Letter

Sequential O-Arylation/Lanthanide(III)-Catalyzed [3,3]-Sigmatropic Rearrangement of Bromo-Substituted Allylic Alcohols

Α

Timothy R. Ramadhar⁽¹⁾ Jun-ichi Kawakami Robert A. Batev*

Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada

rbatey@chem.utoronto.ca

Dedicated to the Cardinal Chemist, the inimitable Prof. Victor Snieckus, on the occasion of his 80th birthday

[3.3]-sigmatropic rearrangement ArBEck (Cu-cat anylation Ln(III) (cat.) 10 examples or ArOH (Mitsunobui 33-98%

Received: 03.07.2017 Accepted after revision: 28.07.2017 Published online: 25.08.2017 DOI: 10.1055/s-0036-1590890; Art ID: st-2017-r0540-l

Abstract Lanthanide(III)-catalyzed aryl-Claisen rearrangement of substrates bearing halo-substituted allyl groups, specifically 2-bromoallyl aryl ethers, afford ortho-2-bromoallylphenols. Aryl ether substrates were synthesized from brominated allylic alcohols via Mitsunobu reaction, Cu(II)-catalyzed arylation using potassium aryltrifluoroborate salts, or S_NAr reaction. Aryl-Claisen rearrangements proceeded in moderate to excellent yields using Eu(III) catalysis. The alkenylbromide functionality remains intact, illustrating the compatibility of synthetically important alkenylhalides during C–O/C–C σ-bond migration processes. Subsequent derivatization of the ortho-2-bromoallylphenol products through O-alkylation or C-arylation/alkenylation via Suzuki-Miyaura cross-coupling demonstrate the potential to access densely-functionalized molecules.

Key words aryl-Claisen [3,3]-sigmatropic rearrangement, alkenylbromide, arylation, organotrifluoroborate salt, lanthanide catalysis, phenols, Suzuki-Miyaura reaction, Chan-Lam-Evans arylation

Alkenylhalides are important functional groups in synthesis since they serve as site-specific groups to introduce C-C, C-N, C-O, or C-S bonds through substitution.¹ These transformations are most commonly achieved through metal-catalyzed transformations, typically through Pd catalysis, such as Suzuki-Miyaura, Stille, Sonogashira, Heck, and carbonylation reactions.² The alkenylhalide functionality can also be reduced to alkenes, participate in E2 elimination to generate alkynes, or can be transformed with either strongly reducing metals or undergo metal-halogen exchange to form organometallic reagents such as alkenyl Grignard, alkenyllithium, or alkenylzinc reagents.³

In view of the importance of this functionality in organic synthesis, developing strategies and reaction conditions that are compatible with the alkenylhalide functional group is of significant interest. As part of a wider program in the use of pericyclic transformations,⁴ we have become interested in establishing methods that allow access to alkenylhalides, particularly cyclic variants, using sigmatropic rearrangement, cycloaddition, and electrocyclic reactions. The aryl-Claisen sigmatropic rearrangement reaction is a wellestablished method for the formation of ortho-substituted phenols.⁵ Herein, we demonstrate the feasibility of aryl-Claisen rearrangements of 2-bromoallyl aryl ethers to give ortho-2-bromoallylphenols using Eu(III) catalysis.

To evaluate the feasibility of combining O-arylation with lanthanide(III)-catalyzed [3,3]-sigmatropic rearrangements on halogenated substrates, 2-bromo-substituted allylic frameworks were chosen. An overall strategy for the formation of halo (bromo)-allylsubstituted phenol 3 was envisaged utilizing a sequential arylation/aryl Claisen rearrangement of allylic alcohol 1 via aryl allylic ether 2 (Scheme 1). Requisite bromo-substituted precursors 1 are accessible through various methods, including electrocyclic ring opening/solvolysis of dibromocyclopropanes⁶ and bromination/Luche reduction of enones. The alkenylbromide functionality in ortho-2-bromoallylphenol product 3 can be further reacted through reduction, C-H bond functionalization, or cross-coupling to 4. Alternatively, conversion of the phenol group through O-alkylation or arylation would provide a route to ether 5, the C-X bond of which could be utilized for further functionalization or C-M bond formation (e.g., C-Li, C-MgX, C-ZnX).

For allyl aryl ether **2** formation, there are numerous methods for O-arylation of 1, but not all would be compatible with the C-X functionality, such as Pd(0)-catalyzed Buchwald-Hartwig O-arylation.⁷ While the presence of the alkenylhalide functionality is problematic for Pd(0)-catalyzed reactions, copper-catalyzed arylations using boronic acids (the Chan-Lam-Evans O-arylation reaction),⁸ or the corresponding aryltrifluoroborate variant,⁹ would likely not be affected. Alternatively, coupling of the allylic alcohol 1

Syn lett

T. R. Ramadhar et al.

В

Scheme 1 Sequential O-arylation, [3,3]-sigmatropic rearrangement strategy for the synthesis of functionalized alkenylhalides **3**

with phenols using the Mitsunobu reaction¹⁰ or with electron-deficient aryl rings under nucleophilic aromatic substitution (S_NAr) conditions¹¹ would also provide access to **2**.¹²

Encouraged by our success in using Eu(fod)₃ for the domino aryl-Claisen rearrangement of bisaryl ethers to afford contiguous bisphenols,¹³ we envisaged performing the aryl-Claisen [3,3]-sigmatropic rearrangement on aryl ether **2**, using Ln(III) catalysis.¹⁴ This method, which was originally reported by Trost,¹⁵ uses the inexpensive oxophilic Eu(fod)₃ (fod = 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6octanedionate) catalyst, allows for stereospecific and highly stereoselective aryl transposition through a suprafacial migration manifold (as opposed to racemization via a formal ionic mechanism, as observed by Trost for the aryl-Claisen rearrangement on enantiopure substrates with BCl₃, Et₂AlCl, and lanthanide(III) triflate additives),¹⁵ and avoids the use of very high temperatures that are usually required for aryl-Claisen reactions (previous examples of rearrangement of simple 2-bromoallyl aryl ethers have required heating at 200 °C).16

For introduction of a phenyl ether, a Mitsunobu-based nucleophilic arylation of **6a** using PhOH was found to be the most convenient method for O-phenylation, affording **7a** in 76% yield (Equation 1).

Equation 1 Substrate synthesis via a nucleophilic (Mitsunobu) arylation route

More electron-rich aryl groups were introduced on brominated cyclic and acyclic allylic primary and secondary alcohols using a mild Cu(II)-catalyzed O-arylation reaction with aryltrifluoroborate coupling partners (Scheme 2).¹⁷ We have previously demonstrated the advantage of using aryltrifluoroborate salts rather than arylboronic acids for the arylation of aliphatic alcohols using copper catalysis.⁹ Formation of five- and six-membered cycloalkenyl arylation products **7b-e** occurred in moderate yields, while reaction of 2-bromocyclohep-2-en-1-ol occurred in poorer yield (23%, **7f**). Linear substrates bearing primary allylic alcohols and trisubstituted or tetrasubstituted bromoalkenes were O-arylated in 61% (**7g**) and 68% (**7h**) yields, respectively.

Scheme 2 Synthesis of *O*-aryl 2-bromoallylic ether substrates **7** through Cu(II)-catalyzed oxidative coupling of **6** with aryltrifluoroborate salts

More electron-deficient aryl groups were introduced using an S_NAr arylation strategy. Thus, nitroaryl-substituted products were formed through S_NAr reaction of **6a** with either 2- or 4-nitrofluorobenzene, producing **7i** and **7j** in excellent yields, while S_NAr reaction of (*Z*)-2-bromobut-2-en-1-ol with 2-nitrofluorobenzene afforded **7k** in 59% yield (Scheme 3). In addition to their application in aryl-Claisen

Synlett

С

rearrangements, C–Br bond in the products **7** can be utilized for further transformations, such as C–H functionalization to give benzofurans.¹²

 $\ensuremath{\textbf{Scheme 3}}$ Synthesis of O-aryl 2-bromoallylic ether substrates through $S_N\!Ar$ substitution

Next, the O-aryl 2-bromoallylic ether substrates 7 were subjected to aryl-Claisen rearrangement reaction (Table 1).¹⁸ The reaction conditions were derived from a prior report in our laboratory describing Eu(fod)₃-catalyzed domino aryl-Claisen rearrangements;¹³ thus, O-aryl 2-bromoallylic ether substrates 7 were reacted with 5 mol% of Eu(fod)₃ in toluene at 120-130 °C in a sealed tube for 24 hours. Reactions on O-aryl 2-bromocyclohexenyl ether substrates typically occurred to give the ortho-substituted phenols 8a-c in excellent yields (82-98%). The reaction was also successful for cyclopentenyl and cycloheptenyl substrates (7d and 7f, respectively). However, when cyclopentenyl substrate 7e bearing a tetrasubstituted alkene was subjected to Eu(fod)₃ catalysis, product 8e was not detected, and decomposition was observed. The arvl-Claisen reactions of linear O-arvl 2bromoallylic ether substrates were also successful. Reaction of **7g** furnished **8g** in excellent yield (94%), illustrating that rearrangement occurs with allylic transposition under Ln(III) conditions (cf. the use of Et₂AlCl). Similarly, the aryl-Claisen rearrangement of the more sterically hindered 7h furnished 8h, albeit in only 33% yield. Tripling the catalyst loading only afforded a 39% yield. A lower yield was also observed for the reaction of **7***i* (49%, **8***i*), which incorporates a para-NO₂ group. Presumably the nitro group lowers the Lewis basicity of the ethereal oxygen and diminishes its propensity to directly interact with Eu(fod)₃. However, with the nitro group located at the ortho position (7i), the product yield increased to 98% (8i). It is unclear why the yield for the rearrangement of 7i was high; however, we speculate that the proximal nitro group may aid in directing the catalyst to the ethereal oxygen. Rearrangement of 7k occurred sluggishly; however, by tripling the catalyst loading (15 mol%) and doubling the reaction time (48 h), phenol 8k was afforded in 89% yield (compared to 65% yield if 5 mol% of $Eu(fod)_3$ was used for 24 h). Overall, the alkenyl bromide functionality is compatible with the $Eu(fod)_3$ -catalyzed aryl-Claisen reaction conditions and thus is available for further derivatization.

 Table 1
 Eu(fod)₃-Catalyzed Aryl-Claisen Rearrangements of O-Aryl 2-Bromoallylic Ether Substrates 7

T. R. Ramadhar et al.

D

Table 1 (continued)

^a Isolated yield following column chromatography.

^b 15 mol% Eu(fod)₃ was used. ^c 15 mol% Eu(fod)₃ and 48 h reaction time was used.

X-ray quality crystals of racemic **8b** were grown through slow evaporation from CDCl_3 . The X-ray crystal structure, solved and refined in the centrosymmetric monoclinic $P2_1/c$ space group, depicts the expected atom connectivities and thus validates the sequential Cu(II)-catalyzed arylation/aryl-Claisen rearrangement reaction for these systems (Figure 1).¹⁹

Following the successful demonstration of aryl-Claisen rearrangements on *O*-aryl 2-bromoallylic ether substrates, we aimed to determine the potential of further elaboration of the alkenylbromide functionality. Proof-of-concept for alkenylbromide utilization was established through Suzuki–Miyaura cross-coupling reaction between **8a** and potassium vinyltrifluoroborate, using slightly modified conditions to those reported by Molander,²⁰ to furnish **9** (Scheme 4). However, an attempt to perform a Suzuki–Miyaura reaction on the same substrate with phenylboronic acid and the electron-rich DavePhos phosphine ligand²¹ failed; only starting material was observed.

Figure 1 X-ray crystal structure of **8b** (ellipsoids are shown at 50% probability level, and only one of two molecules in the asymmetric unit is shown)

Scheme 4 Suzuki–Miyaura cross-coupling reactions of alkenyl bromide **8a** bearing an unprotected phenol hydroxyl group

Speculating that the free phenolic hydroxyl group might be problematic for some cross-coupling reactions, we sought to test the aforementioned failed Suzuki-Miyaura reaction on a substrate with a protected phenolic hydroxyl group (Scheme 5). Compound 8b was first tert-butylprotected with Boc₂O under Sc(III)-catalyzed conditions²² to afford 11 in 80% yield. Initial attempts to perform crosscoupling reactions with 11 failed, presumably on account of the steric bulk imparted by the *tert*-butyl group, and only starting material was observed. Therefore, we attempted another route where **8a** was methylated using dimethylsulfate to generate **12** in excellent yield (90%). Repeating the Suzuki-Miyaura cross-coupling conditions on 12 with phenylboronic acid and DavePhos afforded bisaryl-substituted compound 13 in 80% yield. Therefore, phenol O-alkylation using an alkylating group of low steric bulk is a viable strategy to remedy situations where cross-coupling reactions fail with unprotected alkenyl bromide phenol substrates.

In summary, sequential O-arylation/Ln(III)-catalyzed aryl-Claisen rearrangement on allylic alcohols bearing a participatory alkenylbromide functionality is demonstrated to afford *ortho*-2-bromoallylphenols. The alkenylbromide

Ε

functionality is compatible with several O-arylation processes (via Cu(II)-catalysis, Mitsunobu, and S_NAr) and Eu(III)-catalyzed aryl-Claisen [3,3]-sigmatropic rearrangements. The alkenylbromide functionality can be further elaborated through Suzuki–Miyaura cross-coupling reactions. Overall, this two-step, sequential strategy readily provides access to densely-functionalized polycyclic scaffolds. Further studies involving applications towards total synthesis and for the construction of polycyclic systems bearing axial chirality can be envisaged.

Funding Information

We are grateful for financial support by Takeda Pharmaceutical Company (TPC) Ltd. and by the Natural Sciences and Engineering Research Council (NSERC) of Canada for a Discovery Grant to R.A.B and Alexander Graham Bell Canada Graduate Scholarships M and D3 to T.R.R.

Acknowledgment

We thank Dr. Matthew Forbes and Dr. Alex B. Young for MS analysis, and Dr. Alan J. Lough for X-ray structure determination of **8b**.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590890.

References and Notes

(1) Koh, M. J.; Nguyen, T. T.; Zhang, H.; Schrock, R. R.; Hoveyda, A. H. *Nature (London, U.K.)* **2016**, *531*, 459; and references cited therein.

Letter

- (2) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062.
- (3) (a) Tucker, C. E.; Majid, T. N.; Knochel, P. J. Am. Chem. Soc. 1992, 114, 3983. (b) Klatt, T.; Markiewicz, J. T.; Sämann, C.; Knochel, P. J. Org. Chem. 2014, 79, 4253. (c) Yanagisawa, A. In Science of Synthesis, 7: Category 1, Organometallics; Yamamoto, H., Ed.; Thieme: Stuttgart, 2004, 527.
- (4) See, for example: (a) Duspara, P. A.; Batey, R. A. Angew. Chem. Int. Ed. 2013, 52, 10862. (b) Rosocha, G.; Batey, R. A. Tetrahedron 2013, 69, 8758. (c) Taylor, R. R. R.; Batey, R. A. J. Org. Chem. 2013, 78, 1404. (d) Ramadhar, T. R.; Batey, R. A. Comp. Theor. Chem. 2011, 976, 167. (e) Ramadhar, T. R.; Batey, R. A. Comp. Theor. Chem. 2011, 974, 76. (f) Smith, C. D.; Gavrilyuk, J. I.; Lough, A. J.; Batey, R. A. J. Org. Chem. 2010, 75, 702. (g) Rodrigues, A.; Lee, E. E.; Batey, R. A. Org. Lett. 2010, 12, 260. (h) Smith, C. D.; Rosocha, G.; Mui, L.; Batey, R. A. J. Org. Chem. 2010, 75, 4716. (i) Smith, C. D.; Batey, R. A. Tetrahedron 2008, 64, 652. (j) Li, S.-W.; Batey, R. A. Chem. Commun. 2007, 3759. (k) Lee, E. E.; Batey, R. A. J. Am Chem. Soc. 2005, 127, 14887. (l) Miller, C. A.; Batey, R. A. Org. Lett. 2004, 6, 699.
- (5) (a) Castro, A. M. M. Chem. Rev. 2004, 104, 2939. (b) Ichikawa, H.; Maruoka, K. In The Claisen Rearrangement: Methods and Applications; Hiersemann, M.; Nubbemeyer, U., Eds.; Wiley-VCH: Weinheim, 2007, Chap. 3.1, 45-8.
- (6) For a review on the utility of dibromocyclopropane ringopening reactions, see: Halton, B.; Harvey, J. Synlett **2006**, 1975.
- (7) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. *J. Am. Chem. Soc.* **2010**, *132*, 11592; and references cited therein.
- (8) (a) Chan, D. M. T.; Monaco, K. L.; Wang, R. P.; Winters, M. P. *Tetrahedron Lett.* **1998**, 39, 2933. (b) Evans, D. A.; Katz, J. L.; West, T. R. *Tetrahedron Lett.* **1998**, 39, 2937. (c) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. *Tetrahedron Lett.* **1998**, 39, 2941. (d) Evano, G.; Blanchard, N.; Toumi, M. *Chem. Rev.* **2008**, *108*, 3054.
- (9) Quach, T. D.; Batey, R. A. Org. Lett. 2003, 5, 1381.
- (10) (a) Fletcher, S. Org. Chem. Front. 2015, 2, 739. (b) Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551. (c) Hughes, D. L. Org. Prep. Proced. Int. 1996, 28, 127.
- (11) Terrier, F. Modern Nucleophilic Aromatic Substitution; Wiley-VCH: Weinheim, **2013**.
- (12) Reaction of phenols with allylic mesylates has also been used, see: Yagoubi, M.; Cruz, A. C. F.; Nichols, P. L.; Elliott, R. L.; Willis, M. C. Angew. Chem. Int. Ed. 2010, 49, 7958.
- (13) Ramadhar, T. R.; Kawakami, J.; Lough, A. J.; Batey, R. A. Org. Lett. **2010**, *12*, 4446.
- (14) For a review of catalysis of the Claisen rearrangement, see: Majumdar, K. C.; Alam, S.; Chattopadhyay, B. *Tetrahedron* **2008**, 64, 597.
- (15) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. **1998**, 120, 815.
- (16) Isolated examples of aryl-Claisen [3,3]-sigmatropic rearrangement of simple acyclic 2-bromoallyl aryl ethers have been reported, see: (a) Parker, K. A.; Casteel, D. A. J. Org. Chem. 1988, 53, 2847; PhNMe₂, Δ, reflux. (b) Yoo, S.; Lee, S.-H.; Kim, S.-K.; Lee, S.-H. *Bioorg. Med. Chem.* 1997, 5, 445; BCl₃, -40 °C. (c) Ndungu, J. M.; Larson, K. K.; Sarpong, R. Org. Lett. 2005, 7, 5845; Et₂AlCl, rt. (d) Goundry, W. R. F.; Lee, V.; Baldwin, J. E.

Synlett **2006**, 2407; PhNEt₂, Δ, 200 °C. (e) Lee, S.; Yi, K. Y.; Lee, B. H.; Oh, K. S. *Bull. Korean Chem. Soc.* **2012**, 33, 1147; DMF, Δ, 200 °C. (f) Parsons, P. J.; JonesD, R.; Walsh, L. J.; Allen, L. A. T.; Onwubiko, A.; Preece, L.; Board, J.; White, A. J. P. *Org. Lett.* **2017**, *19*, 2533; H₂O, Δ, 195 °C.

(17) General Procedure for O-Aryl 2-Bromoallylic Ether Synthesis via Cu(II)-Catalyzed Arylation

A suspension of ArBF₃K, Cu(OAc)₂·H₂O (10 mol%), DMAP (20 mol%), and powdered 4Å MS in CH₂Cl₂ was stirred at rt for 5 min. To this suspension was added alcohol **6**. The mixture was stirred at rt for 60–72 h under an O_2 atmosphere. Subsequently, the mixture was filtered through a pad of Celite, and the filtrate was concentrated in vacuo. The resultant crude mixture was purified using flash column chromatography on silica gel to afford aryl ether **7**.

Example

Reaction of **6a** (0.250 g, 1.4 mmol) with 4-FC₆H₄BF₃K (0.601 g (95% purity), 2.8 mmol) using the general procedure afforded **7c** (0.171 g, 45%) as a clear oil.

Analytical Data for Compound 7c

*R*_f = 0.43 (5% EtOAc/hexanes). IR (thin film): ν_{max} = 3073, 3051, 2945, 2934, 2866, 2834, 1647, 1601, 1505, 1439, 1368, 1240, 1202, 1090, 1057, 999, 974, 914, 826, 785, 725 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.00–6.94 (4 H, m), 6.38 (1 H, dd, *J* = 5.0, 3.0 Hz), 4.64–4.62 (1 H, m), 2.27–2.19 (1 H, m), 2.14–2.04 (1 H, m), 1.86–1.74 (2 H, m), 1.70–1.61 (1 H, m). ¹³C NMR (100 MHz, CDCl₃): δ = 158.0 (d, ¹*J*_{CF} = 239.5 Hz), 154.4 (d, ^{*4*}*J*_{CF} = 2.5 Hz), 135.0, 121.2, 118.6 (d, ³*J*_{CF} = 8.0 Hz), 116.1 (d, ²*J*_{CF} = 23.0 Hz), 78.0, 29.3, 28.0, 16.8. ¹⁹F NMR (376 MHz, CDCl₃): δ = -123.41 (m). LRMS (EI⁺): *m/z* (rel. intensity) = 272 (5), 270 (5) [M]⁺, 161 (14), 160 (93), 159 (17), 158 (94), 112 (78), 79 (100). HRMS (EI⁺): *m/z* calcd for C₁₂H₁₂OFBr [M]⁺: 270.0056; found: 270.0061.

(18) General Procedure for the Aryl-Claisen Rearrangement of O-Aryl 2-Bromoallylic Ethers 7 to 8

A mixture of aryl ether 7 and Eu(fod)₃ (5 mol%) in PhMe was

stirred at 120–130 °C in a sealed tube for 24 h under an atmosphere of argon. The mixture was directly purified (without removal of the solvent under reduced pressure) by flash column chromatography on silica gel (gradient: hexanes – 25% EtOAc/ hexanes) to afford phenol **8**.

Example

F

Reaction of 7c (0.050 g, 0.18 mmol) using the general procedure afforded 8c (0.048 g, 96%) as a white solid.

Data for Compound 8c

Mp 52–53 °C (EtOAc/hexanes); R_f = 0.53 (25% EtOAc/hexanes). IR (thin film with CDCl₃): v_{max} = 3468 (br), 2928, 2860, 1644, 1620, 1597, 1504, 1434, 1332, 1260, 1172 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 6.89 (1 H, dd, *J* = 9.5, 3.0 Hz), 6.82 (1 H, ddd, *J* = 8.5, 8.0, 3.0 Hz), 6.70 (1 H, dd, *J* = 8.5, 4.5 Hz), 6.40 (1 H, ddd, *J* = 4.0, 4.0, 1.5 Hz), 4.81 (1 H, br s), 4.02–3.99 (1 H, m), 2.26–2.13 (2 H, m), 2.11–2.03 (1 H, m), 1.90–1.83 (1 H, m), 1.63–1.52 (2 H, m). ¹³C NMR (100 MHz, CDCl₃): δ = 157.4 (d, ¹*J*_{CF} = 237.5 Hz), 149.3 (d, ⁴*J*_{CF} = 2.5 Hz), 133.2, 131.0 (d, ³*J*_{CF} = 6.5 Hz), 123.5, 116.6 (d, ³*J*_{CF} = 8.0 Hz), 116.4 (d, ²*J*_{CF} = 24.0 Hz), 114.1 (d, ²*J*_{CF} = 23.0 Hz), 44.0, 31.1, 27.9, 18.0. ¹⁹F NMR (376 MHz, CDCl₃): δ = –123.9 (ddd, *J*_{FH} = 8.5, 8.5, 4.5 Hz). LRMS (EI⁺): *m/z* (rel. intensity) = 272 (5), 270 (6) [M]⁺, 191 (39), 163 (29), 149 (16), 133 (11), 125 (13), 109 (10), 86 (73), 84 (100). HRMS (EI⁺): *m/z* calcd for C₁₂H₁₂OBrF [M]⁺: 270.0056; found: 270.0059.

- (19) CCDC 1558909 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- (20) Molander, G. A.; Felix, L. A. J. Org. Chem. 2005, 70, 3950.
- (21) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. **1998**, 120, 9722.
- (22) Bartoli, G.; Bosco, M.; Carlone, A.; Dalpozzo, R.; Locatelli, M.; Melchiorre, P.; Sambri, L. J. Org. Chem. **2006**, *71*, 9580.