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: A total synthesis of racemic [3-necrodol is described n.~n~ an ortlm-es~ Claism rmmmgem~ 
as the key step to dic~te a high level of trans-l,3-diastereoselection on a cyclopentam) derivative. 
© 1999 Elsevier Science Ltd. All rights reserved. 

13-Necrodol 1, a structurally novel monoterpenc, has been isolated ~ from the defensive spray of the red.lined 

carrion beetle, Necrodes surinamensis, along with a-necrodol 2. Be~__~ of their fascinating structures and ami-huteetant 
activity, these compounds continue to be targets of synthetic investigations. 2 Necrodols pose a considerable synthetic 

challenge with consUuction of the sterically congested cyclopentane nucleus and generation of the thermodynamically 
-n~vonmble trans geometry between the 1- and 3- substiments being most important. While the necrodane nucleus has 

been successfully constructed, total diastercoselection has not been achieved with mixtures of trans- and cis-necrodano 

structures in ratios between 5:1 to 1:3 being obtained. We here report a total synthesis of [~-necrodol in which a high level 

of 1,3-diastereoseleetivity has been achieved. 
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The key step m our approach was an ortho-ester Claisen rearrangement which establishes the trans geometry of 

the 1,3-substituems with simultaneous generation of the exo methylene unit. We reasoned that during the Claisen 

rearrangement, reaction would prefer to take place on the face opposite 3 to the hydroxymethyl group through the 
transition state 3. The alternative transition state 4 possesses an un~vonrable 1,3-diaxial intefaetion. The allyl alcohol 11, 

the precursor for the Claisen rearrangement, was prepared from the cyclopentanone derivative 7 (Scheme - 1). The 

cyclopentanone derivative 7 was obtained through a novel four-step sequence developed m our laboratory for the 

synthesis of vicinally substituted cyclopentanones 4 and spirocyciopentanones, s Reaction of acetone with ethoxyvinyl 

lithium followed by allylation of the resulting carbinol afforded the diene 5. The diene 5 underwent smooth CuOTf 

catalysed [2+2] photocycloaddifion to form the cyclobutane derivative 6 which on acid treatment afforded the 

cyciopentnuone derivative 7. 6 

For the transfmmafion of the ketone 7 to the Claisen precursor 11, the hydroxyl group m 7 was protected as a 

silyl ether to afford the ketone 8. 7 The ketone 8 was transformed to the unsa tum~ aldehyde 10 through the I~-keto acetal 
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9 m excellent overall yield following Ghatak's protocol s The aldehyde 10 was then reduced with NaBI-14 to afford the diol 
11 in 62% yield. The Clai~m rearrangement was accomplished by heating a mixture of the alcohol 11, 
triethylorthoacetate, mercuric acetate and propionic acid in a sealed tube at 200°C for 6 hrs. The product was directly 
hydrolysed to produce the hydroxy azid 12 along with its cis-epimer in a 10:1 ratio in a 42% overall yield for the two 
steps. Irradiation of a benzene solution of this hydroxy acid mixture in presence of quinoline and t-butyl mercaptan with 

pyrex filtered fight led to smooth decarboxylation 9 to afford l~-necrodol 1 and epi-I~-neerodoi in the same ratio (10:1) in 

61% yield. IH and 13C NMR spectral data I° of [3-neerodoi 1, obtained in this way were closely comparable with those 
reported." 
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Sdseme - 1. ~ ms4 ~ :  i) ethyl vinyl eth~, ~uLi, THF, 8t% fi) Nail, THF, aHyl bromide, HMPA, 73%. i~) hv 
CuOTf, Et20, 88%. iv) CH2C12, TfOI'I, 84 o/~ V) TBDMSCI, EtsN, DMAP, Imidazole, CH2C17, 73%. vi) CH(OMe)3. BFs.Et20, 
EtNPr2 i, 79%. vii) N'aRH4, MeOH, then 6N HCI, 87% viii) NaBH4, MeOH, 62%. ix) CHsC(OEt)3, Hg(OAc)2, propionic acid, 200°C, 
6h rhea 5% NaOH, MeOH, H20, reflux, 211, 42%. x) hv, quinoline, =BUSH, C6H~ 61%. 
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