Efficient Synthesis of 2-Methoxy- and 4-Methoxy-estrogens

Mitsuteru Numazawa* and Yuko Ogura

Tohoku College of Pharmacy, Komatsushima, Sendai, Miyagi 983, Japan

2-Methoxy- and 4-methoxy-estrogens are easily prepared from the corresponding 2-iodo or 4-bromo derivatives in high yields by a halogen-methoxy group exchange reaction using sodium methoxide-copper(II) chloride.

The physiological significance of catechol estrogens, a group of major estrogen metabolites formed by aromatic hydroxylation of primary estrogens at either the C-2 or C-4 position, is now well documented. Catechol estrogens are further metab-

(1)
$$R^1 = OH$$
, $R^2 = R^3 = H$, $X = H$
(2) $R^1 = OH$, $R^2 = R^3 = H$, $X = Br$
(3) $R^1 = OH$, $R^2 = R^3 = H$, $X = I$
(4) $R^1 = OH$, $R^2 = R^3 = H$, $X = OMe$
(5) R^1 , $R^2 = O$, $R^3 = H$, $X = I$
(6) R^1 , $R^2 = O$, $R^3 = H$, $X = OMe$
(7) $R^1 = R^3 = OH$, $R^2 = H$, $X = I$
(8) $R^1 = R^3 = OH$, $R^2 = H$, $X = OMe$

(3)
$$R^1 = OH$$
, $R^2 = R^3 = H$, $X = I$
(4) $R^1 = OH$, $R^2 = R^3 = H$, $X = OMc$

(5)
$$R^1$$
, $R^2 = 0$, $R^3 = H$, $X = I$
(6) R^1 , $R^2 = 0$, $R^3 = H$, $X = OMe$

(6)
$$R^1$$
, $R^2 = O$, $R^3 = H$, $X = OMe$
(7) $R^1 = R^3 = OH$, $R^2 = H$, $X = I$

(8)
$$R^1 = R^3 = OH$$
, $R^2 = H$, $X = OMe$

(9)
$$X = Y = Br$$

(10) $X = H, Y = Br$
(11) $X = H, Y = OMe$

olized to their monomethyl ethers, in which 2-methylation^{1a,b} or 4-methylation² generally predominates. The biological activity of the 2-methyl ethers is becoming increasingly evident.3

A practical synthesis of 2-methoxy-estrogens was first reported by Fishman.4 Since then many synthetic procedures have been reported for the 2-methoxy5 and 4-methoxy5a,6 derivatives, the most interesting of which^{5d} involves a direct conversion of 2-bromoestradiol (2) into the corresponding methoxy derivative (4); this procedure, however, requires a long reaction time (22 h), and the yield is not satisfactory (50%). We now describe a new, efficient, and simple method for introducing a methoxy group at C-2 and C-4 of estrogens via the corresponding 2-iodo-7 or 4-bromo-estrogens, which can be obtained regioselectively in high yields.

When 2,4-dibromoestradiol (9) was catalytically hydrogenated over 5% palladium-on-charcoal (EtOH, 1 atm, room temp.) until absorption of hydrogen (ca. 1 equiv.) stopped, selective debromination occurred at the C-2 position to give 4-bromoestradiol (10)8 (80%).

Treatment^{5d} of 2-iodoestradiol (3) with NaOMe (10 mol. equiv.) in MeOH-dimethylformamide (DMF) in the presence of CuI (0.33 mol. equiv.) unexpectedly gave the reductively dehalogenated product, estradiol (50%), along with the desired 2-methoxy compound (4) (3%). When the iodide (3) was submitted to the same reaction using CuCl29 instead of CuI, however, the methoxyestrogen (4) [m.p. 188-189 °C (lit.4 188-190 °C); ¹H n.m.r. δ (CDCl₃-CD₃OD) 0.80 (3H, s, 3 × 18-H), 3.87 (3H, s, 2-OCH₃), 6.64 (1H, s, 4-H), and 6.80 (1H, s, 1-H)] was quantitatively obtained after only brief treatment (5 min). Other 2-iodo compounds (5) and (7) were also converted into the corresponding methoxyestrogen (6) (30%) [m.p. 185— 187 °C (lit. 4 188—191 °C), 1 H n.m.r. δ (CDCl₃) 0.90 (3H, s, 3 \times 18-H), 3.83 (3H, s, 2-OCH₃), 6.62 (1H, s, 4-H), and 6.75 (1H, s, 1-H)] and (8) (45%) [m.p. 212—214 °C (lit.5b 211—214 °C), ¹H n.m.r. δ (CDCl₃-CD₃OD) 0.74 (3H, s, 3 × 18-H), 3.79 (3H, s, 2-OCH₃), 6.54 (1H, s, 4-H), and 6.70 (1H, s, 1-H)] using the same reaction (Table 1). Furthermore, the yield of the

Table 1. Conversion of halogeno into methoxy compounds.⁸

	Conditions		Product
Substrate	Solvent	t/min	(isolated yield, %)
(3)	DMF	5	(4) (95) ^b
(3)	Pyridine	20	(4) (1.3) ^c
(5)	DMF	15	(6) (30) ^c
(5)	Pyridine	30	(6) (65) ^b
(7)	DMF	10	(8) (44) ^b
(7)	Pyridine	15	(8) (20) ^c
(10)	DMF	75	(11) (75) ^b

^a Substrate (1 mmol) was dissolved in 4 ml of solvent. To this solution were added 2.0 ml of a 5.1 m solution of NaOMe in MeOH and CuCl₂ (0.33 mmol) and the reaction mixture was refluxed under an N₂ atmosphere. ^b The crude product obtained after the usual work-up was crystallized to give a pure product. ^c The product was purified by column chromatography.

methoxyestrogen (6) (only) was much improved (65%) when pyridine was used as a solvent (Table 1).

When 4-bromoestradiol (10) was treated similarly with NaOMe in DMF, the corresponding 4-methoxyestradiol (11) [m.p. 166—168 °C (lit. 6 167—169 °C), ¹H n.m.r. δ (CDCl₃- CD_3OD) 0.75 (3H, s, 3 × 18-H), 3.78 (3H, s, 4-OCH₃), 6.73 (1H, d, J 9 Hz, 2-H), and 6.98 (1H, d, J 9 Hz, 1-H)] was obtained in 75% yield.

In addition to its simplicity and the high yields obtained, the obvious advantages of this sequence are that substrates, 2-iodoor 4-bromo-estrogens, can be obtained regioselectively in high yields and that catechol estrogens can be synthesized from primary estrogens in a relatively short step through the demethylation^{5b} of the 2- or 4-methoxy derivatives.†

Received, 24th January 1983; Com. 109

References

- 1 (a) P. Ball and R. Knuppen, Acta Endocrinol., Suppl. 232, 1980, 93, 1; (b) N. J. MacLusky, F. Naftolin, L. C. Krey, and S. Franks, J. Steroid Biochem., 1981, 15, 111; (c) G. Emons, R. Knuppen, and P. Ball, Endocrinology, 1981, 109, 1799.
- 2 P. Ball, R. Knuppen, M. Haupt, and H. Breuer, J. Clin. Endocrinol. Metab., 1972, 34, 736.
- 3 J. F. Dunn, G. R. Merrian, C. Eil, S. Kono, D. L. Loriaux, and B. C. Nisula, J. Clin. Endocrinol. Metab., 1980, 51, 404; G. E. Ackerman, P. C. MacDonald, G. Gudelsky, C. R. Mendelson, and E. R. Simpson, Endocrinology, 1981, 109, 2084; S. Katayama and J. Fishman, ibid., 1982, 110, 1448.
- 4 J. Fishman, J. Am. Chem. Soc., 1958, 80, 1213.
- 5 (a) S. Kraychy, J. Am. Chem. Soc., 1959, 81, 1702; (b) J. Fishman, M. Tomasz, and R. Lehman, J. Org. Chem., 1960, 25, 585; (c) T. Nambara, S. Honma, and S. Akiyama, Chem. Pharm. Bull., 1970, 18, 474; (d) P. N. Rao and J. E. Burdett, Jr., Synthesis, 1977, 168.
- 6 J. F. Kerwin, U.S. Pat. No. 3 496 168, 1970 (Chem. Abs., 1970, **72**, 121805m).
- 7 C. A. Horiuchi and J. Y. Satoh, J. Chem. Soc., Chem. Commun., 1982, 671.
- 8 D. S. Wilbur and H. A. O'Brien, Jr., J. Org. Chem., 1982, 47,
- 9 S. Torii, H. Tanaka, T. Siori, and M. Akada, J. Org. Chem., 1979, 44, 3305.

† In a recent report (X. U-Z. Zheng, W. L. Wang, Z.-Z. Zhong, Z.-B. Xu, and H.-M. Zhao, Steroids, 1982, 40, 121) 2,4-dibromoestradiol (9) was converted into the 2,4-dimethoxy analogue using NaOMe-CuI-benzo-15-crown-5-DMF in 40% yield. It is interesting to speculate on the results when using a crown ether in the reactions described in the present communication.