

¹H and ¹³C NMR spectral characterization of some novel 7*H*-1,2,4-triazolo[3, 4-*b*] [1,3,4] thiadiazine derivatives

Xinxiang Lei,¹ Lixue Zhang,¹ Anjiang Zhang,¹* Xiaoxia Ye² and Jing Xiong¹

¹ Department of Chemistry, Wenzhou University, Wenzhou 325027, China

² Department of Chemistry, Wenzhou Medical College, Wenzhou 325035, China

Received 24 September 2006; revised 2 November 2006; accepted 8 November 2006

Some novel 1, 2, 4-triazolo[3,4-b][1,3,4]thiadiazines derivatives were synthesized. The complete ¹H and ¹³C NMR chemical shift assignments were analyzed on oneand two-dimensional NMR techniques, including DEPT, NOE-DIF, COSY, HMBC, and HSQC. Copyright © 2006 John Wiley & Sons, Ltd. **KEYWORDS:** NMR; ¹H NMR; ¹³C NMR; 1,2,4-triazolo[3,4-*b*][1,3,4]; thiadiazines; synthesis

INTRODUCTION

1,2,4-Triazoles and *N*-bridged heterocycles are found to be associated with diverse pharmacological properties.^{1–3} Broad biological and pharmacological properties of various thiadiazines fused with a triazole ring have been extensively studied.^{4–9} In particular, various substituted 7*H*-1,2,4-triazolo-[3,4-*b*][1,3,4] thiadiazines have been shown to possess diverse pharmacological properties, such as antimicrobial, bactericidal, anti-inflammatory, antiviral, antihypertensive, antifungal, antihelminthic, and analgesic effects.^{10–13} Prompted by the biological properties of 1,2,4-triazole derivatives and 1,3,4-thiadiazines, and in continuation of our studies on *N*-bridged heterocycles,^{14–15} we report here the synthesis and spectral characterization of some 7*H*-1,2,4-triazolo[3,4-*b*][1,3,4] thiadiazine derivatives (Scheme 1), of which compounds **1a**, **1b**, **1d**, **1e**, **1f**, **1o**, and **1q** were known.^{12,13}

*Correspondence to: Anjiang Zhang, Department of Chemistry, Wenzhou University, Wenzhou 325027, China. E-mail: ajzhang@wzu.edu.cn

1h

1i.

1i.

1k

11.

1a-1r

 $1g, R_1 = 4 - C_2 H_5 O; R_2 = 4 - phenyl$

1a, $R_1 = 4$ - C_2H_5O ; $R_2 = 4$ -Br1b, $R_1 = 4$ - C_2H_5O ; $R_2 = 4$ -C11c, $R_1 = 4$ - C_2H_5O ; $R_2 = 2$,4-diCl1d, $R_1 = 4$ - C_2H_5O ; $R_2 = 4$ - CH_3 1e, $R_1 = 4$ - C_2H_5O ; $R_2 = 4$ - CH_3O 1f, $R_1 = 4$ - C_2H_5O ; $R_2 = 4$ - NO_2

$R_1 = 2 - C_2 H_5 O; R_2 = 4 - C H_3$	1n, R
$R_1 = 2 - C_2 H_5 O$; $R_2 = 4 - NO_2$	10, R
$R_1 = 2 - C_2 H_5 O$; $R_2 = 4$ -phenyl	1p, R
$, R_1 = 2 - C_2 H_5 O; R_2 = 4 - C I$	1q, R
$R_1 = 2$ -OH; $R_2 = 4$ -NO ₂	1r, R

$$\begin{split} &1m, R_1=2\text{-}OH ; R_2=4\text{-}CH_3 \\ &1n, R_1=2\text{-}OH ; R_2=4\text{-}H \\ &1o, R_1=2\text{-}OH ; R_2=4\text{-}Br \\ &1p, R_1=2\text{-}OH ; R_2=2\text{,}4\text{-}diCl \\ &1q, R_1=4\text{-}Cl ; R_2=4\text{-}NO_2 \\ &1r, R_1=4\text{-}CH_3O ; R_2=4\text{-}phenyl \end{split}$$

Scheme 1. Structure of various 3,6-disubstituted-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazines.

EXPERIMENTAL

Materials

Various 5-substituted-4-amino-2,4-dihydro-3H-1,2,4-triazole-3-thiones¹³ were prepared by methods given in the literature.^{16–18} All other chemicals and solvents used were of analytical reagent grade.

Preparation of various 3,6-disubstituted-7*H*-1,2,4-triazolo[3,4-*b*][1,3,4]thiadiazines

The mixture of 5-substituted-4-amino-2,4-dihydro-3*H*-1,2,4-triazole-3-thione (40 mmol), ω -bromoacetophenones (42 mmol), ethanol (70 ml), and water (30 ml) was stirred and refluxed for 3 h. The solution was cooled and then filtered. The precipitate was washed with ether and dried. The crude material was recrystallized from 70% ethanol solution to obtain the pure products (**1a**-**1r**, **2a**-**2e**, and **3a**-**3d**) at a yield of 63–86%.

NMR spectra

All NMR experiments were performed at 293 K using a solution of 20 mg of the compound dissolved in 0.5 ml of dimethyl sulfoxide (DMSO)- d_6 on a Bruker AVANCE-300 instrument with a 5 mm BBFO probe head equipped with shielded Z-gradient coil. The gradient field was 50×10^{-4} T cm⁻¹. ¹H NMR spectra were recorded at a proton frequency of 300.13 MHz with a spectral width of 4.5 kHz and 11 µs (90°) pulse. The ¹³C NMR spectra were obtained using a spectral width of 20 kHz, a 3.9 µs (30°) pulse, and a 1.8 s acquisition time; 1024 scans with 32768 data points each were used. Exponential multiplication was applied before Fourier transformation in both cases. The chemical shifts were referenced to tetramethylsilane

(TMS). The long-range ¹H-¹³C correlation (HMBC) spectra were obtained using the hmbcgpndqf program in the Bruker software. The spectra resulted from a 256 \times 1024 data matrix size with 16 scans per t_1 increment, 200 µs delay for homospoil/gradient recovery (D_{16}) , 1 ms for homospoil/gradient pulse (P_{16}) , and 5:3:4 gradient combination using a pulse sequence optimized for 8 Hz. Spectral widths of 3.5 kHz in f_2 and 15.5 kHz in f_1 were used. The acquisition time was 0.57 s, the delay was set to 3.45 ms, the recycle time was 1.50 s, and the Fourier transformation was done on a $2k \times 1k$ data matrix. The one-bond heteronuclear correlation (HSQC) spectra were obtained using the hsqcetgp program in the Bruker software. The spectra were measured with the same D_{16} (200 µs) and P_{16} (1 ms) and a different 4:1 gradient combination. The acquisition time was 0.14 s, the delay was set to 3.45 ms, and an average ¹J(C, H) of 145 Hz was used; the recycle time was 1.55 s. The Fourier transformation was done on a $2k \times 1k$ data matrix.

RESULTS AND DISCUSSION

In order to unequivocally assign all NMR signals, we used 1D and 2D techniques such as DQF-COSY, HSQC, and HMBC.

In Scheme 1, the structures and numbering of the title compounds are presented. Their ¹H and ¹³C NMR chemical shifts are given in Tables 1 and 2, respectively. For example, assigning the spectra of **1k** is described as follows. H-7 (δ 4.41), H-11, H-15 (δ 7.90), H-12, H-14 (δ 7.61), methylene proton (δ 3.98), and methyl (δ 1.05) proton were assigned directly, and the ¹H signals of H-18~H-21 were determined by the combination of COSY, HSQC, and HMBC experiments. Seven quaternary carbons were observed by DEPT technique and assigned by HMBC experiments, the assignments were C-3 at

Table 1. ¹H NMR data for compounds 1a-2r, 2a-2e, and 3a-3d(Solvent: DMSO-d₆)

Com-																				
pound	7	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	R_1	R_2
1a	4.42	7.95	7.80		7.80	7.95		7.92	7.12		7.12	7.92							4.12, 1.36	
1b	4.42	8.01	7.66		7.66	8.01		7.93	7.12		7.12	7.93							4.12, 1.36	
1c	4.30		7.89		7.64	7.72		7.92	7.12		7.12	7.92							4.12, 1.35	
1d	4.40	7.96	7.39		7.39	7.96		7.91	7.12		7.12	7.91							4.12, 1.36	2.40
1e	4.38	7.95	7.30		7.30	7.95		7.92	7.12		7.12	7.92							4.12, 1.36	3.67
1f	4.50	8.25	8.40		8.40	8.25		7.94	7.13		7.13	7.94							4.13, 1.37	
1g	4.47	8.10	7.90		7.90	8.10		7.97	7.13		7.13	7.97		7.78	7.53	7.43	7.53	7.78	4.13, 1.37	
1h	4.37	7.77	7.34		7.34	7.77			7.18	7.08	7.54	7.52							3.98, 1.03	2.36
1i	4.50	8.11	8.37		8.37	8.11			7.19	7.11	7.56	7.53							4.01, 1.05	
1j	4.45	7.98	7.85		7.85	7.98			7.20	7.12	7.51	7.48		7.75	7.55	7.43	7.55	7.75	4.02, 1.08	
1k	4.41	7.90	7.61		7.61	7.90			7.18	7.10	7.55	7.52							3.98, 1.05	
11	4.52	8.21	8.37		8.37	8.21			6.98	7.42	7.02	7.83							10.30	
1m	4.44	7.95	7.38		7.38	7.95			6.98	7.39	7.05	7.99							10.20	2.40
1n	4.46	8.07	7.58	7.58	7.58	8.07			6.98	7.41	7.04	7.91							10.20	
10	4.44	7.99	7.80		7.80	7.99			6.96	7.42	7.05	7.92							10.20	
1p	4.32		7.90		7.65	7.73			6.95	7.41	7.06	7.88							10.30	
1q	4.52	8.25	8.39		8.39	8.25		8.01	7.67		7.67	8.01								
1r	4.47	8.10	7.89		7.89	8.10		8.00	7.17		7.14	8.00		7.77	7.51	7.40	7.51	7.77	3.85	
2a	4.39	7.97	7.47	7.52	7.47	7.97	4.74		7.53	7.50	7.85		7.95	7.57	7.60	8.29				
2b	4.46	8.21	8.38		8.38	8.21	4.76		7.50	7.47	7.85		7.95	7.57	7.59	8.29				
2c	4.41	7.97	7.14		7.14	7.97	4.75		7.47	7.44	7.79		7.96	7.54	7.56	8.27				3.85
2d	4.38	7.91	7.77		7.77	7.91	4.74		7.48	7.45	7.84		7.94	7.55	7.58	8.28				
2e	4.37	7.88	7.36		7.36	7.88	4.75		7.48	7.44	7.85		7.94	7.55	7.59	8.28				2.38
3a	4.46	7.94	7.40		7.40	7.94		8.73	7.94	8.90		9.32								2.40
3b	4.89	7.98	7.80		7.80	7.98		8.79	7.98	8.96		9.35								
3c	4.45	8.02	7.13		7.13	8.02		8.74	7.95	8.90		9.33								3.86
3d	4.48		7.91		7.67	7.74		8.74	7.94	8.91		9.34								

MRC

Table 2.	¹³ C NN	AR data	a for co	punodu	s 1a–2r	., 2a–2e	₀, and 3 ε	а–3d (Sc	olvent: D	MSO-d ₆	_													
Com- pound	ю	9	4	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	${ m R}_1$	\mathbb{R}_2
1a 1	51.65	155.03	22.73	141.95	132.92	132.23	129.57	125.79	129.57	132.23	118.26	129.60	114.79	160.17	114.79	129.60						÷	3.45, 14.70	
1b 1	51.75	154.99	22.84	142.05	130.60	129.40	129.51	136.94	129.51	129.40	118.30	129.70	114.86	160.25	114.86	129.70						Ð	3.53, 14.75	
1c 1	51.60	156.10	22.80	141.98	132.81	129.92	127.85	136.48	132.47	133.43	118.36	129.75	114.78	160.11	114.78	129.75						Ð	3.46, 14.72	
1d 1	51.54	155.80	22.76	142.06	130.87	127.60	129.54	142.27	129.54	127.60	118.43	129.82	117.77	160.13	114.77	129.82						Ð	3.45, 14.71	21.16
1e 1	51.44	155.44	22.66	142.06	125.76	129.53	114.72	162.40	114.72	129.53	118.50	129.78	114.77	160.10	114.77	129.78						Ð	3.46, 14.72	55.71
1f 1	51.83	154.23	22.97	141.89	139.60	129.03	124.41	149.24	124.41	129.03	118.06	129.69	114.83	160.25	114.83	129.69						Ų	3.47, 14.68	
1g 1	51.62	155.52	22.80	142.07	132.55	128.30	127.36	143.43	127.36	128.30	118.39	129.59	114.79	160.15	114.79	129.59 1	38.93 1	26.99 1	29.23 12	28.44 12	29.23 1	26.99 (3.45, 14.70	
1h 1	51.35	154.54	23.18	141.93	130.71	127.34	129.76	142.12	129.76	127.34	115.51	156.87	112.67	120.45	132.32	131.23						Ð	3.69, 14.43	21.11
11 1	51.60	152.99	23.33	141.85	139.52	128.78	124.29	149.24	124.29	128.78	115.54	156.85	112.78	120.53	132.55	131.31						Ð	3.73, 14.49	
1j 1	51.34	154.46	23.25	142.07	139.39	128.08	127.34	143.36	127.34	128.08	115.29	156.94	112.76	120.52	132.50	131.33 1	38.87 1	26.97 1	29.22 13	28.45 12	29.22 1	26.97	3.80, 14.52	
1k 1	51.32	153.78	23.16	141.95	132.23	129.17	129.32	136.82	129.32	129.17	115.13	156.85	112.74	120.49	132.50	131.29						U	3.73, 14.40	
11 1	51.30	154.15	23.13	142.22	139.50	129.10	124.28	149.34	124.28	129.10	111.66	156.77	116.78	132.18	119.35	129.50								
1 m 1	50.73	156.22	22.86	142.71	130.66	127.74	129.89	142.71	129.89	127.74	111.31	156.87	116.80	132.18	119.30	129.20								21.20
1 n 1	51.03	156.23	23.08	142.50	132.08	127.76	129.32	132.20	129.32	127.76	111.64	156.84	116.80	132.20	119.32	129.24								
10 1	51.08	156.22	22.84	142.32	132.80	129.67	130.60	125.99	130.60	129.67	111.70	156.79	116.78	132.05	119.31	129.29								
1p 1	51.23	156.23	22.89	142.34	132.75	129.98	127.82	136.51	132.48	133.51	111.72	156.71	116.77	132.14	119.23	129.25								
1q 1	51.12	154.70	23.08	142.86	139.44	129.16	124.26	149.35	124.26	129.16	124.70	129.86	129.20	135.35	129.20	129.86								
lr 1	51.60	155.49	22.78	142.09	132.53	128.28	127.35	143.43	127.35	128.28	118.56	129.59	114.38	160.87	114.38	129.59 1	38.92 1	26.98 1	29.21 12	28.43 12	29.21 1	26.98	55.48	
2a 1	52.49	154.89	22.93	140.59	132.05	127.60	129.17	131.98	129.17	127.60	27.90	133.58	127.64	125.66	127.72	131.65 1	28.17 1	25.96 1	26.38 12	24.23 13	31.65			
2b 1	52.72	153.15	23.00	140.48	139.51	128.98	124.16	149.28	124.16	128.98	27.93	133.59	127.77	125.70	127.79	131.92 1	28.65 1	25.98 1	26.42 12	24.22 13	31.65			
2c 1	52.60	155.21	22.70	140.56	125.56	129.65	114.78	162.55	114.78	129.65	27.92	133.53	127.70	125.68	127.75	131.80 1	28.60 1	25.96 1	26.41 12	24.21 13	31.65			55.73
2d 1	52.52	153.98	22.75	140.52	132.79	132.20	129.55	125.88	129.55	132.20	27.90	133.58	127.69	125.67	127.74	132.03 1	28.64 1	25.97 1	26.40 12	24.22 13	31.65			
2e 1	52.42	155.09	22.82	140.91	130.65	127.62	129.76	142.43	129.76	127.62	27.87	133.58	127.72	125.66	127.77	131.90 1	28.64 1	25.97 1	26.40 12	24.20 13	31.65			21.18
3a 1	48.62	156.81	23.06	143.75	130.51	127.86	129.92	142.77	129.92	127.86	123.76	138.99	125.66	147.77		145.25								21.24
3b 1	48.41	156.15	23.15	143.81	132.53	129.89	132.35	126.30	132.35	129.89	124.02	140.17	126.18	146.85		144.34								
3c 1	48.47	156.41	22.92	143.72	125.34	129.83	114.78	162.70	114.78	129.83	123.85	139.00	125.68	147.65		145.17								55.79
3d 1	48.43	156.08	23.18	143.70	132.38	129.58	127.92	135.94	132.60	133.32	123.85	139.32	125.84	146.69		145.12								

267

δ 151.32, C-6 at δ 153.78, C-9 at δ 141.95, C-10 at δ 132.23, C-13 at δ 136.82, C-16 at δ 115.13, and C-17 at δ 156.85. All the other ¹H and ¹³C NMR chemical shifts were determined completely by the same methods. Distinguishing H-18 from H-19 and H-22 from H-25 for compounds **2a**–**2e** was not easy and NOE difference spectra were applied. Because of the similarity in structures, we take **2e** as an example. The signals at δ 7.48 and δ 8.28 were increased by 5.5% and 9.6%, respectively, by radiating at δ 4.75 (H-16, methylene proton), and thus the signals of H-18 (δ 7.48) and H-25 (δ 8.28) were assigned.

From Table 1 it may be concluded that substitution on the aromatic ring moiety has little effect on the heterocyclic system H-7 proton. Thus, the H-7 proton resonates in the narrow range of 4.30–4.52 ppm, with the exception of compound **3b**. Generally, the electron-accepting group on the aromatic ring shifts the signal downfield, whereas the electron-donating substituents shift the signal upfield.

The ¹³C NMR spectra exhibit characteristic signals for C-3, C-6, C-7, and C-9 of the fused ring at δ 148.41–152.72, 153.15–156.81, 22.66–23.33, and 140.48–143.81, respectively. As shown in Table 2, the signals corresponding to the heterocyclic system are relatively insensitive to the nature of the substituent on the aryl ring. C-3 in these systems resonates in the narrow range of 151–152 ppm, with the exception of compounds **3a–3d**.

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. M203149) and Wenzhou University Natural Science Foundation (No. 2006L001).

REFERENCES

- 1. Walser A, Flynn T, Mason C. J. Heterocycl. Chem. 1991; 28: 1121.
- Hiroda T, Sasaki K, Yammoto H, Nakayama T. J. Heterocycl. Chem. 1991; 28: 257.

- Goswami BN, Kataky JCS, Baruah JN. J. Heterocycl. Chem. 1986; 23: 1439.
- Soni N, Bhalla TN, Gupta TK, Parmar SS, Barthwal JP. Eur. J. Med. Chem. 1985; 20: 190.
- Peter CW, Richard VB, Thomas PK, Palmer DM, Robert CM. J. Med. Chem. 1982; 25: 331.
- Gall M, Lahti RA, Rudzik AD, Duchamp DJ, Chidester C, Scahill T. J. Med. Chem. 1978; 21: 542.
- 7. Ergenc N, Ulusoy N, Capan G, Otuk G, Kiraz M. Arch. Pharm. Pharm. Med. Chem. 1996; **329**: 427.
- Prsad AR, Ramalingam T, Rao AB, Dlwan PW, Sattur PB. Eur. J. Med. Chem. 1989; 24: 199.
- 9. Nizamuddin GM, Khan MH, Srivastava MK. J. Sci. Ind. Res. 1999; 58: 538.
- 10. Prasad AR, Ramalingam T, Rao AB, Daiwan PV, Sattur PB. Eur. J. Med. Chem. 1989; 24: 199.
- 11. El-Daway MA, Omar AMME, Ismail AM, Hazzaa AAB. J. Pharm. Sci. 1983; **72**: 45.
- 12. Nadkarni BA, Kamat VR, Khadse BG. Arzneim. Forsch. 2001; 57: 569.
- 13. Mohan J. Indian J. Chem. B 2002; 41: 403.
- 14. Zhang LX, Zhang AJ, Chen XX, Lei XX, Nan XY, Chen DY, Zhang ZY. *Molecules* 2002; 7: 681.
- 15. Zhang AJ, Zhang LX, Lei XX. Magn. Reson. Chem. 2006; 44: 813.
- Zhang LX, Zhang ZY, Zeng FL. Chem. J. Chinese Univ. 1990; 11: 148.
- 17. Reid JR, Heindel ND. J. Heterocycl. Chem. 1976; 13: 925.
- 18. Awad LF, El Ashry ESH. Nucleosides Nucleotides 1999; 18: 557.