8.98 (s, 1H). 

13C NMR (101 MHz, CDCl3) δ 14.4, 55.9, 62.2, 103.1, 123.7, 125.1, 127.6, 131.7, 141.4, 145.9, 147.6, 

159.5, 164.9. TLC (2% MeOH in CH2Cl2): Rf = 0.84. Mp: 88-90 °C. 

4-(8-Methoxy-3-oxo-3,5-dihydro-2H-pyrazolo[4,3-c]quinolin-2-yl)benzonitrile. 4-(8-Methoxy-3-

oxo-3,5-dihydro-2H-pyrazolo[4,3-c]quinolin-2-yl)benzonitrile was synthesized according to literature 

23,27,71 in 57% yield (yellow solid, 202 mg, 0.64 mmol). 1H NMR (400 MHz, DMSO-d6) δ 3.93 (s, 3H), 

7.33 (dd, J = 9.1, 2.9 Hz, 1H), 7.60 (d, J = 2.9 Hz, 1H), 7.69 (d, J = 9.1 Hz, 1H), 7.87 – 7.95 (m, 2H), 

8.45 – 8.52 (m, 2H), 8.73 (d, J = 6.4 Hz, 1H), 12.97 (br d, J = 6.2 Hz, 1H. 13C NMR (101 MHz, DMSO-

d6) δ 55.7, 102.7, 104.6, 105.3, 118.1 (2C), 119.2, 119.8, 120.2, 121.4, 130.0, 133.2 (2C), 138.6, 143.5, 

144.3, 157.7, 162.5. HR-MS: calculated [C18H13N4O2
+]: 317.1033; found [C18H13N4O2

+]: 317.1038 

(diff.: −1.55 ppm). TLC (10% MeOH in CH2Cl2): Rf = 0.50. M.p.: decomposes > 300 °C. 

4-(8-Methoxy-3-oxo-3,5-dihydro-2H-pyrazolo[4,3-c]quinolin-2-yl)benzoic acid. 4-(8-Methoxy-3-

oxo-3,5-dihydro-2H-pyrazolo[4,3-c]quinolin-2-yl)benzonitrile (40 mg, 0.13 mmol) and NaOH (35 mg, 

0.89 mmol) were dissolved in 3 mL EtOH/H2O (v/v) and the reaction mixture was heated to reflux. 

After 18 h the mixture was acidified wit 2 M HCl and the precipitate was collected by filtration, washed 

with water (3 mL), LP (15 mL), EtOAc (20 mL) and dried under reduced pressure to give 4-(8-

methoxy-3-oxo-3,5-dihydro-2H-pyrazolo[4,3-c]quinolin-2-yl) benzoic acid as yellow solid (28 mg, 

0.084 mmol, 66%). 1H NMR (400 MHz, DMSO-d6) δ 3.95 (s, 3H), 7.33 (dd, J = 9.1, 2.9 Hz, 1H), 7.62 

(d, J = 2.9 Hz, 1H), 7.70 (d, J = 9.1 Hz, 1H), 8.04 (d, J = 8.5 Hz, 2H), 8.42 (d, J = 8.5 Hz, 2H), 8.73 (d, 

J = 6.6 Hz, 1H), 12.79 (br s, 1H), 12.92 (br d, J = 6.6 Hz, 1H). 13C NMR (151 MHz, DMSO-d6) δ 55.7, 

102.7, 104.9, 117.6 (2C), 119.9, 120.0, 121.4, 125.5, 129.9, 130.3 (2C), 138.3, 143.6, 143.9, 157.7, 

162.3, 167.0. HR-MS: calculated [C18H14N3O4
+]: 336.0979; found [C18H14N3O4

+]: 336.0984 (diff.: 

−1.46 ppm). TLC (20% MeOH in CH2Cl2): Rf = 0.57. M.p.: decomposes > 300 °C. HPLC: tR = 4.64 min 

(>99.9% purity). 
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2-(4-Aminophenyl)-8-methoxy-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one. 2-(4-Aminophenyl)-

8-methoxy-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one was synthesized according to literature72 in 

17% yield (yellow solid, 16 mg, 0.052 mmol). 1H NMR (600 MHz, DMSO-d6) δ 3.90 (s, 3H), 4.99 (br 

s, 2H), 6.58–6.64 (m, 2H), 7.21 (dd, J = 9.0, 2.9 Hz, 1 H), 7.52 (d, J = 2.9 Hz, 1H), 7.63 (d, J = 9.0 Hz, 

1H), 7.78–7.83 (m, 2H), 8.54 (s, 1H). 13C NMR (151 MHz, DMSO-d6) δ 55.6, 102.3, 105.4, 113.6 (2C), 

119.2, 120.2, 120.9 (2C), 121.5, 129.9, 130.0, 137.6, 142.0, 145.6, 157.3, 160.6. HR-MS: calculated 

[C17H15N4O2
+]: 307.1190; found [C17H15N4O2

+]: 307.1196 (diff.: −2.21 ppm). TLC (5% MeOH in 

CH2Cl2): Rf = 0.25. M.p.: decomposes > 300 °C. HPLC: tR = 3.82 min (96.6% purity).  
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RESULTS 

Molecular docking of CGS-8216. As a first step in our workflow to identify the PQ binding mode 

we docked the highly potent CGS-821624 (cpd 1, Figure 1D) into the BZ-site of an α1β3γ2 GABAA 

receptor homology model40 , using flexible side chains as well as soft potentials on the tip of the flexible 

loop C (Figure 1C)  (see Methods). The 100 best scored and minimized CGS-8216 docking poses (p1 -

p100) were used for further evaluation.  

Structure-Activity Relationship of PQ (PQ-SAR). Based on the differentiated pool of SAR data for 

the PQs we deduced a model which shows in the substitution positions R5, R6 and R4’ a discontinuous 

SAR with activity cliffs while at positions R8 and R9 a continuous SAR is observed (Figure 2 top). In 

detail, it has been shown that the introduction of substituents at position R6 leads to a dramatic loss of 

potency as the substituent’s van-der-Waals volume increases (Figure S4). For instance, the potency of 

the R6 = CF3 analogue29 (2, Figure 2 bottom) drops by nearly 4 orders of magnitude compared to the 

unsubstituted scaffold (1). Another considerable loss was described in the R5 = CH3 analogue 4. The 

disruption of either a hydrogen bond or the introduction of a steric clash by the additional methyl group 

might account to the drop of more than 2 log units in potency23. Interestingly, analogue 5 (R8 = OCF3, 

R4’ = COOH) showed another dramatic potency cliff with IC50 = 3200 nM, whereas its amino analogue 

10 (R8 = OCF3, R
4’ = NH2) remains highly potent with an IC50= 0.80 nM. The drop might derive from 

strong electrostatic repulsion between the carboxylate group in position R4’ and the surrounding binding 

pocket.  

In contrast to the rugged, discontinuous SAR landscape found at positions R5, R6 and R4’, at positions 

R8 and R9 large structural changes have minimal influences on compound potency (Figure 2 bottom). 

For example, the R8 = tert-butyl, R8,9 = benzofused and R7,8 = methylenedioxo analogues23,73 (6-8) 

remain highly potent despite their large and rigid substituents.  
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4 Savini et al. 23 CH3 H H H H H IC50 = 1600 

5 Savini et al. 23 H H H OCF3 H COOH IC50 = 3200 
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6 He at al. 73 H H H tBu H H Ki = 0.1 

7 Savini et al.23 H H H 8,9-benzofused H IC50 = 7.2 

8 Anathan et al. 74 H H 7,8-OCH2O H H IC50 = 3.0 

9 He at al. 73 H H H H H C≡CCH3 Ki =  2.0 

10 Savini et al. 29 H H H OCF3 H NH2 IC50 = 0.8 

 

Figure 2. Top: 2D representation of PQ-SARs. The letters A, B, C and D refer to the different rings in 

the scaffold. The different positions and numbering of the different residues are shown by R5-R9 and R4’ 

respectively. Positions which tolerate steric bulk (R8, R9 and R4’) are indicated by gray spheres, whereas 

positions which do not tolerate steric bulk (R6) are indicated by red spheres. Electrostatic repulsion is 

indicated by a red outline and prevented H-bond formation by a light blue outline. Bottom: table of the 

chemical structures and α1β3γ2 GABAA binding affinities of PQ cpds 1-10. 

SAR guided pose selection protocol. The correct CGS-8216 binding mode should align with the PQ-

SAR (Figure 2 top). Thus, we selected a set of 4 weak and 4 strong PQ binders (2-9, Figure 2 bottom) 

that reflect the essentials of the PQ-SARs. The correct binding mode should provide a rationale for the 

Page 18 of 46

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 19

observed potency differences within these eight analogues. In detail, the binding orientation should 

align with the concepts of i) steric hindrance at position R6 (2 and 3), ii) steric hindrance or loss of 

hydrogen bonding in position R5 (4), iii) high affinity despite bulky substituents at position R8, R9 and 

R4’ (6-9) and iv) negative electrostatic repulsion at position 4’ (9 and 10). 

Considering the current difficulties of docking into homology models, we extended the conventional 

docking by developing a protocol which evaluates docking poses for their agreement with PQ-SAR, in 

an automated manner. In the first, preparatory step, the post-docking derivatization tool, symbolized by 

“>>“ in the following, takes the 3D coordinates of each retrieved CGS-8216 (1) docking pose (p1-p100) 

and adds substituents to the PQ scaffold leading to post-docking derivatized protein-ligand complexes 

of analogues 2-9. Figure 3 displays the output of the derivatization tool for 2, 4 and 9 on docking pose 

p88, resulting in the engineered complexes p88>>cpd 2, p88>>cpd 4 and p88>>cpd 9.  

In the second, evaluative step, we defined a SAR scoring function which assesses the derivatized 

analogue placements of a particular pose (pi>>cpd 2-9) for agreement with the PQ-SAR (Figure S1). 

The input of the SARScoring function takes calculated clash energies, H-bond interaction strength 

energies and distance calculations of analogues 2-9 as its input. For each analogue that aligns with the 

PQ-SAR, the function adds one point to the SARScore, resulting in a maximum score of eight points for a 

given pose. For a detailed description of this method we refer to the Methods section. 
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Figure 3. Post-docking derivatization and PQ analogue assessment. Original CGS-8216 docking pose 

p88 and its post-docking derivatized analogue placements p88>>cpd 2, p88>>cpd 4, p88>>cpd 5 and 

p88>>cpd 9. Clash energy (clashsc, clashbb), interatomic distances (d) and hydrogen bond strength 

interactions (hbond) were calculated and serve as input for the SAR scoring function (see Methods and 

Figure S1). For each analogue that aligns with the PQ-SAR (Figure 2 top) one point is added to the 

SARScore of a particular pose, leading to a maximum SARScore of eight. yellow, α1 subunit; blue, γ2 

subunit; black space-filling atoms, carbon atoms introduced in the post-docking derivatization step; 

clashbb, ligand clashes with backbone and Cβ atoms; clashsc, ligand clashes with sidechain atoms; d, 

shortest distance between pi>>cpd 5 carboxylate group atoms and an ASP/GLU carboxylate group 

atoms; hbond, H-bond interaction strength between quinolone nitrogen and binding pocket (see Methods). 

 

SAR scoring function identifies two candidate binding modes. To obtain an overview of the 

geometric heterogeneity of the 100 CGS-8216 docking poses, we applied multidimensional scaling 

(MDS) methodology on the basis of the ligand RMSD distance matrix (see Methods). Docking poses 

which are in vicinity to each other in the MDS plot share a similar binding mode (BM) while dissimilar 

poses are distant to each other (Figure 4A). The MDS plot showed a Kruksal-Stress of 0.1975 which is 

sufficient for visualization purpose. SAR assessment of 100 poses resulted in 14 poses with a SARScore 

greater than 6 (Table S2). These poses can be grouped into two geometrically different binding modes, 

BM I (Figure 4B) and BM II (Figure 4C). Twelve of the 14 best SAR scored poses belonged to BM I, 
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containing two poses with the maximum SARScore of 8. The remaining two poses belonged to BM II, 

with best score of 6 (Table S2, Figure S5). 

The main geometric difference between BM I and BM II is the orientation of the CGS-8216’s D ring. 

In BM I, the carbonyl oxygen and the D ring point both to the γ2 subunit, while in BM II, they point 

towards the α1 subunit. With respect to the interaction profiles of BM I and BM II, we found similar 

interactions of their A and B rings. In both binding orientations the quinoline nitrogen (N5) is engaged 

in H-bond interactions with the backbone of α1Y159, while γ2F77 and α1Y209 show hydrophobic 

and/or π−π interactions with the quinoline ring. In contrast, the interactions and position of the D ring 

differ significantly. In BM I, the D-ring showed strong interactions with γ2Y58 and is pointing towards 

the F-loop (Figure 4B). In BM II it mainly interacts with α1H101 and is located close to loop B of the α 

subunit (Figure 4C).  

 

Figure 4. Identification of two major binding modes BM I and BM II. (A) Visualization of the CGS-

8216 pose space utilizing MDS (see Methods, Figure S5). The color of the dots reflects the agreement 

of these poses with the SAR scoring from blue (low agreement) to red (high agreement). In the left 

center of the MDS plot, a cluster of highly scored poses, containing two poses with a maximum 

SARScore of 8, was found. These poses were defined as BM I. A second group of poses, in the lower 

right corner of the MDS plot, showed a moderate score of 6. All other poses had a SARScore below 6 
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points. A 2D representation of CGS-8216 can be found in the upper left corner, with its rings labeled. 

(B) Top and side view of the representative BM I pose p88, with the side chain rotamers as seen in this 

particular pose. (C) Top and side view of the representative BM II p18, with the side chain rotamers as 

seen in this particular pose. It should be noted that side chain rotamers cannot be predicted reliably from 

homology models at this level of sequence similarity. yellow, α1 subunit; blue, γ2 subunit 

Analysis of BM I and BM II in the light of PQ-SAR. Two BM I poses (p88 and p64) displayed the 

maximum SARScore of 8 and perfectly fit the PQ-SAR. For characterizing BM I we selected p88 (Figure 

5A) and its derivatized analogue placements, p88>>cpds 2-9 (Figure 5B). The low potency of 2-5 is 

well reflected in the p88. The derivatized placements p88>>cpds 2-3 displayed severe backbone clashes 

with α1Y159 and α1S158, congruent with the dramatic potency drop seen in R6 substituted analogues 

(Figure S4). The strong H-bond interaction between the quinolone nitrogen and the carbonyl oxygen of 

α1Y159 in p88 aligns with the low potency of the N-methylated analogue 4. The carboxylate group of 

the D-ring in p88>>cpd 5 was found to be close to γ2D56 and points towards loop F, on which γ2E189 

and γ2D192 are positioned (Figure S6). This orientation is in good agreement with analogue’s 5 low 

potency. Finally, post-engineered placements for the highly active, bulky R8 = tertbuyl, R8,9 = 

benzofused, R7,8 = OCH2O and R4’ = C≡CCH3 (6-9) analogues (p88>>cpds 6-9) showed minor to no 

clashes. Substitution sites R8 and R9, though still in the pocket already point towards the pocket entry 

and bulk water. CGS-8216’s ring D was placed below the tip of loop C and is partly solvent exposed. 

Thus, analogue 9 with its rigid and bulky -C≡CCH3 substituent at R4’ fits well into the pocket. 
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Figure 5: BM I in the light of the PQ-SAR model. (A) Homology model of the high affinity binding 

site at the extracellular α1+/γ2− interface showing p88 in BM I orientation (α1 subunit = yellow, 

γ2 subunit = blue, pocket surface = gold grid). Focused perspective of the ligand orientation in the 

pocket surface grid. (B) Table of weak and strong PQ binders in BM I orientation. Agreement of the 

derivatized p88>>cpd 2-9 with the PQ-SAR (Figure 2) is displayed by green hooks. Unfavorable 

interactions such as and putative electrostatic repulsion or steric clashes are displayed by red crosses. 

black space-filling atoms, carbon atoms introduced in the post-docking derivatization step (Figure 3);  

clashbb, ligand clashes with backbone and Cβ atoms; clashsc, ligand clashes with sidechain atoms; d, 
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shortest distance between pi>>cpd 5 carboxylate group and an ASP/GLU carboxylate group; hbond, H-

bond interaction strength between quinolone nitrogen and binding pocket (see Methods). 

 

The best BM II pose displayed a SARScore of 6 and hence could not fully explain the PQ-SAR. For 

characterizing BM II we selected p18 (Figure S7) and its derivatized analogue placements, p18>>cpds 2-

9. In p18>>cpds 2-3 we found severe clashes with the side chain atoms of γ2M130 and γ2T142. 

Likewise, to BM I, the quinoline nitrogen showed hydrogen bond interaction with the backbone 

carbonyl oxygen of α1Y159. Hence, the potency loss seen in p18>>cpd 4 is plausible as well.  

In contrast to BM I, BM II fails to provide a rationale for the dramatic loss in affinity seen in the 

carboxy analogue 5. Among the closest residues to p18>>cpd 5 carboxyl group were the weak and 

strong basic amino acids, α1H101 and α1K155 (Figure 4C). The vicinity of these basic amino acids to 

ring D in p18>>cpd 5 is in contradiction to the assumption of strong negative electrostatic repulsion 

between the analogue 5’s carboxylate moiety and the pocket environment. Finally, the four active 

analogues 6-9 are well represented in BM II by p1>>cpds 6-9 (Figure S7). 

Stability and affinity evaluation of 5 and 10 in BM I and BM II. BM I is in agreement with the PQ-

SAR, while BM II fails to provide a rational for the poor activity of 5. To investigate this further 

additional analyses were conducted. We used the post-docking derivatized complexes of analogues 5 

and 10 for the best scored BM I (p64 and p88) as well as the BM II (p18 and p75) poses (Table S2, Figure 

S5) to investigate the stability of the ligands using MD simulations and employing simple RMSD 

criteria76. Additionally, the difference in relative binding free energy for 5 and 10 in BM I and BM II 

was calculated.  

The stability of the selected poses was evaluated using an adopted validation scheme described by Liu 

et al.
76. Ten independent MD simulations (same coordinates but different initial velocities) were 

conducted for the derivatized BM I (p64>>cpd 5, p64>>cpd 10, p88>>cpd 5, p88>>cpd 10) and BM II 
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(p18>>cpd 5, p18>>cpd 10, p75>>cpd 5, p75>>cpd 10) placements. To distinguish between stable and 

unstable poses we considered the average ligand-RMSD of the ten MD simulations (<L-RMSD>) and 

the number of MD simulations with a L-RMSD below 2 Å (Table 1 and Table S3). In addition to the 

geometric analysis the free energy differences of each pi>>cpd 5 - pi>>cpd 10 pair were calculated 

(Figure S2-S3 and Table S1). 

 

Table 1. MD-based stability analysis and interaction profile of 5 and 10 in BM I and BM II, 
respectively (Figure S8- S9).  

 cpd 5 (R4’ = COOH) cpd 10 (R4’ = NH2) 

 BM I BM II BM I BM II 

 p88 p64 p18 p75 p88 p64 p18 p75 

<L-RMSDa> 2.3 2.6 1.7 1.9 1.5 1.7 2.4 2.6 

< 2.0 Åb > 7/10 2/10 8/10 7/10 10/10 8/10 3/10 2/10 

AB-ringc 
α1F99, α1H101, 

α1V202, α1Y209, 
γ2F77 

γ2F77, α1Y209 
α1F99, α1H101, 

α1V202, α1Y209, 
γ2F77 

α1Y159, 
α1Y209, γ2F77 

N5-nitrogend - - α1Y159 - 

C-ringd α1S204, γ2T142 - α1S204, γ2T142 - 

D-ringc γ2Y58 
α1V202, γ2Y58, 

α1H101 
γ2Y58 

α1V202, γ2Y58, 
α1H101, α1F99 

Position R4’: 
COOH/NH2

e 
γ2K184, γ2R194 

α1K155, γ2R194, 
γ2R197 

γ2D56 - 

a average L-RMSD of 10 independent MD simulations. 
b  Number of MD simulations for which the L-RMSD was below 2.0 Å 
c Hydrophobic and aromatic interactions. 
d Hydrogen bond interactions. 
e Ionic interactions. 

 

First, the stability and relative free energy difference for cpd 5 and 10 in BM I (p64 and p88) was 

evaluated. For cpd 10 the <L-RMSD> values for the 10 MD simulations are 1.5 Å in p88 and 1.7 Å in p64 

suggesting an overall stable complex for BM I, which is additionally reflected by the number of 

simulations with an L-RMSD below 2 Å (18 out of 20 for both poses). For cpd 5 we obtained 
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ambiguous results even though the <L-RMSD> of 2.3 Å in p88 and 2.6 Å in p64 are above the stability 

criteria and thus suggesting a low stability of 5. However, considering the simulations in p88 we 

observed only three simulations with an L-RMSD higher than 2 Å (L-RMSD between 4.3 Å and 5.6 Å) 

putting this quantitative analysis in doubt. The relative binding free energy difference between 5 and 10 

in BM I was calculated as -2.5 kcal/mol (standard deviation of 1.3 kcal/mol) reflecting the higher 

affinity of 10. The proximity between the carboxylic group of 5 and γ2D56 seemingly leads to a 

destabilization of the binding pose in BM I. 

Interestingly, in BM II a contrary stability profile for 5 and 10 (p18 and p75) was observed. For 5 <L-

RMSD> values of 1.7 Å in p18 and 1.9 Å in p75 were obtained and the majority of the individual MD 

simulations were below 2.0 Å indicating a high stability of 5 in BM II. In contrast, 10 displayed <L-

RMSD> values of 2.4 Å in p18 and 2.6 Å in p4. In addition, most individual simulations (15 out of 20 

simulations) showed L-RMSD values higher than 2.0 Å suggesting a low stability of 10 in BM II. 

Moreover, the calculated difference in binding free energy between 5 and 10 is 0.02 kcal/mol (standard 

deviation of 1.88 kcal/mol). These results provide further evidence against BM II as it failed to 

rationalize the difference in potency between 5 and 10.  

SAR guided docking vs. conventional molecular docking protocols – a comparison. We were 

interested whether conventional docking protocols would favor a similar binding mode (BM I) as our 

new SAR-driven protocol. For this purpose, we conducted molecular docking using six different 

docking protocols. We performed flexible docking of CGS-8216 into our α1β3γ2 GABAA homology 

model utilizing MOE 2013.0845, GOLD 5.243, Schrödinger's Induced Fit66 and AutoDock Vina 

1.1.22067. The poses within each run were ranked by the software’s internal scoring function 

encompassing the GBVI/WSA dG65, London dG64, ChemScore46, GoldScore46, Glide SP77 and the 

AutoDock Vina scoring function67. We kept the best scored pose per scoring function and compared 

these orientations against p88 (BM I) from the SAR guided protocol. While AutoDock Vina (RMSD ~ 

1.5 Å) and Induced Fit protocol (RMDS ~ 2.8 Å) were able to identify similar binding modes as our 
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SAR guided protocol, the other four protocols showed completely different orientations with RMSD 

distances greater than 6 Å (Table S4).  

Prospective γ2γ2γ2γ2D56A mutant strengthens BM I binding hypothesis. Based on the conclusive results 

of our in silico analysis we aimed to strengthen our binding hypothesis (BM I) by a prospective 

mutation. In BM I, CGS-8216’s pending phenyl ring is in the vicinity to three acidic residues, γ2D56, 

γ2E189 and γ2D192 (Figure S6). We selected the residue closest to CGS-8216 in BM I, γ2D56 and 

converted it into an alanine residue (γ2D56A). This point mutation should lead to a loss of the putative 

electrostatic repulsion feature of our previous analysis (Figure 2). To address this missing feature we 

synthesized two ligands, namely compound 18 and 19, which differ from 5 and 10 only in the position 

R8 (for 18 and 19 R8 = OCH3; for 5 and 10 R8 = OCF3) while possessing the same electrostatic 

properties in position R4’ (Scheme 1). Converting the 4-methoxyaniline with diethylethoxymethylene 

malonate via the Gould-Jacobs78 reaction yielded the quinoline 14. Treatment with POCl3 led to 15 

which was reacted further with 4-nitrophenylhydrazine and 4-cyanophenylhydrazine respectively to 

obtain the precursors 16 and 17. The reduction of 16 yielded the desired amine 18 and basic hydrolysis 

of 17 led to the corresponding carboxylic acid derivative 19 (Scheme 1). 
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Scheme 1. Synthetic route to compound 18 and 19. 

First, we tested our new PQ ligands in α1β3γ2 wild type receptors to verify that 19 with the 

carboxylic acid moiety in position R4’ is a weak binder compared to 18 with the amino group in the 

same position. As expected 18 (Ki = 0.21 ± 0.03 nM) displayed a three order of magnitude higher 

potency compared to 19 (Ki = 161 ± 27 nM) (Figure 6, grey lines). Thus, we were able to investigate our 

new compounds in the α1β3γ2-D56A mutant construct. Remarkably, we observed for 19 an increase of 

potency by a factor of higher than 10 (Ki = 15 ± 2 nM) due to the introduction of our single point 

mutation whereas 18 showed only a very weak potency shift by a factor of 2 (Ki = 0.094 ± 0.005 nM) 

(Figure 6, dotted lines). Hence, these results support our binding hypothesis that PQs favor BM I. 

Figure 6: (A) [
3
H]Flunitrazepam displacement assay of 18 in α1β3γ2-WT receptors (�, Ki = 0.21 ± 0.03 nM) and 

α1β3γ2S-D56A mutants (●, Ki = 0.094 ± 0.005 nM) (mean ± SEM, n = 3-4). (B) [
3
H]Flunitrazepam displacement 

assay of 19 in α1β3γ2S-WT receptors (�, Ki = 161 ± 27 nM) and α1β3γ2S-D56A mutants (●, Ki = 15 ± 2 nM) 

(mean ± SEM, n = 3-4). Drug concentrations resulting in half maximal inhibition of specific [
3
H]Flunitrazepam 

binding (IC50) were converted to Ki values by using the Cheng-Prusoff relationship (Figure S10). 
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DISCUSSION 

The experimental elucidation of drug-target complexes is labor-intensive and even impossible for 

many membrane-bound drug targets. Here, computational approaches such as homology modeling 

combined with molecular docking can generate reasonable binding hypotheses, but frequently docking 

scoring functions struggle to filter them from a pool of alternative orientations9.  

To increase the credibility of docking pose selection for low-reliability target structures, we 

established in this study a fully automatized routine applicable to molecules for which a distinct SAR is 

available. Specifically, we defined a docking scoring function that solely evaluates docking poses by 

their degree of SAR agreement. To evaluate binding orientations, we derived analogue placements from 

four weak (2-5) and four strong (6-9) binders (Figure 2 bottom) on the basis of the coordinates of each 

CGS-8216 docking pose (Figure 3). Subsequently, the SAR scoring function utilized clash analysis, 

distance calculation and H-bond interaction strength calculation to assess the congruence between the 

analogue placement and the PQ-SAR (see Methods and Figure S1).  

Our SAR-driven docking protocol led to one favorable binding mode, BM I (Figure 4B), fully 

compatible with the PQ-SAR (Figure 5B), reflected by a maximum SARScore of eight. A second, 

moderately performing binding mode, BM II (Figure 4C), failed to provide a structural evidence for the 

assumed electrostatic repulsion between carboxy analogue (5) and the pocket environment (Figure S6). 

However, the SAR scoring function estimates the electrostatic repulsion assumption by simple distance 

calculations (see Methods).  

To evaluate the electrostatic influence more sophisticatedly, we performed MD based stability 

analysis for the two best SAR scored BM I and BM II poses and relative binding free energy 

calculations for the carboxy analogue (5) and the amino analogue (10) in each binding mode. In BM I 

the results of the relative binding free energy calculations as well as the stability analysis indicate that 

10 is stable in contrast to 5 – thus BM I can give a rationale for the reported potency discrepancy 

between these analogues while BM II failed. Here, 10 is more stable than 5 and there is no difference in 

the relative binding free energy between 5 and 10.  
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In total, our protocol led to one convincing CGS-8216 binding mode (BM I) providing a structural 

rationality for the PQ-SAR (Figure 5B). In BM I, the A and B ring, both show strong hydrophobic and 

π−π interactions with α1F99, α1Y209 and γ2F77 (Figure 4B). The importance of γ2F77 for PQ binding 

was shown in the γ2F77I mutant which led to a 10-fold drop in potency for CGS-8216’s methoxy 

analogue CGS-989579. Our MD simulations indicate that CGS-8216’s ring C is involved in H-bond 

interaction with α1S204 as well as γ2T142. Finally, the pending phenyl ring D shows strong 

hydrophobic interactions with γ2Y58 and is located close to the acidic residues γ2D56, γ2E189 and 

γ2D192 (Figure S6). 

To provide experimental evidence for BM I we designed an experiment which reduced the negative 

electrostatic potential of the protein environment close to CGS-8216’s D ring. The reduction in negative 

potential was introduced by the γ2D56A point mutation and in fact, the synthesized CGS-8216’s 

carboxy analogue (19) showed a 10-fold increase in potency in the γ2D56A mutant compared to the 

α1β3γ2 GABAA receptor wild type while its amino analogue (18) was only influence by a factor of 2 

(Figure 6).  

Lastly, we compared the result of our SAR-driven docking routine with the output from conventional 

docking protocols. In two out of six protocols, we found solutions that come close to BM I (RMSD < 3 

Å) (Table S4) while the others show completely different orientations (RMSD > 6 Å). The observed 

variety in docking outputs derived from different protocols may reflect the current difficulty of 

molecular docking into homology models10. However, it has to be stated that the docking protocols used 

in the comparison were selected by the authors’ availability and did not result from prior protocol-target 

assessment 80. A remarkable study in the predicton of scaffold binding modes by ligand based 

knowledge has been carried out at the αβ-tubulin colchicine site81. Here, Chenxiao et al. combined 

ensemble docking of analogue series to infer 3D-QSAR models eventually utilized for binding 

hypothesis evaluation. In contrast to our study, the early selection of docking poses was influenced by 

an energetic scoring function82. 
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The inferred CGS-8216 binding mode might pave the way to improved antagonists from either the PQ 

chemotype itself or by scaffold hopping to new chemotypes. Furthermore, the binding orientation can 

provide important information to guide ADME optimization. Lead optimization of PQ was impeded, 

among other factors, by the poor solubility of this compound class25. The binding mode can be utilized 

to select the optimal substitution site for the introduction of water-solubilizing groups, such as 

morpholine, piperazine and tertiary amine moieties, that do not compromise potency83. From BM I 

perspective, potential sites for these positively-ionizable groups are the meta and para positions of PQ’s 

D-ring, as they point towards the bulk solvent and would be embedded in an electronegative 

environment shaped by γ2D56, γ2E189 and γ2D192 (Figure S6). In this respect, the finding of  Savini et 

al.84 that meta-NH2 substitutions increase PQs potencies fits well with our proposal. In BM I (Figure 

4B), the meta-position of ring D is pointing directly towards γ2D56. Hence, H-bond donating 

substituents on the meta position, like the meta–NH2 moiety, could form favorable hydrogen bond 

interactions with the acidic residue, and would agree with the observed potency increase (Figure S11). 

 Ultimately, this could accelerate the quest to find urgently required benzodiazepine site antagonists 

with novel in vitro and in vivo profile, such as compounds for oral administration.  

One drawback of our SAR-driven protocol, at its current stage, is the neglect of mutual structural 

adaptation of both ligand and receptor as response to substituent introduction in the post-docking 

derivatization step (Figure 3). We partly compensated the rigid perspective by introducing clash 

thresholds and distinguishing between backbone and sidechain clashes (Figure S1). While these 

considerations sufficed to lead to one consistent CGS binding mode, it might be inappropriate in other 

scenarios. Hence, a more sophisticated representation of induced fit phenomena in the SAR-driven 

docking protocol by e.g. the inclusion of energy minimization, appears to be a reasonable advancement 

in future studies. 

The starting point of our study, low-reliability in protein structural information on the one hand and 

SAR knowledge on the other hand is common for many scaffolds binding to membrane-bound drug 

targets. For example, 800 000 bioactivity endpoints, amenable to SAR deduction, are deposited in the 
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publicly available ChEMBL 23 database85 for the important drug target class of GPCRs. However, next 

to SAR availability, the applicability of our protocol strongly depends on the characteristics and the 

quality of the underlying SAR. Incongruent SAR patterns as well as an inadequate SAR-hypersurface 

impede the presented approach. For example, a flat SAR without any discontinuity30 would not carry 

any discriminative potential for pose prioritization. Here, calculation of the SAR Index86 might provide 

a fast suitability assessment. In terms of target space, we assume that due to the stiffness of the post-

docking derivatization procedure (Figure 3), our protocol might be more applicable on proteins 

accommodating rather rigid binding pockets. Hence, in addition to SAR Index calculation86, B-factor 

analysis87 and algorithms to assess protein flexibility88 provide estimates for the suitability of our 

protocol at a given context. 

In summary, in this study we introduced a protocol that increases the credibility of docking pose 

selection for targets with low structural reliability. We established this by an automatized routine 

applicable to molecules for which a distinct SAR is available. The routine was complemented by 

elaborate MD simulations, composed of relative binding free energy calculations and stability 

assessment on a preselected set of poses with high SAR congruency. The presented approach in binding 

mode prediction can be expanded to other drug targets with a similar profile in terms of target structure 

uncertainty and SAR availability as found in GABAA receptors, such as GPCRs. 
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