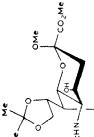
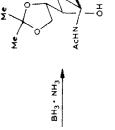
Preliminary communication

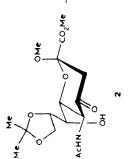
Synthesis of the 4-acetamido-4-deoxy analogue of N-acetylneuraminic acid and its behaviour towards CMP-sialate synthase*[†]

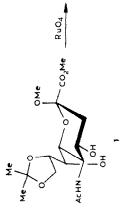
ERICH ZBIRAL, ERWIN SCHREINER, AND RUDOLF CHRISTIAN Institut für Organische Chemie der Universität Wien, Währingerstraße 38, A-1090 Wien (Austria) (Received August 23rd, 1989; accepted for publication, September 21st, 1989)

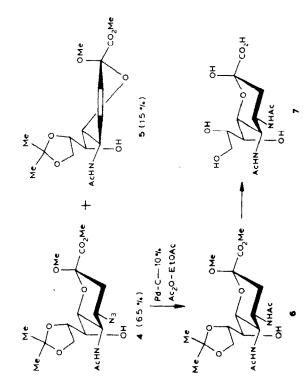
To gain more insight into the structure-activity relationship of the enzymes of sialic acid metabolism we recently prepared a series of sialic acid analogues²⁻⁴ and determined their surface profiles^{5,6}. For CMP-sialate synthase to recognize its substrate, we found that the three hydrophilic functions 2-OH β , the NH of the NHAc group, and the coaxially aligned 8-OH group as well as both hydrophobic axial hydrogens H-4 and H-6 were necessary^{5,6}. On the other hand, it is known that, for the recognition of α -glycosidically bound sialic acid and its release by a sialidase, the CO-group of the 5-acetamido group and the 4-OH group are required. Exchange of the latter group by hydrogen⁷ or a methoxy group⁸, and the biochemical transformation into a 4-acetoxy group, prevents this cleavage⁹. Other structural relations concerning the α -face were studied systematically recently¹⁰.


The aforementioned data prompted us to propose that the 4-acetamido-4deoxy analogue of N-acetylneuraminic acid (Neu5Ac) should be transformable into a CMP-derivative. In addition it should be possible to link it to glycoproteins by means of suitable transferases in similar manner to 4-O-Me-Neu5Ac⁸. Such artificial sialoglycoproteins would be stable not only against sialidases but also esterases, which are known to render a 4-O-acetyl-sialoglycoprotein sensitive to sialidases. The results on synthesis of the title compound are shown in the scheme.


First of all the sialic acid derivative 1 was transformed via the 4-oxo-derivative 2 into the 4-epi-sialic acid derivative¹ 3. Further reaction with triphenylphosphinediethylazodicarboxylate (DEAD)-3M HN₃ (toluene) in THF yielded the expected compound 4 as the main product (65%) and the 3,4-didehydro sialic acid derivative 5 as a byproduct (15%)[‡]. Hydrogenation in the presence of Ac₂O produced com-


^{*}Structural Variations on N-Acetylneuraminic Acid. Part 13. For part 12, see ref. 1.


[†]Presented at the 5th European Carbohydrate Symposium, Prague, August 21-25, 1989.


^{*}Compound 3 was treated overnight at room temp. with 1.2 equiv. Ph₃P-HN₃-DEAD. After addition of an excess of CH₂Cl₂, the solution was extracted with sat. NaHCO₃ and water. Chromatography over silica gel (EtOAc) yielded pure 4: m.p. 199° (EtOAc).

TPP-DEAD 3M-HN₃ Toluene

Compound	Chemical sh	Chemical shifts (p.p.m.)									
	3-Hale	4-H	5-Н	Н-9	H-1	8-H	9,9'-H	HN	NCOCH3	CO ₂ CH ₃	OCH3
4	1.84/2.50	a	a	3.64	3.47	a	4.00/4.13	5.67	2.08	3.79	3.29
- in	a	a	4.78	3.81	3.46	4.35	4.00/4.16	5.68	2.03	3.79	3.33
. 9	1.83/2.27	4.48	a	3.65	3.43	4.25	3.97/4.10	6.52/6.73	1.97	3.77	3.27
76	a/2.24	4.40	4.04	4.25	3.63	3.81	3.67/3.90	1	2.03/2.06	1	
	Coupling co	nstants (Hz)				1					
	J _{3a,3} e J _{3a,4}	J _{3a,4}	J _{3e,4}	$J_{4,NH}$	$J_{4,5}$	J _{5,NH}	J _{5,6}	J _{6,7} J _{7,8}	J _{8,9}	J _{8,9'}	J _{9,9'}
4	-12.5	10.3	4.4	1	и	6.7	9.5			6.4	-8.8
un.	1	I	ł	1	2.4	9.2	9.5			6.6	-8.8
6	-13.0	12.0	4.5	8.8	10.5	7.3	10.2	0.5 7.9	5.4	6.2	-8.7
7 b	-13.1	11.8	4.6	ł	10.8	1	10.8			2.2	-11.7

"Not determined. bln D₂O.

N.M.R. DATA (250 MHz, CDCl₃)

TABLE I

pound 6 (90%), which was saponified¹¹ to 4,5-diacetamido-3,4,5-trideoxy-Dglycero- β -D-galacto-pyranosonic acid (7 60%). Structural assignments for 4–7 are in accordance with the 250-MHz ¹H-n.m.r. spectra (Table I).

The activation of 7 by CMP-sialate synthase was determined by using the enzyme kinetics as previously described². As 7 does not react in the thiobarbituric acid assay¹², the determination was performed in parallel with Neu5Ac by varying both substrate concentrations. For this reason neither an inhibition constant $(K_{\rm I})$ nor the Michaelis constant $(K_{\rm m})$ or $v_{\rm max}$ -values could be determined graphically. Nevertheless these data were evaluated by simulating the distribution of the products (stochastic method¹³) and by comparing the simulated with the observed concentrations of Neu5Ac-CMP (least-square procedure). The calculated values for $K_{\rm m}$ are 0.8mM for Neu5Ac and 1.3mM for Neu5Ac4NAc. The corresponding $v_{\rm max}$ -values were 1.4 and 1.5 μ mol·min⁻¹ respectively. This good activation of the new sialic acid analogue 7 agrees with the structure-activity relationships demonstrated for a series of other sialic acid analogues^{2,5,6}.

ACKNOWLEDGMENTS

Supported by the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich-projects P6805 and 4009. We thank Ms. S. Kotzinger and Mr. W. Schneider for competent technical assistence.

REFERENCES

- 1 M. HARTMANN AND E. ZBIRAL, Monatsh. Chem., 120 (1989) in press.
- 2 E. ZBIRAL AND H. H. BRANDSTETTER, Monatsh. Chem., 116 (1985) 87-98.
- 3 M. SALUNKHE, M. HARTMANN, W. SCHMID, AND E. ZBIRAL, Liebigs Ann. Chem., (1988) 187-189.
- 4 E. ZBIRAL, H. H. BRANDSTETTER, AND E. P. SCHREINER, Monatsh. Chem., 119 (1988) 127-141.
- 5 R. CHRISTIAN, G. SCHULZ, H. H. BRANDSTETTER, AND E. ZBIRAL, Carbohydr. Res., 162 (1987) 1-11.
- 6 R. CHRISTIAN, E. SCHREINER, E. ZBIRAL, AND G. SCHULZ, Carbohydr. Res., (1989) in press.
- 7 F. BAUMBERGER, A. VASELLA, AND R. SCHAUER, Helv. Chim. Acta, 69 (1986) 1927-1935; R. BROSSMER, H. W. HAGEDORN, Helv. Chim. Acta, 69 (1986) 2127-2132.
- 8 J. M. BEAU, R. SCHAUER, Eur. J. Biochem., 106 (1980) 531-540.
- 9 A. P. CORFIELD, M. SANDER-WEWER, R. W. VEH, M. WEMBER, AND R. SCHAUER, Biol. Chem. Hoppe-Seyler, 367 (1986) 433-439.
- 10 E. ZBIRAL, H. H. BRANDSTETTER, R. CHRISTIAN, AND R. SCHAUER, Liebigs Ann. Chem., (1987) 781–786; E. ZBIRAL, E. SCHREINER, R. CHRISTIAN, R. G. KLEINEIDAM, AND R. SCHAUER, Liebigs Ann. Chem., (1989) 159–165; E. ZBIRAL, E. SCHREINER, M. M. SALUNKHE, G. SCHULZ, R. G. KLEINEIDAM, AND R. SCHAUER, Liebigs Ann. Chem., (1989) 519–526.
- 11 R. SCHAUER, H. P. BUSCHER, Biophys. Acta, 338 (1974) 369-373.
- 12 D. AMINOFF, Virology, 7 (1959) 355-357; L. WARREN, J. Biol., 234 (1959) 1971-1975.
- 13 C. J. JACHIMOWSKI, D. A. MCQUARRIE, AND M. E. RUSSELL, Biochemistry, 3 (1964) 1732-1736.