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The first metal coordination complex of a radical ligand based
on the 1,2,3-dithiazolyl heterocycle is reported. 6,7-Dimethyl-
1,4-dioxo-naphtho|2,3-d][1,2,3]dithiazolyl acts as a bridging ligand in
the volatile trinuclear Mn(hfac),-Rad-Mn(hfac),-Rad—Mn(hfac),
complex (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). The
Mn(11) and radical ligand spins are coupled anti-ferromagnetically
(AF) resulting in an Syt = 13/2 spin ground state.

The ability to manipulate magnetic coupling between paramagnetic
species is the key to creating new materials with desirable magnetic
properties.' One possible method is the use of organic paramagnets
as ligands: the so-called “metal-radical approach”.>* An unpaired
electron on a ligand can couple strongly to unpaired electrons on a
coordinated metal ion, particularly if there is significant spin
density at the donor atom(s). If the ligand bridges multiple metal
ions, a high-spin ground state can be achieved. New paramagnetic
ligands continue to be reported, however these are often modifica-
tions of a few organic radical architectures, such as phenoxyls and
semiquinones,4 nitroxides and nitronylnitroxides,5 Verdazyls,6 and
triphenylmethyls.” Thiazyls and selenazyls have lately been added
to this list with the use of 1,3,2-dithiazolyls® and 1,2,3,5-dithia-
diazolyls” ! (and selenium analogues of the latter)'? as radical
ligand building blocks. As Veciana® recently articulated, the
advancement of “spin science” requires structural diversity,
and therefore it is important that new paramagnetic ligand
designs be pursued and developed. To this end, we are
reporting the first radical ligand based on the 1,2,3-dithiazolyl
heterocycle and the first trinuclear metal complex of a thiazyl
radical ligand, illustrated in Fig. 1.
6,7-Dimethyl-1,4-dioxo-naphtho[2,3-d][1,2,3]dithiazolyl 1 is
a derivative of the 1,2,3-dithiazolyl-p-naphthoquinone radical
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that was observed in solution EPR by Mayer in 1981."
The latter is a structural isomer of the 1,3,2-dithiazolyl-p-
naphthoquinone recently detected in solution EPR by Pass-
more.'* We have incorporated methyl groups in the frame-
work of ligand 1 in order to increase the sigma donor ability of
the radical and ensure its function as a ligand. This alteration
also promotes the solubility of the ligand in organic media,
facilitating coordination syntheses.

Ligand 1 is prepared by treating 2-amino-3-bromo-6,7-
dimethyl-1,4-naphthoquinone with excess S,Cl, followed by
reduction of the resulting dithiazolium chloride.t Purple crystals
of 1 are grown by sublimation on a preparative scale.

As illustrated in Fig. 2, 1 is dimerized in the solid state.
While this is expected for thiazyl radicals that have not been
explicitly designed to do otherwise,'” the dimerization motif is
entirely new, characterized by short intermolecular S---O
contacts (3.111(3) A). This can be rationalized by invoking
the O-radical resonance contributor. Computational analysist
of radical 1 predicts a delocalized ©* SOMO (singly occupied
molecular orbital) with a significant coefficient at atom O2
(Mulliken spin density ca. 13%; compare ca. 25% at N1). The
O-radical resonance contributor also influences the crystallo-
graphic C-O bond lengths: C2-O1 (1.220(3) A) is typical for a
C=—0 double bond in a benzoquinone, whereas C9-02
(1.234(3) A) is long for this type of bond.i

The dc susceptibility measurements indicate that dimers of 1
are diamagnetic over a temperature range of 1.8 to 300 K. No
evidence for a thermally populated triplet excited state is
observed by solid state X-band EPR (150 to 300 K).'® The
solution EPR spectrum of 1 (CH,Cl,) is a three-line pattern
(hyperfine coupling to one "N nucleus) with small shoulders
from hyperfine coupling to two "H nuclei on the naphthalene
backbone. This spectrum is adequately simulated using: ay =
4.46; ay = 0.32; ay = 0.53 G; g = 2.0095.F

Coordination complex 2 was prepared by treating radical 1
with Mn(hfac),(THF),.!! Crystalline material suitable for bulk
analysis was grown by sublimation. The structure of 2 is shown in
Fig. 3. Atom Mn2 is located at an inversion center, thus the two
halves of the molecule are symmetry-related. The coordination
geometry about Mn2 is roughly octahedral with the two radical
ligands occupying axial positions via monodentate O-coordina-
tion. Like many monodentate O-coordinated Mn(i1) complexes of
nitronylnitroxides,!” the Mn-O bond is not in the ligand
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Fig. 1 Top: line drawing of 1 illustrating two possible resonance
contributors. Middle: singly occupied molecular orbital (SOMO) and
spin density distribution calculatedt for 1. Bottom: line drawing of 2.

Y01
Fig. 2 Single crystal X-ray structure of 1. Green dashed lines denote

close S- - -O contacts that define the dimer. ORTEP thermal ellipsoids
drawn at 50% probability. Symmetry code: (i) 1 — x, 1 — y, —z.

plane (C9-02-Mn2, 139.0(2)°; C10-C9-02-Mn2, 59.7(5)°).
Bidentate chelation of Mnl places this metal ion approxi-
mately in the ligand plane.

The magnetic properties of 2 were investigated between
280 and 1.8 K with an applied field of 1000 Oe (Fig. 4). At
280 K, the T product is 13.1 cm® Kmol~'. Upon cooling, the
% T product gradually decreases to 12.4 cm® Kmol ™' at 110 K,
then increases to a maximum of 15.5 cm® Kmol™' at 14 K.
This thermal behaviour is consistent with significant antiferro-
magnetic (AF) coupling between the ligand and metal ion spins
leading to a ferrimagnetic arrangement of the magnetic sites.

Fig. 3 Single crystal X-ray structure of 2. ORTEP thermal ellipsoids
drawn at 50% probability. F atoms omitted for clarity. Top: complete
molecule; symmetry code: (ii) —x, | — y, —z. Bottom: crystal packing
between two molecules with the intermolecular S---S contact high-
lighted by a green dashed line and the S---O contacts by red dashed
lines; H atoms omitted for clarity.
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Fig. 4 Temperature dependence of the y7 product for 2 at 1000 Oe
(with y defined as molar magnetic susceptibility equal to M/H per
mole of complex 2). Black circles indicate measured data and the red
line represents best simulation obtained with the model described in
the text. Inset: M vs. H data below 8 K.

Upon further cooling, the T product decreases sharply to a
minimum of 4.7 cm® Kmol™! at 1.8 K, indicating additional
AF intermolecular interactions. From the structure of 2,
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the magnetic data were simulated numerically using MAGPACK
software'® with the following isotropic Heisenberg Hamiltonian:
H = —2JyniradlSMnr X S T Swminian X Sradain] —
2JMn2-Rad[SMn2(Sraa T Sraaiy)]s Where Jyni-rad and Jyn2-Rad
represent the exchange interactions between ligand 1 (S = 1/2)
and Mnl and Mn2 (S = 5/2) spins respectively, and S; is the spin
operator of each magnetic site. Introducing inter-complex interac-
tions in the above model in the frame of the mean-field approxi-
mation (zJ'),§ an adequate simulation of the experimental data was
obtained with JMnl—Rad/kB = —35(1) K, JMnZ—rad/kB = —13(1) K,
zJ lkg = —0.17Q2) K, and gj;, = 2.05(2), suggesting an St = 13/2
spin ground state for complex 2. This ground state is confirmed by
M vs. H data (inset Fig. 4) and the high field magnetization at
1.8 K that saturates at 13.4ug.

Magnetic coupling between radical ligand and terminal Mnl
atom spins is larger than that between the radical and central
Mn2 atom spins. This is likely a result of the larger spin density
at N1 than at O2, and possibly also aided by the in-plane,
bidentate coordination motif at Mnl. Short intermolecular
S---O contacts like those apparent in complex 2 (2.915 and
3.188 A; Fig. 3) have previously been shown to mediate AF
coupling between a radical ligand and a neighbouring Mn(11)
ion, thereby giving rise to a high spin ground state for a pair of
complexes.9 For 2, however, the dominant intermolecular
magnetic contacts appear to be the S---S contacts (3.388 A;
Fig. 3). Non-orthogonal overlap between neighbouring radical
ligand SOMOs provides a mechanism for the AF couplings
observed between the trinuclear complexes in the solid state.

Paramagnetic ligand 6,7-dimethyl-1,4-dioxo-naphtho[2,3-d]-
[1,2,3]dithiazolyl, 1, is shown to be capable of coordinating a
metal ion in a monodentate fashion at atom O2 and in a
bidentate chelating fashion at atoms N1 and O1. Owing to the
significant spin density at both N1 and O2, strong antiferro-
magnetic coupling is observed between the ligand and the
metal ions in both positions. The trinuclear coordination
complex 2 is the first example of metal ion coordination to a
1,2,3-dithiadiazolyl radical and it is a very rare example of a
linear “oligomeric” radical ligand coordination complex
with more than two metal ions. This complex is robust and
volatile, such that sublimation produces pure crystalline
material on a preparative scale. The spin ground state of the
complex 2 is St = 13/2, the highest to date for any thiazyl-
metal system.
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T For 86 measured benzoquinone species, the unweighted mean C=0
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deviation of 0.013 A, and the upper quartile is 1.231 A."°
§ In order to take into account the inter-complex interaction, the
following definition of the susceptibility has been used:*°
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