

# Synthesis of Lattice-Contracted Cobalt Disulfide as an Outstanding Oxygen Reduction Reaction Catalyst via Selfassembly Arrangement

Hao Zhang,<sup>[a]</sup> Zhiqiang Wang,<sup>[b]</sup> Chenglong Ma,<sup>[a]</sup> Zhenhua Zhou,<sup>[a]</sup> Limei Cao,<sup>[a]</sup> Xueqing Gong,<sup>[b]</sup> Chunxiao Dong,<sup>[c]</sup> and Ji Yang<sup>\*[a]</sup>

Identifying high-performance non-precious metal-based catalysts at the cathode is a major challenge for future practical applications. Herein, a soft-template route through a self-assembly arrangement of sulfur sources was successfully developed, facilitating the anion exchange. In addition, compared with pristine cobalt disulfide synthesized without templates, the cobalt disulfide prepared using the new method presented a lattice shrinking phenomenon due to the hindrance of cobalt hydroxide crystal cell. Based on X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculation, increased occupancy of  $e_g$  orbitals was verified for the

# Introduction

Fuel cell urgently needs to be developed as a new energy technology to reduce energy consumption and pollution.<sup>[1]</sup> However, experience and rare precious Pt-based catalysts as the state-of-the-art oxygen reduction reaction (ORR), toughen the approaching commercialization of fuel cells. Hence transition metal oxides and chalcogenides with inexpensive, abundant, and ecO-friendly advantages, have been considered as one of the best alternatives.<sup>[2]</sup>

In contrast to metal oxides, metal chalcogenides are a more appealing option because the S3p orbitals are more negative than O2p orbitals when they compose conduction bands of catalysts together with *d*-orbitals of metal cations, which

| [a] | H. Zhang, C. Ma, Dr. Z. Zhou, Dr. L. Cao, Prof. J. Yang<br>State Environmental Protection Key Laboratory of Environmental Risk<br>Assessment and Control on Chemical Processes<br>School of Resources and Environmental Engineering<br>East China University of Science and Technology<br>Shanghai 200237 (P. R. China) |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | E-mail: yangji@ecust.edu.cn                                                                                                                                                                                                                                                                                             |
| [b] | Dr. Z. Wang, Prof. X. Gong                                                                                                                                                                                                                                                                                              |
|     | Key Laboratory for Advanced Materials                                                                                                                                                                                                                                                                                   |
|     | Center for Computational Chemistry and Research Institute of Industrial                                                                                                                                                                                                                                                 |
|     | Catalysis                                                                                                                                                                                                                                                                                                               |
|     | School of Chemistry and Molecular Engineering                                                                                                                                                                                                                                                                           |
|     | East China University of Science and Technology                                                                                                                                                                                                                                                                         |
|     | Shanghai 200237 (P. R. China)                                                                                                                                                                                                                                                                                           |
| [c] | C. Dong                                                                                                                                                                                                                                                                                                                 |
|     | Key Laboratory for Ultrafine Materials of Ministry of Education                                                                                                                                                                                                                                                         |
|     | Shanahai Engineering Research Center of Hierarchical Nanomaterials                                                                                                                                                                                                                                                      |
|     | School of Materials Science and Engineering                                                                                                                                                                                                                                                                             |
|     | East China University of Science and Technology                                                                                                                                                                                                                                                                         |
|     | Shanghai 200237 (P. R. China)                                                                                                                                                                                                                                                                                           |
|     | Supporting information for this article is available on the WWW under https://doi.org/10.1002/cssc.202002960                                                                                                                                                                                                            |

cobalt disulfide after shrinkage, which was the main factor for enhancing the intrinsic activity of the catalyst. Besides the microscopic morphologic structure, elementary composition, and the valence state of the elements, the possible growth process of the cobalt disulfide was also discussed in detail. As catalyst for the oxygen reduction reaction,  $CoS_2$  showed a similar half-wave potential (0.81 vs. 0.84 V for Pt/C) and higher diffusion-limiting current density (reaching 5.33 vs. 5.19 mA cm<sup>-2</sup> for Pt/C) than a commercial Pt/C catalyst. Hence, our results provide a rational design direction for this type of catalysts.

indicates that metal chalcogenides can exhibit relatively high conductivity by a shallow band gap.<sup>[1,3]</sup> According to recent research,<sup>[4]</sup> cobalt sulfides as one kind of promising ORR catalysts have been investigated and applied extensively, such as  $Co_9S_{8'}$ , CoS,  $Co_3S_{4'}$ ,  $CoS_2$ , and  $Co_{1-x}S$ . As of now, there have many reports about improving the catalytic activity of cobalt sulfides. Typically, Higgins et al.<sup>[5]</sup> prepared octahedra  $CoS_2$  in conjunction with different carbon support prepared excellent ORR activity by reinforcing the metal-supports interaction. Incorporating these carbon materials played an essential role in achieving well-defined octahedra  $CoS_2$  that exposing highly active {111} facets for ORR. In addition, Singh et al.<sup>[6]</sup> also reported the detailed synthesis conditions of octahedra  $CoS_2$  for regulating facets. Therefore, octahedra  $CoS_2$  tended to have highly reactive surfaces for ORR.

Unlike the shaped-control affecting exposed crystal-planes on the surface of catalysts, the lattice distortion exhibited a direct effect on lattice parameters and thus changed the intrinsic activity of catalysts. In our previous works,<sup>[7]</sup> a cation doping strategy to synthesize Cu doping IrO<sub>2</sub> and further affects e<sub>a</sub> orbitals occupation of Ir5d electrons. An et al.<sup>[8]</sup> reported nanocrystals with subtle lattice distortion in interfaces, and similarly, the distortion had varying degrees of effects on the e<sub>a</sub> orbitals occupation of Ni and Cu3d electrons. Therefore, the lattice distortion was a powerful means to regulate the occupation of e<sub>a</sub> orbitals that provided a primary descriptor for OER/ORR activity. According to ShaO-Horn and co-workers.<sup>[9]</sup> e<sub>a</sub> orbitals involved the bonding of oxygenated intermediates on metal ions sites, and was considered as a near-unity occupancy corresponding to highest intrinsic OER/ORR activity, which was usually applied in octahedral crystal field of transition-metal oxides or sulfides. The first shell of the CoS<sub>2</sub> crystal cell was one



cobalt ion coordinated with six sulfur anions to form a slightly distorted octahedron. Therefore the  $CoS_2$  was suitable for traditional crystal field theory.<sup>[10]</sup>

Herein we developed a simple hydroxide soft template as the precursor for cobalt disulfide synthesis with outstanding oxygen reduction reaction (ORR) activity. The much mesoporous on soft template made for a self-assembled arrangement of sulfur sources, which facilitated the process of anion exchange and further improved the crystallinity of cobalt disulfide. Besides, the cobalt disulfide, formed from the cobalt hydroxide crystal cell, was also hampered by the crystal cell of cobalt hydroxide with smaller lattice parameters than cobalt disulfide. So, it presented a lattice shrinking phenomenon compared to the pristine cobalt disulfide without templates and further affected the occupancy of  $e_{\alpha}$  orbitals of Co3d electrons. The changed electronic structure was accurately determined by X-ray diffractometry analysis (XRD), Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). In addition, density functional theory (DFT) calculation was also used to simulate cobalt disulfide with a lattice shrinking for investigating the occupancy of e<sub>q</sub> orbitals. Therefore, our systematic study about the effect of lattice shrinking on activity can be applied in other such catalysts designing the field for increasing catalyst intrinsic activity.

## **Results and Discussion**

The crystalline structure of as-prepared catalysts was determined by XRD, showed in Figure 1a. It was observed that the O–CoS<sub>2</sub> synthesized with soft-template and pristine CoS<sub>2</sub>could be easily indexed to the CoS<sub>2</sub> phase (PDF 41–1471). However, the prominent diffraction peaks of O–CoS<sub>2</sub> synthesized with soft-template were more explicit and exhibited higher crystal-



**Figure 1.** (a) XRD patterns of  $CoS_2$  and  $O-CoS_2$ , inset (a<sub>1</sub>) is the peaks offset of sample  $O-CoS_2$  to  $CoS_2$ . (b) Raman spectra of prepared samples and sectional vibration modes. (c) k<sup>2</sup>-normalized CO-K edge EXAFS for prepared samples and inset (c<sub>1</sub>) is the shrinking percentage of different shells.

linity (45.33%) by calculation, in comparison to pristine  $CoS_2$  (28.55%). The calculation process of crystallinity was achieved by the function of "Profile fitting" in the Jade 9 software. Hence the using soft template was conducive to the formation of  $CoS_2$  NPs. Notably, all diffraction peaks of O–CoS<sub>2</sub> had a different degree of offset towards the high-angle direction, showed in insert a<sub>1</sub>. Moreover, given the phenomenon that the higher the angle of the diffraction peak, the greater the peak shift, a reasonable inference that O–CoS<sub>2</sub> had a lattice shrinking in comparison to pristine  $CoS_2$ .

The Raman spectroscopy was also performed for the crystal structure of samples. As shown in Figure 1b, five phonon modes were clearly assigned in Raman spectra of O-CoS<sub>2</sub>,<sup>[11]</sup> while the pristine CoS<sub>2</sub> with lower crystallinity presented relatively low peak intensity and sharpness. In the crystal structure of CoS<sub>2</sub>, a covalent bond existed between the two nearest sulfur atoms, which can be reflected by the  $E_{\alpha}$  mode, that is, a pure librational vibration for dumbbells. The most salient characteristic peaks located at about 387  $\text{cm}^{-1}$  corresponded to the A<sub>a</sub> mode, that is, in-phase stretching vibrations of sulfur atoms,<sup>[12]</sup> while the peak partially overlapped with  $A_g$  peak was  $T_g$  (2) mode that was out-of-phase stretching vibrations. The  $T_{\rm g}$  (1) and  $T_{\rm g}$  (3) modes combined different librational and stretching vibration of sulfur atoms. It is observed that an overall hypsochromic shift for  $O-CoS_2$  was compared with pristine  $CoS_2$ , indicating that a shorter bond or higher electron density. Although the shifts of  $T_a$  (1) and  $T_a$  (3) peaks were not clearly reflected, characteristic peaks of  $E_{q}$ ,  $A_{q}$ , and  $T_{q}$  (3) covered almost all librational and stretching vibration of sulfur atoms,<sup>[10]</sup> which was clearly illustrated in the insert. Therefore, the results of Raman were consistent with that of XRD.

Further information gained from Fourier-transformed (FT) k<sup>2</sup>-normalized extended X-ray absorption fine structure (Figure 1c), O–CoS<sub>2</sub> had a lower value of R and presented an overall negative offset of shells, versus pristine CoS2. The main scattering paths composed of three Co-S shells and a Co-Co shell were explicitly illustrated in the insert. As shown in Figure 1c1, all shells presented different shrinking percentages because the outer shells would be affected by the inner one, except for the first Co-S<sub>1</sub> shell. For investigating the influence of lattice shrinking on coordination number, the peaks of the Co-S1 shell corresponding to the scattering paths of cobalt cation to six nearest sulfur anions were fitted by IFEFFIT (Interactive XAFS analysis and FEFF fitting, FEFF is effective cured wave scattering amplitude) calculation, displayed in Figure S1 in the Supporting Information. The results showed that  $O-CoS_2$  had a higher value (4.176) of N (coordination number) multiplied by  $S_0^2$  (amplitude attenuation factor) than that of pristine  $CoS_2$  (4.140). Hence, using a soft template improved crystallinity and resulted cobalt disulfides with shorter Co–S bonds and higher coordination numbers.

The morphologies of pristine  $CoS_2$  and  $O-CoS_2$  were observed by field-emission scanning electron microscopy (FESEM) in Figure 2a and 2b. The nanoparticles of  $O-CoS_2$ consisted of large-grain with a well-defined structure of polyhedron and granules with irregular structure. And pristine  $CoS_2$  with uniform sizes showed irregular ellipsoid structure,





**Figure 2.** FESEM images of O–CoS<sub>2</sub> (a) and pristine CoS<sub>2</sub> (b). Regional EDS (c) of O–CoS<sub>2</sub> and pristine CoS<sub>2</sub>. Raman spectra (d) of CoS<sub>2</sub> and O–CoS<sub>2</sub> (granules). TEM and HRTEM images of O–CoS<sub>2</sub> (e) and pristine CoS<sub>2</sub> (f). Fourier transform graphs (g) of O–CoS<sub>2</sub> and pristine CoS<sub>2</sub>.

which was consistent with the previous reports.<sup>[13]</sup> N<sub>2</sub> adsorption-desorption isotherms (Figure S2) of pristine CoS2 and O–CoS $_2$  clearly identified the pristine CoS $_2$  (27.04  $m^2g^{-1}\!)$  with the smaller nanoparticles had a higher specific surface area than O–CoS<sub>2</sub> (16.05  $m^2 q^{-1}$ ). To identify the differences of each particle, the regional energy dispersive spectroscopy (EDS) was performed in representative particles, shown in Figure 2c. The large-grain (spectrum 1) displayed a higher ratio of Co: S in comparison to granules (spectrum 2) and pristine CoS<sub>2</sub> (spectrum 3). Increased magnetic  $\mathrm{Co}^{2+}$  and decreased anaerobic S helped the adsorption of paramagnetic  $O_2$  and the generation of a sulfur vacancy on the surface of CoS2.<sup>[14]</sup> Remarkably, the granules of O-CoS<sub>2</sub> and pristine CoS<sub>2</sub> had a quite close Co: S ratio that was about 1:2 and electronic structure proved by Raman results (Figure 2d). By contrast with highly crystallized O-CoS<sub>2</sub> (large-grain) that was discussed in detail above, the characteristic peak of O-CoS<sub>2</sub> (granules) presented a consistent peak position  $(384 \text{ cm}^{-1})$  with pristine  $CoS_2$ , indicating the granules of O–CoS<sub>2</sub> had no shrinkage of crystal cell. Therefore, it can be considered that the changes in the electronic structure and electrochemical performances were mainly due to the large-grain of O–CoS<sub>2</sub>. Moreover, the regional energy dispersive spectroscopy (Figure 2c), also demonstrated that the NPs of O–CoS<sub>2</sub> had a higher amount of carbon than pristine CoS<sub>2</sub>, which can be ascribed to the porous structure of Co-precursor that would be discussed in the following sections.

The difference in morphologies of as-prepared catalysts is further amplified in TEM images. As shown in Figures 2e and f, a clear hexagon is observed on this polyhedron of  $O-CoS_2$  in comparison to irregular pristine  $CoS_2$  NPs. Meanwhile, the phenomenon of lattice shrinking was further bolstered by the lattice spacing derived from the insert of Figure 2e and f. After the Fourier transforms,  $O-CoS_2$  demonstrated a smaller lattice spacing than pristine  $CoS_2$  at the same crystal planes of {210}



and {111}, provided in Figure 2g; that {111} facet is a highly active facet for ORR ofCoS<sub>2</sub> has been widely reported.<sup>[5,6]</sup> So, the change of lattice spacing in {111} facet inevitably affected the ORR activity. Although well-defined O–CoS<sub>2</sub> was not a regular octahedron, simultaneous exposure of the {111} and {110} facets was an essential characteristic of octahedron-CoS<sub>2</sub>. What is more, the electron diffraction pattern (Figure S3) further demonstrates the difference in crystallinity of pristine CoS<sub>2</sub> and O–CoS<sub>2</sub>. The large-grain of O–CoS<sub>2</sub> (Figure S3c) had significant single crystal diffraction (Figure S3d), and the apparent amorphous halo can be observed in electron diffraction of pristine CoS<sub>2</sub> (Figure S3f) and the granules of O–CoS<sub>2</sub> (Figure S3b).

## Proposed growth process

Based on experimental evidence, the possible formation process of O–CoS<sub>2</sub> was illustrated in Figure 3a. Step I was the dissolution of KCI crystal by water, resulting in much mesopore formation on the CO-precursor surface. This phenomenon was consistent with previous reports,<sup>[15]</sup> and further demonstrated by Brunner-Emmet-Teller (BET) results, shown in Figure S2 (c and d). Besides, the TEM image of Co–Co precursor (Figure S4)



**Figure 3.** (a) Schematic diagram of the formation of  $O-CoS_2$ . (b) Co 2p corelevel XPS spectra of  $CoS_2$  and  $O-CoS_2$ . (c) XPS of S 2p spectra of  $CoS_2$  and  $O-CoS_2$ . (d) XPS of C 1 s spectra of  $CoS_2$  and  $O-CoS_2$ . (e) Thermogravimetric (TG) curve of  $CoS_2$  and  $O-CoS_2$ .

also observed a clear chiaroscuro gap and lamellar morphology. These mesoporous played a vital role in the self-assembled arrangement of thiourea (step II) by adsorption, which created a rich sulfur-source environment in favor of anion exchange of  $S_2^{-2}$  and OH<sup>-</sup>. Also, the microtopography change resulted from the dissolution of potassium chloride crystal might be the cause for the formation of large-grain and granules of O-CoS<sub>2</sub>, which also caused the difference in crystallinity that was higher on the areas with more aggregation of thiourea. The XRD pattern of the sample that skipped the step of I during the synthesis process was also provided in Figure S5 and displayed a wide peak structure without any characteristic peaks. Moreover, the lattice shrinking occurred in step III It was observed that the crystal lattices of Co(OH)<sub>2</sub> exhibited smaller lattice sizes of a =b=3.179 Å than that of CoS<sub>2</sub> was a=b=3.909 Å. During the conversion from tetragonal to cubic crystal systems, the growth of CoS<sub>2</sub> was suppressed by Co(OH)<sub>2</sub> crystal cells. Therefore, the O-CoS<sub>2</sub> with soft-template presented a lattice shrinking in comparison to pristine CoS<sub>2</sub> without soft-template.

As provided in Figure 3b, the Co2p spectra were divided into two main peaks and four minor peaks. The main peaks corresponding to  $Co 2p_{3/2}$  and  $Co 2p_{1/2}$ , respectively, established an energy separation of 15.1 eV,<sup>[16]</sup> which indicated that the oxidation state of cobalt was Co<sup>2+</sup>. The two minor peaks identified at lower binding energies could be attributed to satellite shake-up peaks,<sup>[17]</sup> and that at higher binding energies could be the presence of Co-NH bonds formed by the decomposition of thiourea.<sup>[6,18]</sup> The deconvoluted S2p spectra (Figure 3c) show two prominent peaks corresponding to S2p<sub>3/2</sub> and S2p<sub>1/2</sub>, respectively, and three minor peaks.<sup>[19]</sup> Considering the binding energies of Co2p spectra, the  $O-CoS_2$  exhibited more severe ion polarization, namely higher binding energies for Co2p peaks and lower binding energies for S2p peaks compared to pure CoS<sub>2</sub>, due to the shortened Co-S bond. The peaks with a binding energy of 161.78 eV (pure CoS<sub>2</sub>) and 161.65 eV (O–CoS<sub>2</sub>) were assigned to  $S_2^{-2}$  that had not entered the  $CoS_2$  lattice and bonded with  $Co^{2+}$  or  $CoS_2$  surface.<sup>[20]</sup> Besides, the increased  $S_2^{-2}$  peak area for O–CoS<sub>2</sub> reveals the effective adsorption of CO-precursor. The remaining two peaks at about 165.01 eV and 169.18 eV could be ascribed to the S-C bond derived from the decomposition of thiourea and oxidized sulfur species, respectively. Likewise, the composition of C element was discussed in C1s spectra and C-C/C=C peaks used for calibrating to 284.6 eV was main structure of carbon species.<sup>[21]</sup> Furthermore, C-N and slight C-O bond was also clearly denoted in Figure 3d. All detailed peak position parameters were provided in Table S1.

On balance, except for the difference in binding energy, the same electronic structure of main elements indicated that  $O-CoS_2$  and pure  $CoS_2$  had the same nanoparticle formation process. Thermogravimetric (TG) analysis carried out in nitrogen from 35 to 800 °C was shown in Figure 3e. Compared with the TG curves of pure  $CoS_2$ , a sharp decline in weight occurred between 530 and 630 °C, which was further evidence that the  $O-CoS_2$  catalyst had more carbon species, according to the previous reports.<sup>[22]</sup> Obtained from the final weight percentage at 800 °C, the treated hydroxide template increased 7.3%



carbon material (contained little nitrogen) for  $CoS_2$  catalysts by prophase adsorption. Moreover, the reaction solution after hydrothermal synthesis was also provided in Figure S6. A yellowish solution was observed for pristine  $CoS_2$  in comparison to the clear and colorless solution for O– $CoS_2$ , owing to the dissolution of excessive S or N species.

## Electrochemical performance

To gain insight into the electrochemical performance, asprepared catalysts were assessed by a series of comparative measurements. The CV measurement (Figure 4a) was measured in N<sub>2</sub> and O<sub>2</sub> saturated 0.1 M KOH solution at a scan rate of 50 mV/s. The pristine CoS<sub>2</sub> and O–CoS<sub>2</sub> exhibited an evident oxygen reduction peak in O<sub>2</sub>-saturated solution by contrast with its CV in the N<sub>2</sub>-saturated solution, and O–CoS<sub>2</sub> had a better ORR activity due to higher cathodic peak current density. The ORR polarization plots can also observe the same conclusion through rotating-disk electrode (RDE) measurements in Figure 4b. The O–CoS<sub>2</sub> provided 40 mV more positive halfwave potential and higher limiting diffusion current density than pristine CoS<sub>2</sub>. Even in comparison to Pt/C, O–CoS<sub>2</sub> showed a chose half-wave potential ( $\Delta E$ =42 mV) and better plateau



**Figure 4.** (a) CV curves of carbon black (CB),  $CoS_2$ , and  $O-CoS_2$  in  $N_2$ - and  $O_2$ -saturated 0.1 m KOH solution. (b) LSV curves of as-prepared catalysts at 1600 rpm rotation rates in  $O_2$ -saturated 0.1 m KOH solution. (c) Electron transfer number of as-prepared catalysts at E=0.65 V. (d) Tafel curves of as-prepared catalysts at 1600 rpm rotation rates in  $O_2$ -saturated 0.1 m KOH solution. (e) Stability measurements as-prepared catalysts in 0.1 m KOH solution at a rotating rate of 1000 rpm. (f) Electrochemical impedance curves of as-prepared catalyst.

current density, indicating crystal-cell shrinkage of  $CoS_2$  provided a benefit to ORR performance. Detailed comparison results were shown in Table S2.

Furthermore, for analysis of electron-transfer kinetics on oxygen reduction process, a series of rotation rates (Figure S7) from 400 to 1600 rpm were measured in O<sub>2</sub>-saturated 0.1 M KOH solutions, which can provide the current-rotation rate relationship, showed in Figure 4c, with the Koutecky-Levich (K-L) equation. Furthermore, all obtained K-L plots of asprepared samples displayed good linear relation at 0.65 V, which was further calculated to get the electron transfer number (n). The number of  $O-CoS_2$  is 3.61, which is close to that of commercial Pt/C catalyst (3.98), suggesting its outstanding ORR activity and the ORR for the O-CoS<sub>2</sub> catalyst undergoes a quasi-four-electron process. Besides, the kinetic current density  $(j_k)$  showed in Figure S8 revealed the O–CoS<sub>2</sub> had the highest kinetic current density among them. In addition, as a significant parameter for evaluating ORR intrinsic activity, the Tafel slope was presented in Figure 4d. The O-CoS<sub>2</sub> with a close Tafel slope of Pt/C at low overpotentials manifested efficient electron transport and intrinsic catalytic activity.<sup>[23]</sup>

As showed in Figure 4e, stability measurements of asprepared catalysts were carried out by chronoamperometry in 0.1  $\times$  KOH solution at a rotating rate of 1000 rpm. After the 32000 s operation, O–CoS<sub>2</sub> still retained 83% relative current while pristine CoS<sub>2</sub> was 48%, and Pt/C catalyst was 75%, indicating that the polyhedral structure of CoS<sub>2</sub> presented after shrinkage was more stable in the ORR process. Furthermore, methanol resistance measurements were shown in Figure S7 (b and d), Pt/C electrode suffered a higher fluctuation in the presence of methanol, and there were almost no effects on performance for O–CoS<sub>2</sub> catalyst.

Therefore, the O–CoS<sub>2</sub> catalyst exhibits better methanol tolerance than Pt/C. Electrochemical impedance spectroscopy (ElS) was an important indicator for estimating interfacial processes and kinetics of electrode reactions in electrochemical systems, which was performed at each catalyst's half-wave potential ranging from 1 Hz to 10 kHz, showed in Figure 4f. Fitting equivalent circuits (insert) with the ZView software yielded charge-transfer resistance ( $R_{ct}$ ) values of pristine CoS<sub>2</sub> (412  $\Omega$ ) > O–CoS<sub>2</sub> (305  $\Omega$ ), indicating that O–CoS<sub>2</sub> possessed a faster electron transport during ORR. Otherwise, abundant carbon species on the surface of O–CoS<sub>2</sub> also enriched the free electron density, thereby enhancing conductivity. So, O–CoS<sub>2</sub> had a smaller arc diameter than pristine CoS<sub>2</sub>.

#### Changes of crystal-filed configurations states for Co<sup>2+</sup>

More information about the crystal field effect, the spin state, and the oxidation state was determined by Co-K edge X-ray absorption near-edge structure (XANES). In Figure 5a, the O–CoS<sub>2</sub> showed higher oxidation states than pristine CoS<sub>2</sub>, owing to a shortened Co–S bond. In addition, the decreased intensity of the "white line" region reflecting local symmetry and electronic state,<sup>[24]</sup> was consistent with the shortened Co–Co bond lengths mentioned before. The crystal field

Full Papers doi.org/10.1002/cssc.202002960





Figure 5. (a) Co-K edge XANES of  $CoS_2$  and  $O-CoS_2$ . (b) Second derivatives of CO-K edge XANES for  $CoS_2$  and  $O-CoS_2$ . (c) Density of states of  $CoS_2$  and  $CoS_2$  with a crystal shrinkage (4%). (d) Density of states of  $Co-e_g$  orbitals of  $CoS_2$  and  $CoS_2$  with a crystal shrinkage (4%), and the changes of configurations states of  $Co^{2+}$ .

configuration transitions for  $Co^{2+}$  were presented in the second derivatives of CO-K edge XANES spectra. The negative peak split into one prominent peak and one small peak, corresponding to fully filled  $t_{2g}^{6}$  orbital and  $e_{g}^{1}$  orbital occupied by a single electron, respectively.<sup>[25]</sup> Reduced-intensity of  $t_{2g}$  peaks and enhanced intensity of  $e_{g}$  peaks demonstrated the increased  $e_{g}$  occupancy number of the 3d electron, which correlated to surface oxygen bond energy and ultimately affected the intrinsic activities of ORR. In the light of the previous reports,<sup>[9a,26]</sup> the OER/ORR intrinsic activity can be inferred by the occupancy numbers of  $e_{g}$  orbital of transition metal ions, and the optimal occupancy was a near-unity. Therefore, crystal-cell shrinkage of CoS<sub>2</sub> would lead to an increase in occupancy of  $e_{g}$  orbital of Co ion.

To make a stronger case, the calculation about the density of states was shown in Figures 5c and d to investigate the occupancy of the orbital states. The density of states (DOS) of O-CoS<sub>2</sub> was simulated by applying stress on the original cell, and 4% shrinkage was based on the previous value of R (Figure 1c<sub>1</sub>). Overall, the orbital states of Co3d and S3p after compression presented a stronger hybridization and overlap, in addition, had a consistent shift trend. The *d*-band center as a good descriptor for adsorption capacity of oxygen intermediates,<sup>[27]</sup> the modest d-band center made for improving ORR kinetics. By calculation, compressed crystal cell emerged a lower d-band center, indicating a higher affinity for O<sub>2</sub>, which might account for the O-CoS<sub>2</sub> with higher onset potential. The  $e_a$  orbital of Co 3d, showed in Figure 5d, consisted of the "alpha" orbital crossing the Fermi level and "beta" empty orbital. Apparently, the e<sub>a</sub> orbital occupied states of contracted crystal cell moved to higher energy levels compared to pristine CoS<sub>2</sub>. Hence, as illustrated by the schematic diagram of the electronic configuration of Co3d orbital (bottom part of Figure 5d), the spin state of Co<sup>2+</sup> transformed from low spin to high spin brought about increased occupancy numbers of e<sub>g</sub> orbital,<sup>[28]</sup> which was consistent with the result of Co-K edge XANES and contributed to the formation of anti-bonding with oxygen molecular orbital in ORR process.

## Conclusions

In a nutshell, we successfully synthesized O-CoS<sub>2</sub> catalysts with a well-defined polyhedron structure by using a polyporous soft template. Compared with the pristine CoS<sub>2</sub>, the O-CoS<sub>2</sub> presented a lattice shrinking phenomenon, which was mainly attributed to the use of soft-template. The soft template with abundant mesopore rendered a self-assembled arrangement of sulfur sources and contributed to anion exchange. In the process of anion exchange, the O-CoS<sub>2</sub> was generated by employing the Co-Co skeleton derived from cobalt hydroxide, and the smaller crystal-cell size of cobalt hydroxide also inhibited the expansion of CoS<sub>2</sub> crystal cell. So, this provided a smaller lattice parameters in comparison to the pristine cobalt disulfide without templates. What is more, O-CoS<sub>2</sub> consisted of large grains with high crystallinity and irregular granules with low crystallinity, which was caused by the difference microtopography of polyporous CO-precursor. The irregular granules possessed the same elementary composition and electronic structure as pristine CoS<sub>2</sub>. The large grains of O-CoS<sub>2</sub> presented a higher Co/S ratio and a shrinkage of crystal-cell phenomenon that was considered the main cause of improved ORR activity. The high-angle offset of peak position in XRD, an overall hypsochromic shift in Raman spectra, decreased *R* value in extended X-ray absorption fine structure, and a reduced lattice spacing of the corresponding facets in TEM together proved the shrinkage of the crystal cell of  $O-CoS_2$ . The second derivatives of Co-K edge XANES spectra and the density of states of Co3d manifested the increased occupation numbers in  $e_g$  orbitals resulting in transformation of the Co3d orbitals from low spin to high spin, which was the intrinsic reason for enhanced ORR activity. Consequently, our works provided a new idea for improving the activity of this type of catalyst.

## **Experimental Section**

**Catalyst synthesis:** All chemicals are of analytical grade and were used as received without further purification.

Synthesis of hydroxide soft template: In a typical experiment, 1.2 mmol  $CoCl_2 \cdot 6H_2O$  and 2.4 mmol KOH were each dissolved in 3 mL methanol solution. After completely dissolution, the potassium hydroxide solution was slowly added to the cobalt solution and 0.3 mL deionized (DI) water was added into the above solution under vigorous stirring. The brown products were filtered and washed several times with deionized water until it turned black. The Co-precursor were dried in air at 70 °C overnight for further modification.

**Synthesis of O–CoS<sub>2</sub>**: The as-prepared Co-precursor was dissolved in 25 mL DI water containing 2 mmol thiourea, and then the solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave. The autoclave was sealed and hydrothermally treated at 200 °C for 12 h. After the reaction was finished, the O–CoS<sub>2</sub> was washed several times with ethanol and DI water and then dried at 70 °C for 10 h in a vacuum oven.

Synthesis of pristine  $CoS_2$ : The pristine  $CoS_2$  was prepared by the same procedure without soft template. 1.2 mmol  $CoCl_2 \cdot 6H_2O$  and 2 mmol thiourea were dissolved in 25 mL DI water. Then the solution pH value was adjusted to about 10 using KOH. The solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave at 200 °C for 12 h.

Electrochemical characterization and electrode preparation: The CHI 650D electrochemical workstation was used to carry out electrochemical measurements. Platinum net and standard calomel electrode as the counter and reference electrodes, respectively, made up a standard three-electrode cell. A series of polarization curves (LSV) and CV measurements were performed in 0.1 mol L<sup>-1</sup> KOH electrolyte within the potential range of 0.2 and 1.2 V (vs. RHE). The oxygen continued to flow into the electrolyte for ensuring O<sub>2</sub> saturation, apart from the acquisition of background current that needs N<sub>2</sub> saturation. The final spectrum of LSV was obtained by subtracting the background current from the actual current.

The electron transfer number (*n*) per oxygen molecule under different voltage were calculated by K–L plots:

$$\frac{1}{i} = \frac{1}{i_k} + \frac{1}{i_d} = \frac{1}{nFAkC} + \frac{1}{0.2nFAD^{2/3}v^{-1/2}C\omega^{1/2}}$$
(1)

Where *i* is the measured current density on RDE,  $i_k$  is kinetically limited current density and consists of the electron transfer number (*n*), the Faraday constant (*F*), the oxygen solubility (*C*) in the electrolyte, and the rate constant (*k*).  $i_d$  is the diffusion-limited

current density and consists of the electron transfer number, the Faraday constant, diffusivity of oxygen (*D*), kinematic viscosity (*v*), the oxygen solubility, and the rotation rate ( $\omega$ ).

The working electrode comprised a thin-film layer of catalyst on a glassy carbon disk (5 mm in diameter). For preparing the thin-film layer, 5 mg of the sample (comprised catalyst/Vulcan carbon = 2:3 mass ratio) was ultrasonicated in 1.5 mL isopropanol/Dl water (2:1 v/v) with 15  $\mu$ L 5% Nafion solution as solvent for 30 min, and then 8 mL dropping liquid was transferred to the glassy carbon disk and then dried in the air. The total mass loading for each electrode was 200  $\mu$ g cm<sup>-2</sup>.

Characterization: The powder X-ray diffraction (XRD) patterns were obtained by D/max2550 V X-ray diffractometer using Cu<sub>Ka</sub> radiation. The Raman spectra were measured by Laser MicrO-Raman Spectrometer using 532 nm laser. The X-ray absorption (XAS) data of the samples were recorded at room temperature in the transmission mode using ion chambers and the BL14 W1 beam line in the Shanghai Synchrotron Radiation Facility (SSRF), China. The Brunner-Emmet-Teller (BET) surface area was carried out by Micromeritics Tristar 3020 SIN 993. The mapping images and physical morphology were determined by field-emission scanning electron microscopy (FESEM GeminiSEM 500) and high-resolution transmission electron microscopy (HRTEM, JEM-2100). The chemical composition and valence states of elements were examined by Xray photoelectron spectroscopy (XPS, ESCALAB 250Xi) using a monochromatic Al<sub>Ka</sub> X-ray source. Binding energies were normalized with regard to exogenous C1 s.

**Density functional theory (DFT) calculation:** All crystal structure information and phase parameters were produced by the National Institute of Standards and Technology (NIST). The crystal-cell model for density of states of  $O-CoS_2$  was obtained by shrinking the original crystal cell by 4%, which was according to the value of *R* in  $k^2$ -normalized Co-K edge EXAFS. The self-consistent field was considered to converge when energetic convergence threshold changed within  $1 \times 10^{-4}$  eV per atom. First-principles calculations were implemented in the Vienna Ab-initio Simulation Package (VASP). The spin-polarized DFT computations were performed with Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) for exchange-correlation interactions. A plane-wave cut-off energy of all computations was set to 400 eV.

## Acknowledgements

This research is based on the work supported by the National Natural Science Foundation of China (51778229). We thank beamline BL14W1 (Shanghai Synchrotron Radiation Facility) for providing the beam time.

# **Conflict of Interest**

The authors declare no conflict of interest.

**Keywords:** cobalt disulfide · crystal cell · electrocatalysis · oxygen reduction reaction · self-assembly

[2] a) Z. Hu, X. Zhou, Y. Lu, R. Jv, Y. Liu, N. Li, S. Chen, *Electrochim. Acta* 2019, 296, 214–223; b) Y. Shiga, N. Umezawa, N. Srinivasan, S. Koyasu, E.

<sup>[1]</sup> Y. Liu, Y. Li, H. Kang, T. Jin, L. Jiao, Mater. Horiz. 2016, 3, 402–421.



Sakai, M. Miyauchi, *Chem. Commun.* **2016**, *52*, 7470–7473; c) W. Li, Y. Li, H. Wang, Y. Cao, H. Yu, F. Peng, *Electrochim. Acta* **2018**, *265*, 32–40.

- [3] a) S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, *Chem. Soc. Rev.* 2019, 48, 4178–4280; b) S. Shen, Q. Wang, *Chem. Mater.* 2013, 25, 1166–1178.
- [4] X. Cao, X. Zheng, J. Tian, C. Jin, K. Ke, R. Yang, *Electrochim. Acta* 2016, 191, 776–783.
- [5] D. C. Higgins, F. M. Hassan, M. H. Seo, J. Y. Choi, M. A. Hoque, D. U. Lee, Z. Chen, J. Mater. Chem. A 2015, 3, 6340–6350.
- [6] V. Singh, A. Tiwari, T. C. Nagaiah, J. Mater. Chem. A 2018, 6, 22545– 22554.
- [7] W. Sun, Y. Song, X. Gong, L. Cao, J. Yang, *Chem. Sci.* 2015, *6*, 4993–4999.
  [8] L. An, Y. Li, M. Luo, J. Yin, Y. Zhao, C. Xu, F. Cheng, Y. Yang, P. Xi, S. Guo,
- Adv. Funct. Mater. 2017, 27, 1703779.
  [9] a) J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. ShaO–Horn, Nat. Chem. 2011, 3, 546–550; b) J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. ShaO–Horn, Science 2011, 334, 1383.
- [10] C. Chen, P. Chen, M. Basu, K. Yang, Y. Lu, C. Dong, C. Ma, C. Shen, S. Hu, R. Liu, J. Mater. Chem. A 2015, 3, 23466–23476.
- [11] S. G. Lyapin, A. N. Utyuzh, A. E. Petrova, A. P. Novikov, T. A. Lograsso, S. M. Stishov, J. Phys. Condens. Matter 2014, 26, 396001.
- [12] C. Ouyang, X. Wang, S. Wang, Chem. Commun. 2015, 51, 14160-14163.
- [13] C. Zhao, D. Li, Y. Feng, J. Mater. Chem. A 2013, 1, 5741–5746.
- [14] J. Li, Z. Xia, M. Zhang, S. Zhang, J. Li, Y. Ma, Y. Qu, J. Mater. Chem. A 2019, 7, 17775–17781.
- [15] T. Y. Ma, Y. Zheng, S. Dai, M. Jaroniec, S. Z. Qiao, J. Mater. Chem. A 2014, 2, 8676–8682.
- [16] S. Wan, Y. Liu, G. Li, X. Li, D. Wang, X. Zou, Catal. Sci. Technol. 2016, 6, 4545–4553.
- [17] Y. Cui, C. Zhou, X. Li, Y. Gao, J. Zhang, Electrochim. Acta 2017, 228, 428– 435.

- [18] H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Ed. 2011, 50, 10969– 10972; Angew. Chem. 2011, 123, 11161–11164.
- [19] B. Chen, Z. Jiang, L. Zhou, B. Deng, Z. Jiang, J. Huang, M. Liu, J. Power Sources 2018, 389, 178–187.
- [20] a) J. Wang, J. Wang, L. Han, C. Liao, W. Cai, Y. Kan, Y. Hu, *Nanoscale* 2019, *11*, 20996–21007; b) F. Xu, B. Jin, H. Li, W. Ju, Z. Wen, Q. Jiang, *New J. Chem.* 2019, *43*, 18294–18303.
- [21] Y. Niu, X. Qian, J. Zhang, W. Wu, H. Liu, C. Xu, L. Hou, J. Mater. Chem. A 2018, 6, 12056–12065.
- [22] X. Yao, H. Cheng, Z. Jiang, Q. Han, Y. Wang, S. Wang, New J. Chem. 2020, 44, 10404–10409.
- [23] D. He, Y. Xiong, J. Yang, X. Chen, Z. Deng, M. Pan, Y. Li, S. Mu, J. Mater. Chem. A 2017, 5, 1930–1934.
- [24] W. Q. Zaman, W. Sun, M. Tariq, Z. Zhou, U. Farooq, Z. Abbas, L. Cao, J. Yang, Appl. Catal. B 2019, 244, 295–302.
- [25] a) J. Choy, D. Kim, G. Demazeau, D. Jung, J. Phys. Chem. 1994, 98, 6258–6262; b) S. P. Farrell, M. E. Fleet, Phys. Chem. Miner. 2001, 28, 17–27; c) S. Chattopadhyay, C. Mande, Phys. Status Solidi B 1984, 126, 53–57.
- [26] W. Yuan, Y. Wang, P. Chernev, K. Klingan, M. Reza Mohammadi, S. Loos, C. Pasquini, P. Kubella, S. Jiang, Z. Cui, S. Zhu, Z. Li, S. Wu, H. Dau, J. Zhang, Y. Liang, J. Catal. 2020, 383, 221–229.
- [27] C. Si, Y. Zhang, C. Zhang, H. Gao, W. Ma, L. Lv, Z. Zhang, *Electrochim. Acta* 2017, 245, 829–838.
- [28] X. Gao, J. Liu, Y. Sun, X. Wang, Z. Geng, F. Shi, X. Wang, W. Zhang, S. Feng, Y. Wang, K. Huang, *Inorg. Chem. Front.* 2019, *6*, 3295–3301.

Manuscript received: December 29, 2020 Accepted manuscript online: January 6, 2021 Version of record online: February 2, 2021