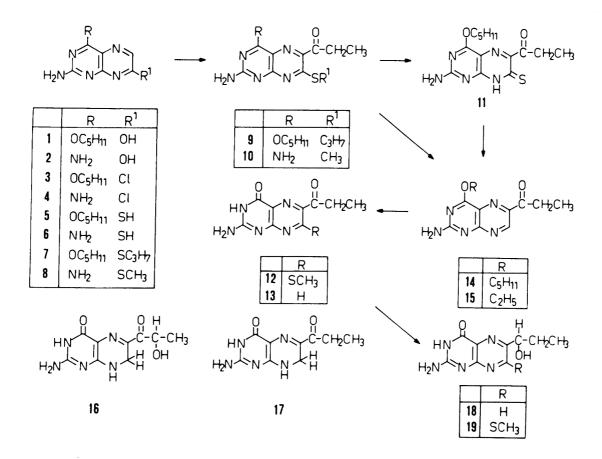
© The Chemical Society of Japan 1984


CHEMICAL SYNTHESIS OF DEOXYSEPIAPTERIN

Ralph BAUR, Takashi SUGIMOTO,[†] and Wolfgang PFLEIDERER^{*} Fakultät für Chemie, Universität Konstanz, Postfach 5560. D-7750 Konstanz, West Germany, [†]Department of Chemistry, College of General Education, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464

A chemical synthesis of the yellow eye pigment deoxysepiapterin of Drosophila melanogaster has been achieved from 7alkylthio pteridines by homolytic nucleophilic acylation at C-6 and subsequent hydrolyses to 6-propionylpterin derivatives followed by desulfurizations with copper-aluminum alloy.

Sepiapterin $(\underline{16})^{1,2}$ and deoxysepiapterin $(\underline{17})$ (formerly called isosepiapterin) may be regarded as the main yellow eye pigments of Drosophila melanogaster, whereby the latter compound has been isolated for the first time from the mutant sepia.³⁾ Another natural source of <u>17</u> has been found in the bluegreen alga Anacystus nidulans⁴⁾ and its formation is also observed on oxidation of 5,6,7,8-tetrahydrobiopterin glucoside.⁵⁾ Chemical syntheses of substantial amounts of these pigments have so far not been reported although reaction of 7,8-dihydropterin with α -ketobutyric acid and thiamine led to deoxysepiapterin⁶⁾ and with α -keto- β -hydroxybutyric acid in the presence of zinc chloride gave sepiapterin.⁷⁾ Finally both compounds are also formed on air oxidation in a phosphate buffer (pH 4) from the hardly accessible 5,6,7,8-tetrahydrobiopterin.¹⁰⁾

A new chemical approach to the synthesis of deoxysepiapterin $(\underline{17})$ is now derived from the possibility of homolytic nucleophilic substitution of the pteridine nucleus by acyl radicals.¹¹⁾ Since 6,7-unsubstituted pteridine

derivatives react under these conditions preferentially at the most electrondeficient 7-position, analogous homolytic nucleophilic attack at the adjacent C-6 atom can only be achieved with 7-substituted pteridine derivatives.

A useful protecting group with the potential of removal is obviously in the nitrogen-heterocyclic series the thio-function, which prompted us to synthesize deoxysepiapterin from 2-amino-4-<u>n</u>-pentyloxy-7-<u>n</u>-propylthiopteridine (<u>7</u>) and 2,4-diamino-7-methylthiopteridine (<u>8</u>), respectively. Both starting materials can be obtained from the corresponding 7-hydroxy derivatives <u>1</u> and <u>2</u> via POCl₃ chlorination (<u>3,4</u>), thiation with sodium hydrogen sulfide (<u>5,6</u>), and subsequent alkylation.

Com- pound	pK _a in H ₂ O	-	ntion Spectra log £	pН	Mole- cular Form
•		λ_{max}/nm	1092		
7		240 273 [370] 377	4.53 4.01 [4.26] 4.27	MeOH	o
7 8 9 10 14 12		241 263 312 371	4.43 4.19 3.51 4.18	MeOH	0
9		[247] 272 304 388	[4.18] 4.45 4.11 4.28	MeOH	o
<u>10</u>		224 269 [306] 392	3.83 4.51 [4.04] 4.27	MeOH	o
<u>14</u>		252 301 363	4.21 4.18 4.12	MeOH	o
<u>12</u>	2.03 7.81	252 311 365 273 310 378 266 [300] 384	4.39 4.46 4.46 4.18 4.26 4.52 [4.11] 4.33	0.0 4.0 10.0	+ 0 -
<u>13</u>	1.44 7.12	[230] 268 320 239 303 347 275 [307] 369	[3.96] 4.06 4.04 3.96 4.17 3.96 4.22 [3.87] 4.06	-1.0 4.0 10.0	+ 0 -
18	2.27 7.97	247 322 236 273 345 [220] 254 364	4.04 3.92 4.03 4.15 3.79 [3.92] 4.35 3.86	0.0 5.0 10.0	+ 0 -
<u>19</u>	2.64 8.39	230 [266] 284 355 [230] 243 280 363 237 258 369	4.39[3.76]3.804.29[4.23]4.334.154.194.424.184.18	0.0 5.0 12.0	+ 0 -
17	1.35 10.05	232 284 [330] 395 213 265 [286] 410 267 312 430	4.14 4.10 [3.35] 3.89 4.22 4.23 [3.89] 4.01 4.22 3.28 4.10	-1.0 5.0 13.0	+ 0 -

Table 1. Physical Data of Pteridine Derivatives

[] = Shoulder; + = cation; o = neutral molecule; - = monoanion.

Homolytic acylation of $\underline{7}$ and $\underline{8}$ with the system propionaldehyde/Fe⁺⁺/<u>t</u>-butylhydroperoxide proceeded in good yields to give 2-amino-4-<u>n</u>-pentyloxy-7-<u>n</u>propylthio-6-propionylpteridine ($\underline{9}$, 79%) and 2,4-diamino-7-methylthio-6propionylpteridine ($\underline{10}$, 85%), respectively. Treatment of $\underline{9}$ with NaSH in DMF afforded the 7-thioxo-7,8-dihydro analog ($\underline{11}$), which showed then no desulfurization with Raney-nickel but decomposition. However, Raney-cobalt in ethanol could solve the problem and converted $\underline{11}$ in 44% yield to 2-amino-4-<u>n</u>-pentyloxy-6propionylpteridine ($\underline{14}$). Finally it was found that desulfurization of <u>9</u> itself works best with copper-aluminum alloy in ethanol and in the presence of base to form in 71% yield a mixture of <u>14</u> and <u>15</u>, which on subsequent alkaline hydrolysis afforded 6-propionylpterin (<u>13</u>). Partial reduction to deoxysepiapterin (<u>17</u>) was somewhat tricky and could only be achieved in 32% yield with amalgamated aluminum powder in aqueous ammonia.

In a second route <u>10</u> was first selectively hydrolyzed by 6 M HCl to give 7methylthio-6-propionylpterin (<u>12</u>, 80%), which was then subjected to copperaluminum alloy treatment in alkaline ethanol. From the complex mixture, 28% of deoxysepiapterin (<u>17</u>) and 48% of 6-(1-hydroxypropyl)pterin (<u>18</u>) have been isolated, whereas 6-propionylpterin (<u>13</u>) and 6-(1-hydroxypropyl)-7-methylthiopteridine (<u>19</u>) have been detected in the filtrate and identified by chromatographical comparisons.

Structural assignments were based on elementary analyses, NMR-spectra as well as UV-spectra and pK_a determinations, which are in this field especially informative (Table 1).

References

- 1) H. S. Forrest and H. K. Mitchell, J. Am. Chem. Soc., <u>76</u>, 5656; 5658 (1954).
- 2) S. Nawa, Bull. Chem. Soc. Jpn., <u>33</u>, 1555 (1960).
- 3) M. Viscontini and E. Mohlmann, Helv. Chim. Acta, <u>42</u>, 836 (1959).
- 4) H. S. Forrest, C. van Baalen, and J. Myers, Arch. Biochem. Biophys., <u>83</u>, 508 (1959).
- 5) F. I. Maclen, H. S. Forrest, and J. Myers, Arch. Biochem. Biophys., <u>114</u>, 404 (1966).
- 6) S. Nawa and H. S. Forrest, Nature, <u>196</u>, 169(1962).
- 7) K. Sugiura and M. Goto, Nippon Kagaku Kaishi, 93, 206 (1972).
- 8) W. Pfleiderer, Chem. Ber., <u>112</u>, 2750 (1979).
- 9) B. Schirks, J. H. Bieri, and M. Viscontini, Helv. Chim. Acta, <u>61</u>, 2731 (1978).
- 10) S. Katoh and M. Akino, Experientia, 22, 793 (1966).
- 11) W. Pfleiderer, R. Baur, M. Bartke, and H. Lutz, "Chemistry and Biology of Pteridines," ed by J. A. Blair, W. de Gruyter, Berlin (1983), p. 93.

(Received April 3, 1984)