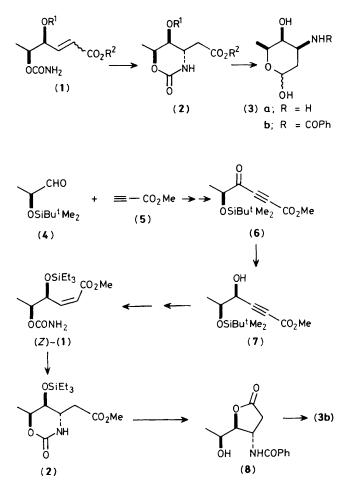
View Article Online / Journal Homepage / Table of Contents for this issue


## New Acyclic Approach to 3-Amino-2,3,6-trideoxy-L-hexoses: a Stereocontrolled Synthesis of *N*-Benzoyl L-Daunosamine

## Masahiro Hirama,\* Itaru Nishizaki, Takeo Shigemoto, and Shô Itô

Department of Chemistry, Tohoku University, Sendai, 980, Japan

*N*-Benzoyl L-daunosamine was synthesized stereoselectively starting from *O*-t-butyldimethylsilyl L-lactaldehyde and methyl propiolate; the crucial step, intramolecular conjugate addition of a carbamoyl amino group of methyl *threo*-5-carbamoyloxy-4-triethylsilyloxy-(*Z*)-hex-2-enoate, proceeded with exclusive 1,3-*anti* diastereoselectivity.

Synthesis of daunosamine (3a) has been the focus of considerable attention in recent years<sup>1</sup> since it is an essential component of a group of anthracycline antibiotics valuable for their antitumour activity. Recently, we have developed a new carbamate-mediated intramolecular amination methodology<sup>2</sup> and demonstrated its synthetic utility by the stereoselective synthesis of all four possible diastereoisomers of racemic N-acyl 3-amino-2,3,6-trideoxyhexoses.<sup>3</sup> In the synthesis of N-benzoyl D,L-daunosamine, however, diastereoselectivity of the crucial amination step  $[(E)-(1)\rightarrow(2)]$  was not satisfactorily high, although the desired 1,3-anti stereoselection predominated (up to 5:1).<sup>3b</sup> We now describe a synthesis of optically



active N-benzoyl daunosamine (3b), in which the crucial step proceeded with complete stereocontrol (>100:1).

The favoured conformation of the allylic system in the  $\alpha,\beta$ -unsaturated ester (1) with Z geometry would be the one in which the allylic C–O bond is perpendicular to the double bond in both ground and transition states,<sup>4a,b</sup> because of repulsive interactions  $[A(1,3) \text{ strain}]^{4c}$  of the ester group with the allylic hydrogen and the OR<sup>1</sup> group. With this conformation an antiperiplanar effect could operate most efficiently in the transition state,<sup>3b,5</sup> because the LUMO of the unsaturated ester group and  $\sigma^*$  orbital of the allylic C–O bond could overlap most favourably; higher asymmetric induction was therefore anticipated in the amination of (Z)-(1) than in (E)-(1).

With this expectation O-t-butyldimethylsilyl lactaldehyde (4)<sup>+</sup> was coupled with the lithium acetylide of methyl propiolate (5) [lithium di-isopropylamide (LDA), tetrahydrofuran (THF),  $-78 \,^{\circ}\text{C}$ ]<sup>6</sup> to give a mixture of the *threo* (7) and the *erythro* isomer in a ratio of 1:5 (75% yield),<sup>‡</sup> the stereoselection being explicable in terms of a Felkin (Cram)

## J. CHEM. SOC., CHEM. COMMUN., 1986

model for a non-chelated transition state.<sup>7</sup> The mixture was oxidized to ketone (6),  $[\alpha]_{D}^{21} - 22.8^{\circ}$  (c 6.8, CHCl<sub>3</sub>), with Jones' reagent (acetone, room temperature, 84%) without separating the mixture. Stereoselective reduction of (6) was achieved with L-Selectride in THF at -78 °C to afford (7),  $[\alpha]_{D}^{18} + 18.5^{\circ} (c \ 3.6, CHCl_{3}), \text{ in } 60\% \text{ yield (ratio } \geq 12:1), \text{ while}$ Vitride<sup>8</sup> showed only moderate selectivity (4.6:1) as well as substantial 1,4-over-reduction. The compound (7) was converted without separation into the carbamate (Z)-(1){R<sup>1</sup> = SiEt<sub>3</sub>,  $R^2 = Me$ ;  $[\alpha]_D^{20} - 10.2^\circ$  (*c* 1.4, CHCl<sub>3</sub>) in five steps: (i) protection of the hydroxy group (dihydropyran, H<sup>+</sup>, 84%); (ii) deprotection of silvl ether (Bu<sub>4</sub>NF, 74%); (iii) carbamation and simultaneous hydrolysis of tetrahydropyran-2-yl ether (ClSO<sub>2</sub>NCO, -78 °C; H<sub>2</sub>O, 60 °C, 55%); (iv) reprotection of hydroxy group (Et<sub>3</sub>SiCl, DMF, imidazole, 89%); (v) hydrogenation (Lindlar catalyst,  $H_2$ , toluene, 71%). At this stage, the contaminating erythro derivative was readily separated by recrystallization. Pure(Z)-(1) thus obtained was subjected to intramolecular conjugate addition (1 equiv. Bu<sup>t</sup>OK, THF, 0 °C)<sup>2,3</sup> to give the 1,3-anti cyclic carbamate (2)  $\{R^1 = SiEt_3, R^2 = Me; m.p. 60-61 \ ^\circ C, [\alpha]_D^{22} - 78.2^\circ (c 1.0, c)\}$  $(HCl_3)$  exclusively (>100:1) in 73% yield. No signal due to the stereoisomer was detected by <sup>1</sup>H n.m.r. (200 MHz) spectroscopy. Thus, a dramatic improvement of diastereoselectivity has been achieved in the conjugate addition of homoallylic carbamate (1) by changing the geometry of the double bond from  $E^{3b}$  to Z. Alkaline hydrolysis of (2) and subsequent benzoylation<sup>3b</sup> afforded known L-lyxo-γ-lactone (8)<sup>1b.9</sup> {m.p. 143–144 °C;  $[\alpha]_D^{26}$  –19.4° (*c* 1.0, EtOH), –15.2° (c 0.52, MeOH). Reduction of (8) with DIBAL (5 mol. equiv., THF, -78 °C) gave N-benzoyl L-daunosamine  $(3b)^9$  in 53% yield. M.p., t.l.c., <sup>1</sup>H n.m.r., and i.r. spectra and optical rotation of synthetic (3b) were identical with those of an authentic sample.

We thank Professor F. M. Hauser, Oregon Graduate Centre, for his gift of a sample of (3b).

Received, 11th November 1985; Com. 1586

## References

- 1 For recent syntheses of L-daunosamine and its derivatives, see: (a) Y. Hamada, A. Kawai, and T. Shioiri, *Tetrahedron Lett.*, 1984, **25**, 5409; (b) S. Hanessian and J. Kloss, *ibid.*, 1985, **26**, 1261 and references cited therein.
- 2 M. Hirama, T. Shigemoto, Y. Yamazaki, and S. Itô, J. Am. Chem. Soc., 1985, 107, 1797.
- 3 (a) M. Hirama, T. Shigemoto, Y. Yamazaki, and S. Itô, *Tetrahedron Lett.*, 1985, **26**, 4133; (b) M. Hirama, T. Shigemoto, and S. Itô, *ibid.*, 4137.
- 4 (a) G. J. Karabatsos and D. J. Fenoglio, *Top. Stereochem.*, 1970, 5, 191; (b) I. Hasan and Y. Kishi, *Tetrahedron Lett.*, 1980, 21, 4229 and references cited therein; (c) F. Johnson, *Chem. Rev.*, 1968, 68, 375.
- 5 Nguyên T. Anh and O. Eisenstein, *Nouv. J. Chim.*, 1977, 1, 61; P. Caramella, N. G. Rondan, M. N. Paddon-Row, and K. N. Houk, *J. Am. Chem. Soc.*, 1981, **103**, 2438; M. N. Paddon-Row, N. G. Rondan, and K. N. Houk, *ibid.*, 1982, **104**, 7162.
- 6 K. Yamada, N. Miyaura, M. Itoh, and A. Suzuki, *Synthesis*, 1977, 679.
- 7 M. Chěrest, H. Felkin, and N. Prudent, *Tetrahedron Lett.*, 1968, 2199.
- 8 T. Nakata, T. Tanaka, and T. Oishi, *Tetrahedron Lett.*, 1983, 24, 2653.
- 9 F. M. Hauser, R. P. Rhee, and S. R. Ellenberger, J. Org. Chem., 1984, 49, 2236.

<sup>&</sup>lt;sup>†</sup> The aldehyde (4) { $[\alpha]_D^{19} - 12^\circ$  (c 1.5, CHCl<sub>3</sub>)} was prepared by a standard procedure from ethyl (S)-lactate [i, ButMe<sub>2</sub>SiCl, imidazole, dimethylformamide (DMF) (100%); ii, di-isobutylaluminium hydride (DIBAL), CH<sub>2</sub>Cl<sub>2</sub>, -78 °C (61%)].

 $<sup>\</sup>ddagger$  The reaction mixture is poured into a vigorously stirred saturated aqueous solution of NH<sub>4</sub>Cl. Otherwise, the yield of the desired products remains less than 50% because of side reactions, such as silyl group migration.

<sup>§</sup> Recrystallized readily from diethyl ether-hexane; the melting point is too close to room temperature to measure.