Electron Impact Mass Spectrometry of 2-Hydroxymethyl-3,4,5,6,7,8-hexahydro-2*H*-1-benzopyran-5-ones. The Unusual Presence of [M-H₃O]⁺ Species in the Fragmentation Pattern of 4-Phenyl Derivatives[†]

Pierfrancesco Bravo, Calimero Ticozzi and Pietro Traldi‡

Centro di Studio per le Sostanze Organiche Naturali del CNR, c/o Istituto di Chimica del Politecnico, 20133 Milano, Italy

The mass spectrometric behaviour of some 2-hydroxymethyl-3,4,5,6,7,8-hexahydro-2H-1-benzopyran-5ones is described and discussed with the aid of exact mass measurements, linked scans, labelling experiments and low electron energy measurements. The unusual presence of abundant $[M-H_3O]^+$ species in the mass spectra of 4-phenyl substituted compounds is discussed in detail and a mechanism is proposed.

INTRODUCTION

As already reported,¹ 2-hydroxymethyl-3,4,5,6,7,8-hexahydro-2H-1-benzopyran-5-ones are easily obtained by reacting dimethylsulfoxonium methylide on 2-hydroxy-3,4,5,6,7,8-hexahydro-2H-1-benzopyran-5-ones or on the corresponding 2-(3'-oxoalkyl)-1,3cyclohexane-1,3-diones, through a methylene transfer reaction (see Scheme 1).

Scheme 1

While mass spectrometry of chromans,^{2–4} chromones,⁵ homochromones⁶ and tetrahydropyran-3-ones⁷ has been widely studied, no mass spectrometric investigations have been performed previously on the

† Partially and preliminarily communicated at the V congresso Nazionale di Spettrometria di Massa, Rende (Cosenza), Italy (1980). ‡ Present address: Istituto di Polarografia ed Elettrochimica Preparativa del CNR, Corso Stati Uniti 4, Padova, Italy. title compounds. In the present paper the mass spectral behaviour of four 2-hydroxymethyl-3,4,5,6,7,8-hexahydro-2*H*-1-benzopyran-5-ones (1, 5, 7 and 8) and four deuterated derivatives (2-4, 6) is discussed in detail with the aid of exact mass measurements, linked scans⁸ and low electron energy measurements.

EXPERIMENTAL

Mass spectra were run on an Hitachi RMU double focusing instrument operating at 70 eV ($80 \mu A$). Samples were introduced directly into the ion source at 200 °C. Linked scans⁸ were performed by a Varian 112 S instrument.

Exact mass measurements were obtained with the peak matching technique at 6000 resolution.

Compounds 1 and 5 were obtained by reacting dimethylsulfoxonium methylide on 2-hydroxy-3,4, 5,6,7,8-hexahydro-2*H*-1-benzopyran-5-ones 9 and 10, while compounds 3, 7 and 8 were obtained by

CCC-0030-493X/82/0017-0444\$02.00

Table 1. Partial mass spectra of 1-8								
Compounds	1	2	3	4	5	6	7	8
[M]+·	m/z(int.%) 300(100)	m/z(int.%) 301(100)	m/z(int.%) 301(100)	m/z(int.%) 302(100)	m/z(int.%) 272(100)	m/z(int.%) 273(100)	m/z(int.%) 196(43)	m/z(int.%) 224(68)
[M–CH ₃]+	285(2)	286(2)	286(2)	287(3)				209(5)
[M~HRÖ]+'	282(5)	282(7)	283(5)	283(7)	254(5)	254(6)	178(1)	206(4)
[M-H ₂ RO] ⁺	281(25)	281(23)	282(22)	282(12)	253(17)	253(17)		_
[M-HRR'O] ^{+a}			281(4)	281(4)				
$[M-CH_2OR]^+$	269(15)	269(15)	270(19)	270(18)	241(10)	241(9)	165(40)	193(56)
$[M - C_2 H_5 RO]^{++}$	254(9)	254(9)	255(9)	255(9)	226(20)	226(25)	150(7)	178(8)
[M-C ₃ H ₅ O] ⁺	243(48)	244(42)	244(40)	245(28)	215(53)	216(54)	139(43)	167(34)
[M-C ₃ H ₅ OR] ^{+•}	242(15)	242(22)	243(15)	243(27)	214(15)	214(24)	138(15)	166(15)
$[M - C_3 H_6 OR]^+$	241(29)	241(20)	242(20)	242(19)	213(32)	213(26)	137(12)	165(7)
$[M - C_4 H_7 O]^+$	229(14)	230(10)	230(14)	231(9)	201(22)	202(15)	125(35)	153(17)
$[M - C_4 H_8 OR^{-}]^+$	227(17)	227(17)	228(19)	228(17)	199(30)	199(37)	123(20)	151(14)
^a Distinguishable only for compounds 4 and 3 .								

reacting the same ylide on 2-(3'-oxoalkyl)-1,3-cyclohexane-1,3-diones **11**, **12** and **13** (Scheme 1). General procedure: a solution of dimethylsulphoxonium methylide was prepared from trimethylsulphonium iodide (9.9 g, 0.045 mol) and NaH (2.2 g, 60% mineral oil dispersion, 0.055 mol) in DMSO (80 cm³) according to Corey.⁹ A solution of the appropriate open chain compound **11**, **12** or cyclic ketal **9**, **10** (0.015 mol) in DMSO (15 cm³) was added drop-wise over 15 min to the stirred solution of the ylide kept under nitrogen at -5 °C. The pale yellow solution was stirred for 18 h at room temperature and then poured into the ice-water, the pH adjusted to neutral with diluted HCl and extracted with Et_2O (3×100 cm³). The combined organic layers were washed with water (3×50 cm³), dried over Na₂SO₄ and evaporated under reduced pressure to give the crude products **1**, **3**, **5**, **7** and **8**, which were crystallized from a convenient solvent.¹

Spectroscopic methods (infrared and ¹H nuclear magnetic resonance) and elemental analysis confirmed the assigned structures.

The intermediate ketone 11 was synthesized as follows: Deuterobenzaldehyde¹⁰ (15) was condensed with

Scheme 2

acetone in alkine medium; the resulting 1- deutero-1phenyl-1-buten-3-one (**16**) (0.1 mol) was reacted with dimedone (0.1 mol) in absolute ethanol (30 cm^3) and K (0.2 g) according to Stetter.¹¹ The crude oil resulting from usual work-up was reacted with **13** to give the deutero derivative compound **3**.

Compounds 2, 4 and 6 were obtained simply by dissolving compounds 1, 3 and 5 respectively in deutero methanol and $D_2O(1:3)$.

RESULTS AND DISCUSSION

Table 1 reports the m/z ratios and the relative abundance of the more important ionic species present in the 70 eV mass spectra of compounds **1–8**. The common fragmentation pattern reported in Scheme 2 was obtained by means of linked scans and exact mass measurements.

The molecular ions of all the compounds examined are very abundant and represent the base peak for the 4-phenyl substituted compounds (1-6) (see Table 1).

The primary loss of CH₃ is not present in the fragmentation pattern of compounds 5–7: this indicates that: (i) the methyl radical lost is definitely one of those in position 7 and (ii) the CH₃ in position 2 is not involved.

Primary losses of CH₂OR' and C₂H₅OR, typical of chromanic system, are also present, giving rise to stable and abundant species. Other important primary decomposition processes are due to losses of C₃H₅O', C₃H₅OR, C₃H₆OR', C₄H₇O' and C₄H₈OR'.

A peculiar aspect of the mass spectrometry of compounds **1–6**, substituted in position 4 with a phenyl group, is the unusual presence of $[M-H_3O]^+$ species in their fragmentation pattern.

These ions are very abundant in the 70 eV mass spectra with respect to the $[M-H_2O]^+$ species (in Table 1, the relative abundances of these last are uncorrected for the isotopic contribution of the $[M-H_3O]^+$ species).

Figure 1. Relative abundances of $[M-H_3O]^{+-}$ and $[M-H_3O]^{+-}$ as a function of ionizing energy.

By means of linked scans the following pathways for the formation of $[M-H_3O]^+$ ions have been elucidated:

i.e. these species may originate either from a primary decomposition process or through sequential losses of H_2O and H^{\cdot}.

On the other hand the plots of rel. ab. vs $E_{\rm el}$ (see Fig. 1) for $[M-H_3O]^+$ and $[M-H_2O]^+$ species show clearly that the formation of the former is a high energy process to take place subsequent to the H₂O primary loss. By the comparison of the mass spectrometric behaviour of the deuterated compounds and the compounds **7** and **8**, for which the position 4 is not substituted with a phenyl group, we assume the mechanism for the formation of $[M-H_3O]^+$ to be as reported in Scheme 3.

Scheme 3

REFERENCES

- 1. P. Bravo, C. Ticozzi and G. Maggi, Heterocycles 4, 1755 (1976).
- 2. Q. N. Porter and J. Baldas, Mass Spectrometry of Heterocyclic Compounds, Wiley-Interscience, New York (1971) and references therein.
- 3. J. R. Trudell, S. D. Sample Woodgate and C. Djerassi, Org. Mass Spectrom. 3, 753 (1970) and references therein.
- 4. H. Budzikiewicz and U. Lenz, Org. Mass Spectrom. 10, 992 (1975).
- 5. G. Barker and G. P. Ellis, Org. Mass Spectrom. 5, 857 (1971).
- 6. M. Nakayama, H. Yamaoka, S. Eguchi, T. Hanafusa and S. Hayashi, Org. Mass Spectrom. 12, 416 (1977) and references therein.
- 7. J. Gore and F. Guigues, Bull. Soc. Chim. Fr. 3521 (1970) and
- references therein. 8. A. P. Bruins, K. R. Jennings and S. Evans, Int. J. Mass Spectrom. Ion Phys. **26**, 395 (1978).
- 9. E. J. Corey and M. Chaikovsky, J. Am. Chem. Soc. 87, 134 (1965).
- 10. D. J. Bennet, G. W. Kirby and V. A. Moss, Chem. Commun. 218 (1967).
- 11. H. Stetter and M. Coenen, Ber. 87, 869 (1954).

Received 5 February 1982; accepted 2 April 1982