ISSN 1070-3632, Russian Journal of General Chemistry, 2006, Vol. 76, No. 3, pp. 495–496. © Pleiades Publishing, Inc., 2006. Original Russian Text © N.G. Khusainova, O.A. Mostovaya, R.A. Cherkasov, 2006, published in Zhurnal Obshchei Khimii, 2006, Vol. 76, No. 3, pp. 521–522.

LETTERS TO THE EDITOR

Dedicated to the 90th Anniversary of Corresponding Member of the Russian Academy of Sciences A.N. Pudovik Reaction of 2H-1,2,3-Diazaphosphole with Ethanolamine

N. G. Khusainova, O. A. Mostovaya, and R. A. Cherkasov

Kazan State University, ul. Kremlevskaya 18, Kazan, Tatarstan, 420008 Russia

Received October 11, 2005

DOI: 10.1134/S1070363206030248

Reactions of cyclic derivatives of two-coordinate phosphorus, containing a P=C bond, with difunctional nucleophilic reagents have scarcely been studied. We previously found that a mixture of 1,2,3-diazaphospholene and β -hydroxybutoxyhydrospirophosphorane containing a diazaphospholene and a dioxaphospholane ring, formed by the reaction of 2-acetyl-5-methyl-2*H*-1,2,3-diazaphosphole (**I**) with butane-2,3-diol at -10 to 0°C undergoes fragmentation into a symmetrical hydroslirotetraoxaphosphorane, its tautomeric hydrogen phosphite, and acetone hydrazone, as the temperature increases [1].

In the present communication we report on the results of the reaction of diazaphosphole **I** with ethanolamine (**II**) at 0°C. Analysis of the ³¹P NMR spectrum of the reaction mixture, measured after mixing of equimolar reagent amounts, established that the reaction involves preferential attack of the P=C bond of diazaphosphole **I** with the β -aminoethoxy group of compound **II**, as evidenced by the appearance of strong signals at $\delta_{\rm P}$ 111 (1) (²J_{PH} 29.8 Hz)

and 112.5 ppm (0.5) (${}^{2}J_{\rm PH}$ 30.7 Hz); figures in parentheses relate to the integral intensity of the signal. The observation of several signals from 2-acetyl-3-(2-aminoethoxy)-5-methyl-3,4-dihydro-2*H*-1,2,3-diazaphosphole (**III**) is explained by the presence of geometric isomers: The OC₂H₄NH₂ substituent can be *syn* and *anti* with respect to the electronic pair of the P^{III} atom of compound **III** [2]. In addition, the following signals are observed, $\delta_{\rm P}$, ppm: 236 (0.08) (diazaphosphole **I**), 220 (0.4) (${}^{2}J_{\rm PH}$ 44.5 Hz), 57.7 and 57.4 (0.1), -57.6 (0.24) and -52.8 (0.04).

To establish the chemical shift of the P^{III} atom bearing the amino group in a diazaphospholene, we reacted diazaphosphole **I** with diethylamine. The ³¹P NMR spectrum acquired a signal at δ_P 59 ppm. We assigned the signal at δ_P 57 ppm to the P^{III} nucleus in 2-acetyl-3-[2-(hydroxyethylamino)-5-methyl-3,4-dihydro-2*H*-1,2,3-diazaphosphole (**IV**). The presence of a weak signal at δ_P 220 ppm points to formation of a 2*H*-1,2,3-diazaphosphole bearing no substituents on N² [3]. The signals at -57.6 (¹J_{PH} 705 Hz) and

-52.8 ppm (${}^{1}J_{PH}$ 737 Hz) relate to 1-acetyl-3-methyl-1,2,6-triaza-9-oxa-5 λ^{5} -phosphaspiro[4.4]non-2-ene (**V**) and 1,6-diaza-4,9-dioxa-5 λ^{5} -phosphoaspiro[4.4]nonane (**VI**) [4]. The reaction mixture was left to stand for 1 week at 5–7°C, after which the 31 P NMR spectrum acquired a signal at δ_{p} 140 ppm (0.10), that we assign to the P^{III} atom in 2-(2-aminoethoxy)-1,3,2oxazaphospholane (**VII**). Phospholane **VII** is formed by partial fragmentation of compounds **III** and **V**, accompanied by elimination of acetone hydrazone **VIII** [1, 5].

Thus, the reaction of diazaphosphole **I** with aminoethanol **II** involves both protic functions of reagent **II**, resulting in O-, N-, and O,N-fuctionalization of the P center (compounds **II**–**V**, respectively), the O-functionalization products prevailing.

The ${}^{31}P$ NMR spectra were obtained on a Varian Unity-300 spectrometer (121.42 MHz) in CH₂Cl₂, external reference 85% H₃PO₄.

ACKNOWLEDGMENTS

The work was financially supported by the *Univer*sities of Russia Program and the Program for Support of Leading Scientific Schools.

REFERENCES

- Khusainova, N.G., Mostovaya, O.A., Azancheev, N.M., Litvinov, I.A., Krivolapov, D.B., and Cherkasov, R.A., *Mendeleev Commun.*, 2004, no. 5, p. 212.
- 2. Germa, H., Sanchez, M., Burgada, R., and Wolf, R., Bull. Soc. Chim. Fr., 1970, no. 2, p. 612.
- Bobkova, R.G., Ignatova, N.P., Shvetsov-Shilovskii, N.I., Mel'nikov, N.N., Negrebetskii, V.V., Bogel'fer, L.Ya., and Dymova, S.F., *Zh. Obshch. Khim.*, 1977, vol. 47, no. 3, p. 576.
- Germa, H., Wilson, M., and Burgada, R., C. R. Acad. Sci., 1970, vol. 270, no. 16, p. 1426.
- Bobkova, R.G., Ignatova, N.P., Shvetsov-Shilovskii, N.I., Negrebetskii, V.V., and Vasil'ev, A.F., *Zh. Obshch. Khim.*, 1976, vol. 46, no. 3, p. 590.