PHOTOCHEMICAL CYCLIZATION OF ACRYLIMIDE DERIVATIVES

Kazuhiro MARUYAMA and Takeshi ISHITOKU

Department of Chemistry, Faculty of Science,

Kyoto University, Kyoto 606

Upon irradiation N-methylmethacrylimide (1a) cyclized to give cis-1,3,5-trimethyl-3-azabicyclo[3.2.0]heptane-2,4-dione (2a) in a yield of 66%. 2a gave 1,2-dimethylcyclobutane-cis-1,2-dicarboxylic acid by alkaline hydrolysis. Several other acrylimide derivatives were found to give similar results upon irradiation.

Photochemical cyclization of N-methylmethacrylimide and other analogs was investigated. Interestingly, this photocyclization gave only one of possible stereo-isomers, i.e., cis isomer, enabling this reaction to have a high synthetic utility. Thus, we extended the photocyclization of acrylimide derivatives for synthesizing alkyl substituted cis-3-azabicyclo[3.2.0]heptane-2,4-diones. Once Lalonde and Davis reported photolysis of trans-cinnamimide to afford β -truxinimide and cinnamamides, 1) but their reaction was limited to the compound.

Typically, N-methylmethacrylimide (1a, 1.3 mmol) in 25 cm³ of acetonitrile was irradiated in a quartz tube with a 120 W low-pressure Hg lamp after bubbling N₂ gas. After 3 h (conversion \sim 90%), chromatography on silica gel gave cis-1,3,5-trimethyl-3-azabicyclo[3.2.0]heptane-2,4-dione (2a, mp 95-96 °C), a cyclized product, in a yield of 66%. The structure of 2a was deduced from its spectroscopic properties: ¹H NMR (CDCl₃) δ 1.28 (s, 6 H), 1.98 (dd, 2 H, J = 2,7 Hz), 2.34 (dd, 2 H, J = 2,7 Hz), 3.05 (s, 3 H); IR (KBr) 1737, 1670 cm⁻¹; m/e (%, rel intensity) 167 (M⁺, 20), 139 (M⁺-C₂H₄, 50), 80 (100). Other examples are summarized in Table.

Srinivasan et al. suggested that in the photocyclization of dienes the initial step was the formation of a five membered ring. $^{2)}$ According to the result, in this reaction 1,4-biradical 3 which has

Table.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			MeCN		R1 R2 O NR R3 R4 O 2	
<u>1</u>	R^1	R^2	R ³	R^4	R	Irra.Time(h)	Yield(conv.%)*
la €	Н	Me	Н	Me	Me	3	66 (90)
<u>l</u> b	H	Me	H	Me	COC (Me)=CH ₂	23	82(100)
lc €	H	Me	H	Me	Ph	7	30 (88) **
1₫	H	Me	H	i-Pr	Me	7	51(95)**
le €	H	i-Pr	H	i-Pr	Me	7	72 (86) **
<u>l</u> f	H	Me	H	n-Hex	Me	7	45 (90) **
lg	H	n-Hex	Н	n-Hex	Me	15	60(100)
$\overset{ ext{lh}}{\sim}$	-(CH ₂) ₄ -		-(CH ₂) ₄ -		Me	10	50(100)***

* Yield was calculated on the basis of the consumed amount of 1.

a five membered ring of succinimide would be initially produced and bond to give cyclobutane ring. This assumption could explain the stereorandomization at C-6 and C-7 positions of $\frac{2}{2}$ in the reaction of $\frac{1}{10}$.

This photocyclization gives a good synthetic method for alkyl substituted cis-3-azabicyclo[3.2.0]heptane-2,4-diones, and in addition the products can be transformed to cyclobutane-cis-1,2-dicarboxylic acid derivatives. After hydrolysis in alkaline solution and treatment with diazomethane, 2b gave 1,2-dimethylcyclobutane-cis-1,2-dicarboxylic acid dimethyl ester (68%). Now, scope and limitation are being studied.

$$\begin{array}{c}
\text{Me} & \text{O} \\
\text{N} & \text{N} & \text{Me} \\
\text{Ne} & \text{O} & \text{2b}
\end{array}$$

$$\begin{array}{c}
\text{1) aqKOH, } \Delta \\
\text{2) } & \text{H}^{+}
\end{array}$$

$$\begin{array}{c}
\text{Me} \\
\text{CO2H} \\
\text{Me}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{2}N_{2} \\
\text{CO2H}
\end{array}$$

$$\begin{array}{c}
\text{Me} \\
\text{CO2Me} \\
\text{Me}
\end{array}$$

References and Notes

- 1) R. T. Lalonde and C. B. Davis, Can. J. Chem., 47, 3250 (1969).
- 2) R. Srinivasan and K. H. Carlough, J. Am. Chem. Soc., <u>89</u>, 4932 (1967).
- 3) Determined from the relative intensities of NMe proton signal of 2d, 2e, and 2f and OMe proton signal of 1,4-dimethoxybenzene (internal standard).[in case of 2c done from Me(R²,R⁴) proton signal]
- 4) The structures of these isomers are under investigation. Photochemical reaction of β,β' -dialkyl substituted 1 was studied for the several imide derivatives to give the mixtures of stereoisomers at C-6 and C-7 positions of 3-azabicyclo[3.2.0]heptane. Details on the distribution of these isomers will be reported elsewhere.
- 5) This acid was synthesized from methacrylonitrile in a poor yield. C. J. Albisetti, D. C. England, M. J. Hogsed, and R. M. Joyce, J. Am. Chem. Soc., 78, 472 (1956).

(Received January 14, 1980)

^{**} NMR yield. 3) *** A mixture of three stereoisomers.