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Abstract – A rapid and convergent synthesis of a 2,4’-linked tri-oxazole using a 

Negishi coupling is described.

Due to the biological importance of polyoxazole-containing compounds, a multitude of synthetic 

approaches have been described.1 While preparations of mono- and di-substituted oxazoles are common, 

reports describing the synthesis of longer oxazole chains are much more scarce.2,3 We became interested 

in efficient routes to 2,4’-polyoxazoles during studies on the total synthesis of telomestatin (1, Scheme 1), 

a potent telomerase inhibitor.4-7 Herein, we present a rapid and convergent synthesis of a 2,4’-linked 

tri-oxazole using a Negishi coupling. 

 

Our retrosynthetic analysis for telomestatin (1) is featured Scheme 1. On the basis of the reported 

telomestatin (1) syntheses,5 we envisioned a late-stage installation of the sulfur moiety and the thiazoline 

ring. Additionally, in order to maximize synthetic efficiency, we sought to complete the final aryl–aryl 

linkage of 2 and induce macrocyclization using a palladium-catalyzed cross-coupling.8,9 This maneuver 

would also allow for a high degree of convergency by dividing the molecule into two roughly equal 

halves. Disconnection across the amide bond in 2 then reveals tri-oxazole fragment 3 and tetrakis-oxazole 

amino alcohol 4. 
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Scheme 1 

 

Our synthesis of the left-hand tri-oxazole portion (3) of telomestatin (1) began with the preparation of 

known oxazole ester 7. Exposure of ethyl isocyanoacetate (5) to mixed anhydride 610 and DBU led to a 

high yield of oxazole ester 7,11 which was smoothly converted to amide 8 by the action of aqueous 

ammonia in methanol (Scheme 2). Conversion to bis-oxazole triflate 12 was achieved by means of a 

three-step sequence, which commenced by heating amide 8 in the presence of oxalyl chloride to give rise 

to acyl isocyanate 9. 
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Scheme 2 

 

Subjection of acyl isocyanate 9 to anhydrous, alcohol-free diazomethane dried over sodium metal12 led to 

in situ production of 10, which rapidly cyclized with loss of nitrogen to form oxazolone 11.13 Treatment 

of this intermediate with Tf2O and amine base produced bis-oxazole triflate 12 in 52% yield over 3 

steps.14 Further confirmation of the structural identity was achieved by single crystal X-ray diffraction 

upon conversion to the iodo derivative (12 ! 14, Scheme 3).15 
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A wide range of cross-couplings of appropriate mono- and bis-oxazole subunits were investigated to 

prepare the desired tri-oxazole fragment (3), including Stille, Suzuki, and Negishi protocols.16,17 

Ultimately, the Negishi approach proved to be the most robust to accomplish this union. The necessary 

zinc reagent (13) for this reaction could be prepared from 7 via a deprotonation/quenching event with 

LiHMDS and ZnCl2, furnishing tri-oxazole 3 after successful aryl fusion with bis-oxazole 12.18 This 

approach was also used in a similar fashion to prepare a tetrakis-oxazole.19 
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In conclusion, we have presented an efficient and convergent synthesis of a tri-oxazole fragment. Existing 

studies to utilize this methodology toward a total synthesis of telomestatin are ongoing in our laboratory. 
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