# Solid-State Photochemistry of Guest Aliphatic Ketones inside the Channels of Host Deoxycholic and Apocholic Acids

## R. Popovitz-Biro, C. P. Tang, H. C. Chang, M. Lahav,\* and L. Leiserowitz\*

Contribution from the Department of Structural Chemistry, The Weizmann Institute of Science, Rehovot, Israel 76100. Received July 11, 1984

Abstract: Deoxycholic acid (DCA) forms channel inclusion complexes with acetone (host-guest molar ratio 5:3), diethyl ketone (2:1), and ethyl methyl ketone (2:1). UV irradiation of these three complexes led to stereospecific photoaddition of the guests at sites [C5,  $C6_{eq}$ ,  $C6_{ax}$ ],  $C6_{eq}$ , and [C6<sub>eq</sub>, C5] of the host, respectively. Crystal structures of DCA-acetone and DCA-ethyl methyl ketone at temperatures of 103 K were determined and of DCA-diethyl ketone at 293 K. The host structures are isomorphous; they form hydrogen-bonded bilayers which are juxtaposed by hydrophobic contacts to form inclusion channels delineated by four walls. The occluded ketones are sandwiched between the wide walls of the channel comprising the steroid rings A and B. The regio- and stereospecificity of these reactions are explained on topochemical grounds. The 3:1 complex of DCA-methyl pentyl ketone is very similar to that of DCA-ethyl methyl ketone. Photoirradiation leads to cleavage of the ketone, yielding acetone which subsequently adds to DCA at site C5 and C6. A different channel motif was engineered in which cyclohexanone was sandwiched between rings D and the steroid side chains, leading to photoaddition to site C16 of ring D. The 1:1 complex of (APA) apocholic acid-acetone is light stable. The X-ray structure analysis indicates a similar host bilayer structure as DCA. The acetone molecules are stacked up the channel axis, unlike in DCA-acetone, and are arranged such that the ketone C'=O' bond tends to be parallel to the nearest C-H of the steroid wall. According to this analysis the maximal distances between the ketone C'=O' group and the potentially reactive steroid C-H bond are 3.5 Å for O---H and 4.2 Å for C'...C. The angle between the planar guest ketone group and the potentially reactive C-H bond of the host steroid was found to vary over a wide range from about 50° to 90°.

#### 1. Introduction

Recently, much effort has been directed toward increasing selectivity of chemical transformations, by organizing the potential reactants in micelles,<sup>1</sup> liquid crystals,<sup>2</sup> crown ethers,<sup>3a</sup> cryptates,<sup>3b</sup> cyclodextrins,<sup>4</sup> and monolayers.<sup>5</sup> During the process of organization, partial constraints are imposed upon the reactants, limiting the overall number of possible transition states which can be formed, subsequently decreasing the number of products formed.

One may also exploit the crystalline phase which generally imposes severe constraints on molecular movement and normally allows only a single conformation. Consequently, highly stereoselective and enantioselective reactions have been successfully accomplished in crystals, where the molecules are appropriately oriented for reaction.<sup>6</sup> The major drawback of these crystalline systems is that they generally each comprised molecules of the same kind which were too tightly packed in the solid to better maneuver themselves to react. One way to bypass this disadvantage is to design crystalline molecular inclusion host-guest complexes, where the guests assume defined crystallographic sites and orientations but are still sufficiently loosely packed to undergo multistep stereo- or regiospecific reactions with nearest-neighbor host molecules. Furthermore, such crystalline complexes would be expected to preserve their integrity during the course of a

chemical reaction<sup>7</sup> by virtue of the dominance of the host lattice. Such crystals should thus prove to be useful to study mechanisms of organic reactions. So far molecular inclusion complexes have been exploited for performing stereospecific polymerization reactions<sup>8</sup> and for the resolution of enantiomers by the process of fractional crystallization.<sup>9</sup> Here we shall describe reactions between host and guest, and as models we selected to investigate the functionalization of the bile acids, through activation of the included guests.

With the above ideas in mind, we have examined the solid-state photoaddition of a variety of guest aliphatic ketones (Figure 1c-g) to host molecules deoxycholic acid (DCA) and apocholic acid (APA) (Figure 1a,b) to establish whether the crystalline matrices are appropriate models for elucidating reaction pathways.

#### 2. Packing of Host Molecules in DCA Inclusion Complexes

According to X-ray crystal structure analyses of several DCA complexes previously reported and those we shall describe in this series, it became clear that DCA generally crystallizes in three crystal classes, orthorhombic, which is the most commonly ob-served,<sup>10-12</sup> tetragonal,<sup>13</sup> and hexagonal.<sup>14</sup> The photochemical

<sup>(1)</sup> Thomas, J. R. Chem. Rev. 1980, 83, 203-299. Turro, N. J.; Graetzel, M.; Braun, A. M. Angew. Chem., Int. Ed. Engl. 1980, 191, 675. Whitten, D. G. Angew. Chem., Int. Ed. Engl. 1978, 82, 937. Fendler, J. M. Acc. Chem. Res. 1980, 13, 7; J. Phys. Chem. 1980, 84, 1485.

<sup>(2)</sup> Anderson, V. C.; Craig, B. B.; Weiss, R. G. J. Am. Chem. Soc. 1982, 104, 2972. Levanon, H. Chem. Phys. Lett. 1982, 90, 465.

<sup>(3) (</sup>a) Cram, J. D.; Cram, J. M. Acc. Chem. Res. 1978, 11, 8. (b) Lehn, J. M. Acc. Chem. Res. 1978, 11, 49.

<sup>(4)</sup> Bender, M. L.; Komiyama, M. "Cyclodextrin Chemistry"; Springer-Verlag: New York, 1978. Tabushi, I. Acc. Chem. Res. 1982, 15, 66.
(5) (a) Kuhn, H.; Mobius, D. Angew. Chem., Int. Ed. Engl. 1971, 10, 620.
(b) Gaines, Jr. "Insoluble Monolayers at Liquid–Gas Interface"; Interscience: New York, 1966. (c) Fendler, J. H. "Membrane Mimetic Chemistry"; Willy Interscience. ley-Interscience: New York, 1982.

<sup>(6) (</sup>a) Schmidt, G. M. J. Pure Appl. Chem. 1971, 51, 647. (b) Addadi, ; Ariel, S.; Lahav, M.; Leiserowitz, L.; Popovitz-Biro, R.; Tang, C. P. J. Chem. Soc., Spec. Period. Rep., 1980, 8, 202. (c) Curtin, D. Y., Paul, I. C. Chem. Rev. 1981, 81, 525. (d) Gavezzotti, A.; Simonetta, M. Chem. Rev. 1982, 82, 1. (e) Scheffer, J. R. Acc. Chem. Res. 1980, 13, 283. (f) Thomas, J. M. Pure Appl. Chem. 1979, 51, 1065. (g) Hasegawa, M. Chem. Rev. 1983, 85, 507 and reference cited therein.

<sup>(7) (</sup>a) Kaiser, J.; Wegner, G.; Fischer, E. W. Isr. J. Chem. 1972, 10, 157. (b) Nakanishi, H.; Jones, W.; Thomas, J. M.; Hurshouse, H. B.; Moltevalli, M. J. Chem. Soc., Chem. Commun. 1980, 611. (c) Camerman, N.; Camerman, A. Science (Washington, D. C.) 1968, 160, 1451. (d) Ohashi, Y.; Yanagi, K.; Kurihara, T.; Sasada, Y.; Ohgo, Y. J. Am. Chem. Soc. 1981, 103, 5805. (e) Kurihara, T.; Ohashi, Y.; Sasada, Y. Acta Crystallogr., Sect. B 1983. B39. 243.

<sup>(8) (</sup>a) Chatani, Y.; Kuwata, S. Macromolecules 1975, 8, 12 and references cited therein. (b) Farina, M.; Di Silverstro, G.; Sozzani, P. Mol. Cryst. Liq. Cryst. 1983, 93, 169.

<sup>(9) (</sup>a) Tsoucaris, G.; Knossow, M.; Green, B. S.; Arad-Yellin, R. Mol. Cryst. Liq. Cryst. 1983, 96, 181. (b) Schlenk, H. Prog. Chem. Fats Other Lipids, 1954, 2, 243.

<sup>(10)</sup> Priliminary results have been published in: (a) Lahav, M.; Leiser-owitz, R.; Popovitz-Biro, R.; Tang, C. P. J. Am. Chem. Soc. 1978, 100, 2542.
(b) Popovitz-Biro, R.; Chang, H. C.; Tang, C. P.; Schochet, N. R.; Lahav, M.; Leiserowitz, L. Pure Appl. Chem. **1980**, 52, 2693. (c) Chang, H. C.; Popovitz-Biro, R.; Lahav, M.; Leiserowitz, L. J. Am. Chem. Soc. **1982**, 104, 614

<sup>(11) (</sup>a) Craven, B. M.; DeTita, G. T. J. Chem. Soc., Chem. Commun. 1972, 530. (b) DeSanctis, S. C.; Giglio, E.; Pavel, V.; Quagliata, C. Acta Crystallogr., Sect. B 1972, B28, 3556.

<sup>(12)</sup> Friedman, N.; Lahav, M.; Leiserowitz, L.; Popovitz-Biro, R.; Tang, C. P.; Zaretzkii, Z. V. I. J. Chem. Soc., Commun. 1975, 864.





Figure 1. Atom labeling of the host and guest molecules studied by diffraction in this analysis: (a), (b) host molecules deoxycholic acid (DCA) and apocholic acid (APA); (c)-(g) guest ketone molecules.



Figure 2. (001) bilayer formed by DCA molecules interlinked by O-H- $\cdot$ O hydrogen bonds. Stereoscopic view along the *c* axis.



Figure 3. Schematic view of juxtaposed (001) bilayers to generate channels.

reactions were performed so far only in orthorhombic crystals, which form four types of channel wall motifs depending on the nature of the occluded guest. Common to all four motifs is the host bilayer (Figure 2). Within this bilayer, the steroid molecules are interlinked front-to-end by  $>C3--O-H\cdotsO=C-OH$  hydrogen bonds, along the 13.5-Å b axis. These chains are interlinked by O26--H…O25 and O=C-O-H…O26 hydrogen bonds along the 7.2-Å c axis via 2<sub>1</sub> axes parallel to b (Figure 2) to form bc bilayers. These bilayers contain grooves parallel to the c axis



**Figure 4.** Stereoscopic views of the  $\alpha$ ,  $\beta$ , and  $\gamma$  motifs formed by DCA: (a) The  $\alpha$  motif, DCA-methyl pentyl ketone; (b)  $\beta$  motif, DCA-phenanthrene; (c) The  $\gamma$  motif, DCA-cyclohexanone.

(Figure 2) and juxtapose along the *a* axis, so that the grooves combine into channels shown schematically in Figure 3. To best fit the guest molecule, the cross section of the channel may be varied, within limits, by a change in interlayer separation along a, by an offset along the b axis between neighboring bilayers and by relating the juxtaposed bilayers about the channel c axis by (pseudo) twofold or by twofold screw symmetry. These variations yield four channel motifs,  $\alpha$ ,  $\beta$ ,  $\gamma$ , and  $\delta$ . In both the  $\alpha$  and  $\beta$ motifs, the adjacent bilayers are related by twofold screw symmetry, the axes of which pass along the channel centers, to yield a  $P2_12_12_1$  space group. These  $\alpha$  and  $\beta$  motifs exhibit different channel cross sections, induced by a difference in length of the a axis and in particular by a difference in offset along the b axis of the juxtaposed bilayers as shown for DCA-methyl pentyl ketone and DCA-phenanthrene<sup>11b</sup> in Figure 4A and B, respectively. Small flat guest molecules usually induce the  $\alpha$  motif; they occupy the channel with their best planes sandwiched by the channel walls comprising steroid rings A and B. The channel of the  $\beta$  motif accommodates bulkier guest molecules than the  $\alpha$  motif. The best planes of the guest molecules in the  $\beta$  motif are wedged between the steroid channel walls comprised of rings D and their side chains, in contrast to the  $\alpha$  motif.

The bilayer structure in the  $\gamma$  motif is similar to the  $\beta$  motif in terms of the direction of offset along b between juxtaposed bilayers. The former differs insofar that nearest-neighbor steroid molecules along the c axis are related by pseudotranslation, resulting in a 2 × 7.2 Å axial length with two host molecules per asymmetric unit; moreover, the juxtaposed bilayers are related by pseudotwofold symmetry about each channel axis although the true channel symmetry is a twofold screw axis as shown in Figure 4C for DCA-cyclohexanone. Thus, the true space group is  $P2_12_12_1$ , but the host arrangement is pseudo- $P2_12_12_2$ . Finally there

<sup>(13) (</sup>a) Tang, C. P.; Popovitz-Biro, R.; Lahav, M.; Leiserowitz, L. Isr. J. Chem. 1979, 19, 285. (b) Coiro, V. M.; D'Andrea, A.; Giglio, E. Acta Crystallogr., Sect. B 1979, B35, 2941.
(14) DeSanctis S. C. Gielie, P. Burd, P. G. Mark, G. M. C. Mark, S. C. Gielie, P. Burd, P. G. Mark, S. G. Gielie, P. Burd, P. G. Mark, S. Gielie, P. Burd, P. G. Mark, S. Gielie, P. Burd, P. G. Mark, S. Gielie, P. G. Mark, S. Gielie, P. Burd, P. G. Mark

<sup>(14)</sup> DeSanctis, S. C.; Giglio, E.; Petri, F.; Quagliata, C. Acta Crystallogr., Sect. B 1979, B35, 226.

Scheme I





Scheme II



is the  $\delta$  motif<sup>15</sup> in space group  $P2_12_12_1$ ; namely, the structure contains a twofold axis along the channel of length 7.2 Å.

0.

The relative stabilities of the  $\alpha$ - and  $\beta$ -DCA host structures have been examined in terms of van der Waals energy calculations by DeSanctis and Giglio<sup>16a</sup> and independently by Tang.<sup>16b</sup> The energy results indicate that the  $\alpha$ -form host structure is the more stable of the two.

#### 3. Photochemical and Crystallographic Results

**3.1.** DCA-Acetone. The 5:3 DCA-acetone complex (mp 170-175 °C) was prepared by crystallization of DCA from acetone solution. Irradiation of the complex in air during 10 days (see Experimental Section) led to the formation of three products, 1 (20%), 2 (4%), 3 (2%), resulting from photoaddition of the occluded acetone to host DCA as shown in Scheme I. Of the starting material, 70% could be recovered.

Structure Assignment of Photoproducts. The products from UV irradiation of DCA-acetone (Scheme I) were assigned according to mass spectrometric data, <sup>13</sup>C NMR spectra together with partially relaxed T1 measurements, and by chemical mod-



Figure 5. DCA-acetone. The packing arrangement of acetone molecules G1, G2, and G3 in the channel. The adjacent triplets (G1G2G3) along the channel are interrelated by twofold screw symmetry. Part of the steroid side chain forming the channel walls is shown.



Figure 6. DCA-acetone. Stereoscopic view of the host-guest packing leading to photoreaction. The steroid fragment C3-C4-C5(C10)-C6-C7, forming part of the channel walls, is shown.

ifications to known compounds. Compounds 1 and 2 lose water under the mass spectrometric conditions and have identical mass spectra. The largest mass observed for their methyl esters was m/e 446 (M<sup>+</sup> – H<sub>2</sub>O); the molecular peak was very weak but was proved by metastable scanning to be m/e 464 (M<sup>+</sup>), which indicates the addition of acetone to the host.

Compounds 1 and 2 were dehydrated by FeCl<sub>3</sub> on a SiO<sub>2</sub> support<sup>17</sup> in vacuum. Both gave the same compound 4, indicating that they are two stereoisomers generated by addition of acetone to the same carbon of the steroid. Oxidation of the diacetylated methyl ester of 4 with RuO4 gave the 6-ketodeoxycholic acid homologue 5 (Scheme II). The structure of compound 5 could be demonstrated by characteristic degradation observed in its high-resolution mass spectrum. In addition to the molecular peak m/e 504 and peaks indicating loss of acetic acid (m/e 444 and 384), two most characteristic fragments m/e 121 and 95 (Scheme III) were obtained, indicating the formation of the ketone at atom C6 of the steroid.<sup>12</sup>

The <sup>13</sup>C NMR spectra and partially relaxed T1 measurements of compounds 1 and 2 show that C6 changes its multiplicity in both compounds from secondary to tertiary and the signals shift from 27.4 ppm in DCA to 32.7 and 34.0 ppm for 1 and 2, respectively. From models it can be seen that in the C6 equatorial isomer, there is a strong interaction of the isopropyl group with C4 and a weak one with C7, whereas in the axial isomer these interactions are reversed. This is nicely reflected in the <sup>13</sup>C NMR spectra; in compound 1 there is a large shift of C4 (+7.5 ppm, synaxial effect) and a weak effect on C7 (-0.4 ppm), while in compound 2 C7 is shifted by +2.1 ppm.

The structure of 3 was assigned as an addition product of acetone to atom C5 of DCA, since 3 has two new quarternary carbons C5 at 48.5 ppm (+4.9 ppm) and  $(CH_3)_2COH$  at 80.5 ppm; in addition there is a strong gauche effect of -3.8 ppm on C19 and an effect of +5.8 ppm on C10, relative to DCA.<sup>18</sup>

**Crystal Structure of 5:3 DCA-Acetone.** The X-ray crystal structure at 293 K was originally analyzed by assuming a 2:1 host-guest ratio and one acetone molecule per asymmetric unit.<sup>10c</sup> The refined thermal motion of the guest was, however, suspected,

<sup>(15)</sup> Jones, G. T.; Schwarzbaum, S.; Lessinger, L.; Low, B. W. Acta Crystallogr., Sect. B 1982, B38, 1207.
(16) (a) DeSanctis, S. C.; Giglio, E. Acta Crystallogr., Sect. B 1979, B35,

<sup>(16) (</sup>a) DeSanctis, S. C.; Giglio, E. Acta Crystallogr., Sect. B 1979, B35, 2650.
(b) Tang, C. P. Ph.D. Thesis, Feinberg Graduate School, Rehovot, 1979.

<sup>(17)</sup> Keinan, E.; Mazur, Y. J. Org. Chem. 1978, 43, 1020.
(18) Leibfritz, D.; Roberts, J. D. J. Am. Chem. Soc. 1973, 95, 4996.

Table I. Distances d (Å) between Guest C=O Group and Host (DCA or APA)

|                     |                    |                  | (a) DCA          | -Acetone           | •                  |                   |          |
|---------------------|--------------------|------------------|------------------|--------------------|--------------------|-------------------|----------|
| C=0                 | DCA                | d, 103 K         | <i>d</i> , 293 K | C=0                | DCA d              | <i>i</i> , 103 K  | d, 293 K |
| O(G1)               | H5 <sup>a</sup>    | 3.0              | 3.0              | C(G2)              | C5                 | 3.8               | 4.0      |
|                     | $C5^a$             | 3.9              | 4.0              |                    | C6 <sup>a</sup>    | 4.0               | 4.1      |
|                     | H6 <sub>eq</sub> ª | 3.3              | 3.7              | O(G3)              | H5                 | 2.9               | 3.0      |
|                     | H6 <sub>ax</sub> ª | 4.1              | 3.9              |                    | C5                 | 3.9               | 4.1      |
|                     | C6 <sup>a</sup>    | 4.1              | 4.3              |                    | H6 <sub>eq</sub> ª | 3.4               | 3.5      |
| C(G1)               | C5ª                | 3.8              | 3.9              |                    | H6 <sub>ax</sub> a | 3.3               | 3.1      |
|                     | C6 <sup>a</sup>    | 3.7              | 4.0              |                    | C6 <sup>a</sup>    | 3.7               | 3.9      |
| O(G2)               | H5                 | 2.7              | 3.0              | C(G3)              | C5                 | 3.9               | 4.2      |
|                     | C5                 | 3.8              | 4.0              |                    | C6 <sup>a</sup>    | 3.7               | 3.8      |
|                     | H6 <sub>eq</sub> ª | 3.6              | 3.3              |                    |                    |                   |          |
|                     | H6 <sub>ax</sub> ª | 3.2              | 3.3              |                    |                    |                   |          |
|                     | $C6^a$             | 3.8              | 3.9              |                    |                    |                   |          |
|                     |                    |                  | (b) APA          | -Acetone           | •                  |                   |          |
| C=                  | =0                 | APA              | d, 293 K         | C=0                | APA                | . d, 1            | 293 K    |
| (                   | 0                  | H20              | 2.9              | С                  | C20                |                   | 4.5      |
|                     |                    |                  | (c) DCA-Di       | ethyl Ke           | tone               |                   |          |
| C=                  | =0                 | DCA              | d, 293 K         | C=0                | DCA                | <b>d</b> , 2      | 293 K    |
| (                   | С                  | H5               | 3.3              | С                  | C5                 |                   | 4.2      |
|                     |                    | C5               | 4.0              |                    | C6                 |                   | 3.8      |
|                     |                    | H6 <sub>eq</sub> | 3.3              |                    |                    |                   |          |
|                     |                    | H6 <sub>ax</sub> | 3.9              |                    |                    |                   |          |
|                     |                    | C6               | 3.9              |                    |                    |                   |          |
|                     |                    |                  | (d) DCA-Cy       | clohexar           | ione               |                   |          |
|                     | =0                 | DCA <sup>b</sup> | d, 293 K         | C=0                | DCA                | <sup>b</sup> d, 1 | 293 K    |
| C                   | ) <sup>a</sup>     | H16′             | 3.4              | 0                  | H16′               |                   | 3.4      |
|                     |                    | C16              | 4.3              |                    | C16                |                   | 4.3      |
| C                   | a                  | C16              | 4.4              | С                  | C16                |                   | 4.2      |
|                     |                    | (e)              | DCA-Ethyl        | Methyl             | Ketone             |                   |          |
| C <b>=</b> 0        | DCA                | d, 103 K         | d, 293 K         | С=О                | DCA a              | <i>l</i> , 103 K  | d, 293 K |
| $\overline{O(G)^a}$ | H5                 | 2.8              | 3.2              | <b>O</b> (G')      | H5                 | 2.6               | 2.8      |
|                     | C5                 | 3.7              | 3.9              |                    | C5                 | 3.6               | 3.7      |
|                     | $H6_{eq}$          | 3.5              | 3.2              |                    | H6 <sub>eq</sub>   | 3.8               | 3.6      |
|                     | H6 <sub>ax</sub>   | 3.7              | 3.9              |                    | H6 <sub>ax</sub>   | 3.9               | 4.0      |
|                     | C6                 | 3.7              | 3.9              |                    | C6                 | 3.9               | 4.0      |
| C(G) <sup>a</sup>   | C5                 | 3.9              | 4.0              | C(G')              | C5                 | 3.8               | 3.8      |
|                     | C6                 | 3.6              | 3.7              |                    | C6                 | 3.9               | 4.0      |
|                     |                    | (f) 1            | DCA-Methy        | l Pentyl           | Ketone             |                   |          |
| C=                  | =0                 | DCA              | d, 103 K         | C=0                | DCA                | d,                | 103 K    |
| 0(                  | G) <sup>a</sup>    | H5               | 2.9              | O(G') <sup>a</sup> | H5                 |                   | 3.0      |
|                     |                    | C5               | 3.9              |                    | C5                 |                   | 3.9      |
|                     |                    | H6 <sub>eq</sub> | 3.6              |                    | H6 <sub>ec</sub>   | l                 | 3.4      |
|                     |                    | H6 <sub>ax</sub> | 3.9              |                    | H6 <sub>a</sub> ,  |                   | 3.9      |
|                     |                    | C6               | 4.3              | C(G')              | C5                 |                   | 4.1      |
| C(0                 | G)                 | C5               | 3.9              |                    | C6                 |                   | 4.2      |
|                     |                    | C6               | 3.7              |                    |                    |                   |          |

<sup>&</sup>lt;sup>a</sup>Symmetry operation  $\frac{1}{2} - x, -y, \pm \frac{1}{2} + z$  applied to atom. <sup>b</sup>The first three entries correspond to molecule A of DCA; the next three to molecule B.

suggesting incorrect location of the guest molecule. In order to find the guest molecule, X-ray diffraction data were measured from a crystal cooled to a temperature of ca. 103 K.

Least-squares refinement (see section 5.3) yielded an R = 0.072. The channel was found to contain three independent acetone molecules G1, G2, G3, with individual occupancies (i.e., guest/host molar ratios) of 0.24 (1), 0.18 (1), and 0.24 (1) respectively, totaling 0.66 (2). Given the refined positions of G1, G2, and G3, one may construct only one feasible guest-packing motif shown in Figure 5. The arrangement comprises a chain of repeating close-packed triplets G1, G2, G3; the individual guest occupancies are 1:5, giving a total of 0.6. Keeping the occupancies of G1, G2, and G3 each fixed at 0.2, further structure refinement left Runchanged at 0.072.

The atomic x, y, and z coordinates of this structure were then used as a starting model for the refinement of the room-temperature crystal structure, yielding R = 0.086 (see section 5.3). The thermal motion of the acetone molecules is  $0.12 \text{ Å}^2$ , compared to 0.05 Å<sup>2</sup> at 103 K. This result is in accord with solid-state NMR measurements on DCA-acetone.<sup>19</sup> The guest molecules in the channel are approximately coplanar, so forming a ribbon whose plane is wedged between steroid rings A and B of the two opposite channel walls. These guest-host arrangements at the sites of reaction are shown in Figure 6. The corresponding guest-host distances at both temperatures (103 and 293 K) are listed in Table Ia. These distances at 103 K tend to be systematically shorter by an average value of 0.1 Å than the corresponding values at 293 K. This may be associated primarily with the reduction in length of the *a* axis by 0.4 Å on cooling the crystal (see Table IIa). It is not possible to conclude with certainty from Table Ia and Figure 6 which of the guest molecules G1, G2, or G3 reacts to form products 1, 2, or 3. What one may deduce is that guest C'=O'...H-C(steroid) distances ranging from 3.0 to 3.4 Å, and the corresponding guest O'= C'...C-H(steroid) distances as long as 4 Å lead to reaction.

**3.2. APA**-**Acetone.** In order to establish the geometrical parameters essential for the occurrence of intermolecular hydrogen abstraction, acetone was introduced into a different host channel environment, by complexing it with APA. The object was to compare its photochemical behavior with that of DCA-acetone.

The 1:1 APA-acetone complex (mp 168–172 °C) was prepared by crystallization of APA from acetone solution. The complex was light-stable (products <1%). The irradiation was performed under argon since APA is sensitive to oxygen and undergoes oxidations in the allylic positions when irradiated in air.

Crystal Structure of 1:1 APA-Acetone. Room-temperature X-ray data sufficed for the location of the acetone guest molecules because they are completely ordered in the channel and hence were unambiguously located (section 5.4). The channel cross section in APA-acetone (Figure 7) is appreciably larger than in DCAacetone. This is because the APA bilayers juxtapose to form the  $\beta$  motif unlike DCA-acetone which appears in the  $\alpha$  motif. The host-guest molar ratio is 1:1. The >C'=O' moiety of acetone is perpendicular to the channel c axis; thus, acetone makes plane-to-plane contact of 3.6 Å along the c axis via twofold screw symmetry. The hydrogen atom H2O of the steroid side chain makes a contact of 2.9 Å with the guest oxygen atom. The corresponding distance between C20 and guest C'(carbonyl) is as long as 4.9 Å and the C20-H bond is almost parallel to the acetone C'=O' bond. Thus, the molecular environments of guest acetone in APA-acetone and DCA-acetone are completely different. The fact that the complex of APA is light-stable despite the presence of the short O'(guest)...H(host) contact emphasizes the topochemical nature of this solid-state reaction. We tentatively conclude that if the neighboring host (potentially reactive) C-H and guest C'=O' groups are close to collinear, no addition reaction occurs. There is an alternative explanation for the lack of reactivity. The guest molecule would have to rotate almost by a net 90° out of its stacking plane in order to form the bond between C20 and C' of acetone and so would probably incur, during rotation, prohibitively short contacts with neighboring unreacted guest molecules. No such constraint occurs in the channels of DCA-acetone where each guest molecule can easily bind to atoms C5 or C6 without inducing steric contacts with its neighboring guest molecules.

**3.3.** DCA-Diethyl Ketone. Further support for the topochemical nature of the ketone photoaddition reaction was provided by DCA-diethyl ketone. Here the host also crystallizes in the  $\alpha$  motif, but the change in the guest molecule relative to acetone is sufficient to induce a different host-guest orientation.

DCA-diethyl ketone (2:1) (mp 148-150 °C) was prepared by crystallization of DCA from diethyl ketone. Irradiation of the complex under argon led to the formation of a single addition product 6 ( $\sim$ 8%). Irradiation carried out in air yielded 6 and a hydroxylation product 7 ( $\sim$ 8%) (Scheme IV).

Structure Assignment of Photoproducts. The structure assignment of compound 6 and its stereochemistry are based on its  $^{13}$ C NMR spectrum that showed a pronounced analogy to compound 1 obtained from the reaction of DCA with acetone.

(19) Meirowitz, E. Private communication.

**Table II.** Cell Constants and Experimental Data on X-ray Intensities of (a) DCA-Acetone, (b) APA-Acetone, (c) DCA-Diethyl Ketone, (d) DCA-Cyclohexanone, (e) DCA-Ethyl Ketone and (f) DCA-Methyl Pentyl Ketone

|                                  |                          | a                        | b                               | с                         | d                           |                          | e                        | f                           |
|----------------------------------|--------------------------|--------------------------|---------------------------------|---------------------------|-----------------------------|--------------------------|--------------------------|-----------------------------|
| crystal temp, K                  | 103                      | 293                      | 293                             | 293                       | 293                         | 103                      | 293                      | 103                         |
| formula                          |                          |                          |                                 |                           |                             |                          |                          |                             |
| host                             | $C_{24}H_{40}O_{4}$      | $C_{24}H_{40}O_4$        | $C_{24}H_{38}O_{4}$             | $C_{24}H_{40}O_{4}$       | $C_{24}H_{40}O_{4}$         | $C_{24}H_{40}O_{4}$      | $C_{24}H_{40}O_{4}$      | $C_{24}H_{40}O_{4}$         |
| guest                            | $^{3}/_{5}(C_{3}H_{6}O)$ | $^{3}/_{5}(C_{3}H_{6}O)$ | C <sub>3</sub> H <sub>6</sub> O | $^{1}/_{2}(C_{5}H_{10}O)$ | $^{1}/_{2}(C_{6}H_{10}O)$   | $^{1}/_{2}(C_{4}H_{8}O)$ | $^{1}/_{2}(C_{4}H_{8}O)$ | $\frac{1}{3}(C_{1}H_{10}O)$ |
| $a(a), Å^b$                      | 25.416 (4)               | 25.809 (5)               | 24.570 (5)                      | 25.828 (2)                | 26.990 (3)                  | 25.462 (5)               | 25.805 (5)               | 25.529 (4)                  |
| b                                | 13.514 (4)               | 13.610 (3)               | 14.264 (3)                      | 13.560 (1)                | 13.354 (1)                  | 13.448 (5)               | 13.593 (2)               | 13.440 (3)                  |
| с                                | 7.194 (6)                | 7.233 (1)                | 7.530 (1)                       | 7.240 (1)                 | 14.141 (2)                  | 7.176 (4)                | 7.228 (1)                | 7.214 (1)                   |
| Ζ                                | 4                        | 4                        | 4                               | 4                         | 8                           | 4                        | 4                        | 4                           |
| V, Å <sup>3</sup>                | 2471                     | 2541                     | 2536                            | 2536                      | 5097                        | 2457                     | 2535                     | 2475                        |
| space group                      | $P2_{1}2_{1}2_{1}$       | $P2_{1}2_{1}2_{1}$       | $P2_{1}2_{1}2_{1}$              | $P2_{1}2_{1}2_{1}$        | P212121                     | $P2_{1}2_{1}2_{1}$       | $P_{2_1}2_12_1$          | $P2_{1}2_{1}2_{1}$          |
| $D_c, g/cm^3$                    | 1.15                     | 1.12                     | 1.13                            | 1.14                      | 1.15                        | 1.16                     | 1.12                     | 1.15                        |
| mp, °C                           | 170-175                  | 170-175                  | 168-172                         | 148-150                   | 157                         | 170-175                  | 170-175                  | 168-170                     |
| diffractometer                   | CAD-4                    | Siemens                  | Siemens                         | Siemens                   | Siemens                     | CAD-4                    | Siemens                  | CAD-4                       |
| X-rays                           | Μο Κα                    | Cu Kα                    | Cu Kα                           | Cu Ka                     | Cu Ka                       | Μο Κα                    | Cu Ka                    | Μο Κα                       |
| $\mu,  \mathrm{cm}^{-1}$         | 0.8                      | 6                        | 6                               | 6                         | 6                           | 0.8                      | 6                        | 0.8                         |
| crystal size of specimen, mm ×10 | 1.5 × 4 × 4              | 1.5 × 1.5 × 4.7          | $2 \times 4 \times 9$           | 1 × 3 × 5                 | $1.4 \times 1.5 \times 4.0$ | $2 \times 4 \times 5$    | $1 \times 2 \times 3$    | $2 \times 2 \times 5$       |
| $\theta$ range, deg              | 2-30                     | 2-65                     | 2-65                            | 2-70                      | 2-70                        | 2-35                     | 2-70                     | 2-33                        |
| $\omega/\theta$ scan ratio       | 1/1                      | 1/1                      | 1/1                             | 1/1                       | 1/1                         | 2/1                      | 1/1                      | 3/2                         |
| max scan time, s                 | 60                       | 100                      | 100                             | 100                       | 100                         | 80                       | 100                      | 80                          |
| reflections measd                | 4109                     | 4903                     | 5081                            | 5400                      | 5442                        | 6123                     | 2770                     | 5732                        |
| R <sub>m</sub> <sup>c</sup>      |                          | 0.07                     | 0.04                            | 0.063                     |                             | 0.037                    |                          | 0.043                       |
| no. of independ reflect          | 4109                     | 2505                     | 2579                            | 2771                      | 5442                        | 6011                     | 2770                     | 4232                        |
| absorpt correct <sup>d</sup>     | no                       | yes                      | yes                             | yes                       | yes                         | no                       | yes                      | no                          |

<sup>a</sup> The guest-host molar ratios of compounds a-f are 3:5, 1:1, 1:2, 1:2, and 1:3, respectively. <sup>b</sup> $\lambda$ (Mo K $\alpha_1$ ) = 0.070926 Å,  $\lambda$ (Cu K $\alpha_1$ ) = 1.54051 Å. <sup>c</sup> $R_m = \sum |F^2 - F^2| / \sum F^2$ , where  $\bar{F}$  is an observed structure factor and F the weighted mean of the corresponding symmetry-related set of observed structure factors. <sup>d</sup>Crystal X-ray absorption corrections were applied by the method given in ref 22.



Figure 7. Stereoscopic view of the packing arrangement of APA-acetone.

## Scheme IV



Compound 6 was transformed to 5 by the same chemical modifications described for compounds 1 and 2.

The structure of compound 7 was assigned by comparison with the same product obtained from the reaction of DCA with di*tert*-butyl diperoxymonocarbonate which has identical melting point, X-ray powder picture, and <sup>13</sup>C NMR spectrum.<sup>12</sup>



Figure 8. (A) DCA-diethyl ketone. Stereoscopic view of guest molecules along the channel as sandwiched between rings A and B of neighboring steroid molecules. H atoms attached to C5 and C6 are shown. (B) Distances between the atoms of the carbonyl group of diethyl ketone and sites C5-H, C6-H<sub>eq</sub>, and C6-H<sub>ex</sub>.

Crystal Structure and Reactivity. The structure of 2:1 DCAdiethyl ketone at room temperature was determined by X-ray diffraction (see section 5.5). The guest molecules in the channel are related by c translation with acceptable intermolecular C-(methyl)····C(methyl) contacts of 4.3 Å, as shown in Figure 8A. The separation O'(guest)····H5(host) is 3.3 Å; however no addition product to C5 was formed presumably because of the long C'= O'(guest)····C5(host) distance of 4.2 Å (Table Ic and Figure 8B). Were addition to take place to C5 despite the "long" separation of 4.2 Å, there would need be a displacement of approximately 2.5 Å of the to-be-reacted guest molecule along the channel axis, Scheme V

11a



leading to an impossibly short contact between it and a neighboring guest molecule as may be deduced from Figure 8A. On the other hand, photoaddition to atom C6 via  $H6_{eq}$  would induce a negligible shift of the to-be-reacted guest molecule along the channel axis to permit normal intermolecular contacts. The preclusion of photoaddition of the guest ketone to C5 suggests that the radical formed on C5 may be trapped by molecular oxygen available in the channel leading to the isolated C5–OH hydroxy product 7.

11b

7

3.4. DCA-Cyclohexanone. The DCA complexes described above, which are all of the  $\alpha$  type, contain linear paraffinic ketone guests sandwiched between rings A and B, from which hydrogen abstraction takes place. At this stage we considered ways by which it would be possible to functionalize ring D or the steroid side chain. We had previously observed<sup>12</sup> that the bulky guest molecule di-tert-butyl diperoxymonocarbonate induced a channel in which the guest is sandwiched between ring D and its side chain. The cross section of this channel labeled the  $\gamma$  type is significantly different to that of the  $\alpha$  type (see section 2). Thus, to induce DCA to adopt the  $\gamma$  motif, it was necessary to choose a bulky ketone guest; cyclohexanone, and derivatives thereof, proved to be an auspicious choice.<sup>17</sup> DCA-cyclohexanone (2:1) (mp 156.8 °C) was prepared by cocrystallization of DCA with cyclohexanone from methanol solution containing an excess of cyclohexanone. Irradiation of the complex under argon led to the formation of a topochemical addition product 8 (6%). When irradiation was carried out in air, both products 8 (6%) and 7 (10%) were formed (Scheme V).

Structure Assignment of Photoproducts. The structure of 8 was assigned according to its <sup>13</sup>C NMR spectrum and degradation in the mass spectrum of compound 9. The <sup>13</sup>C NMR spectrum of 8 shows that no change occurred in the region of rings A and B of the steroid while a significant shift of +2.6 ppm at C18 indicates that the addition occurred at rings C or D. The large shifts of +5.5 ppm at C17 and +5.5 at C15 strongly support the addition to position C16 of the steroid. The strong influence of



Figure 9. Packing of ethyl methyl ketone molecules in the DCA channel. Part of the steroid side chain (i.e., atoms C20, C21, C22, C23, C24, and some attached H atoms) forming the channel wall is shown.

+2.6 ppm on C18 and the shift of -2.3 ppm on C20 indicate that 8 is the C16 isomer. Compound 8 and its methyl ester decomposed under the mass spectrometric conditions. Thus, 8 was dehydrated on SiO<sub>2</sub>-supported FeCl<sub>3</sub> to give 9 whose methyl ester showed a molecular peak m/e 486 and a characteristic peak m/e 343 arising from the loss of the cyclohexyl ring and C15 and C16 of ring D of the steroid.

**Crystal Structure and Reactivity.** The crystal structure of 2:1 DCA-cyclohexanone (at 293 K) was refined to R = 0.09 (see section 5.8). Each guest atom was unambiguously and easily located by virtue of the lack of guest disorder. The channel is of the  $\gamma$  type (Figure 4C). The guest carbonyl group C'=O' is in close proximity to ring D and the side chain of the two independent steroid molecules A and B. The steroid position  $16_{ax}$  of both steroid molecules is the most eligible candidate for photoaddition in terms of both O'...H16<sub>ax</sub> and C'...C16 contacts, although the distance of 4.2 Å between C16 and C' appears to be unusually long for the reaction to occur (see Table Id).

3.5. DCA-Ethyl Methyl Ketone and DCA-Methyl Pentyl Ketone. The DCA complexes described above contain symmetrically substituted ketones as the guest. The stereospecificity of the reactions was studied in terms of the host-guest orientations and distances in the complex prior to reaction. We now probe the photoaddition reaction by using prochiral ketones  $R_1R_2C'=O'$  as the guest. Such ketones allow one to probe the molecular pathway insofar as photoaddition to the steroid leads to formation of a new chiral carbon center whose absolute configuration may be compared with the prochiral arrangement about the guest carbonyl carbon atom before reaction. The simplest prochiral ketone chosen was ethyl methyl ketone.

The 2:1 complex between DCA and ethyl methyl ketone (mp 170-175 °C) was prepared by crystallization of DCA from the ethyl methyl ketone solution. Irradiation of the complex in air led to the formation of two diastereomeric pairs of addition products **10a** and **10b** (16%), **11a** and **11b** (12%), and the hydroxylation product 7 (12%). When the crystallization and the reaction were performed under argon, 7 was not formed (Scheme VI).

Structure Assignment of Photoproducts from DCA-Ethyl Methyl Ketone. The mixtures of diastereomeric pairs 10a and 10b and 11a and 11b could not be separated by chromatographic methods, and they could be detected only by <sup>13</sup>C NMR spectroscopy, since different chemical shifts were observed for carbon atoms close to the new chiral centers produced in the two diastereomers.

Compounds 10a and 10b were assigned to be products of addition to position  $6_{eq}$  of the steroid by comparing the <sup>13</sup>C NMR spectrum to that of the analogous compounds 1 and 6 obtained from the reactions of acetone and diethyl ketone, respectively. Similarly, the mixture 11a and 11b was assigned to be products of addition to position 5 by comparing the <sup>13</sup>C NMR spectrum with that of compound 3 obtained from reaction of acetone.

Structure Assignment of Photoproducts from DCA-Methyl Pentyl Ketone. The 3:1 complex of DCA and ethyl pentyl ketone (mp 168-170 °C) was prepared by crystallization of DCA from methyl pentyl ketone solution. Irradiation of the complex in air led to the formation of addition products 1, 2, 3, and the hy-



Figure 10. Dimer of ethyl methyl ketone molecules G and G' sandwiched between steroid rings. The steroid H atoms attached to C5 and C6 are shown. Stereoscopic views from (a) top and (b) side.



Figure 11. Arrangement of methyl pentyl ketone dimer molecules G and G' in a DCA channel.



Figure 12. DCA-methyl pentyl ketone. Peak distribution and relative heights from an electron density difference map. Two guest molecules were constructed from these peaks.

droxylation product 7. In the absence of oxygen, only products 1, 2, and 3 were formed, isolated and identified by comparison with the photoproducts obtained from the photoirradiation of the complex DCA acetone (Scheme I). These observations indicate



**Figure 13.** Methyl pentyl ketone G' molecules related by  $2_1$  symmetry forming a nearest-neighbor arrangement in a DCA channel.

Scheme VII



that methyl pentyl ketone undergoes a photocleavage to acetone, which subsequently reacts with DCA to yield the same photoproducts as acetone. This reaction was not further investigated. Analogous photocleavage of an aliphatic ketone occluded in the channels of a urea complex has been recently reported.<sup>20</sup>

**Crystal Structure and Reactivity.** The X-ray diffraction data of 2:1 DCA-ethyl methyl ketone were measured from a crystal at 293 K and also at 103 K in order to better locate the guest molecules. The crystal structure belongs to the  $\alpha$  motif (Figure 4A). According to the low-temperature structure analysis (section 5.7), the channel contains two independent guest molecules G and G' per asymmetric unit. They form pseudocentrosymmetric dimers related by a translation repeat of 2c along the channel axis (Figure 9), resulting in a host-guest molar ratio of 2:1. The atomic x, y, and z coordinates of this structure were used as a starting model for refinement of the room-temperature structure (section 5.7).

The geometry of contact between the guest molecules G and G' and steroid rings A and B (see Figure 10 and Table Ie) is completely compatible with the formation of the diastereomeric pairs 10a and 10b and 11a and 11b (Scheme VI); the reactive centers of the steroid at atoms C5 and C6 are equally well exposed to the opposite faces of G and G'.

The crystal structure of 3:1 DCA-methyl pentyl ketone (section 5.6) is very similar to that of DCA-ethyl methyl ketone. The channel of the former contains two independent guest molecules G and G' per asymmetric unit. They form dimers related by a translation repeat of 3c along the channel axis (Figure 11), resulting in a host-guest molar ratio of 3:1. The -CH<sub>2</sub>-COCH<sub>3</sub> dimer moieties of methyl pentyl ketone occupy the same location in the channel as the corresponding guest ethyl methyl ketone

<sup>(20)</sup> Casal, H. L.; de Mayo, P.; Miranda, J. F.; Scaiano, J. C. J. Am. Chem. Soc. 1983, 105, 1983.

Scheme VIII



Scheme IX



dimer. This result indicates that the location of the methyl alkyl ketone dimer along the channel is determined by the contacts between host and the dimer.

## 4. Discussion and Conclusion

The present study clearly demonstrates that the guest ketone molecules occupy defined crystallographic sites and orientations, induced by host-guest and guest-guest contacts. The crystallographic results indicate that the guest molecules at room temperature undergo pronounced thermal motion yet still functionalize stereospecifically to the steroid host. The photochemical results imply that photoaddition takes place with substantial rearrangement and change in molecular structure at the site of tobe-reacted guest. It was found possible to introduce the guest ketone into different channel motifs (i.e.,  $\alpha$ ,  $\beta$ , and  $\gamma$ ), so as to functionalize, but within limits, different remote sites of the host.

The  $\alpha$  motif is induced by nonbulky guest molecules when cocrystallized with DCA, the  $\gamma$  motif by relatively bulky guests. The channel cross section in the  $\alpha$  motif is smaller than in the  $\gamma$  motif, as manifested by the smaller length of the *a* axis of the former (25.6 vs. 26.9 Å). In the  $\alpha$  motif, the two opposite wide walls of the channel comprise the fused rings A and B, the two narrow walls the steroid side chain attached to ring D. The two wide walls in the  $\gamma$  motif comprise ring D and its side chain; the narrower walls are formed by part of rings A and B. The guest aliphatic ketones in the  $\alpha$  motif are sandwiched between the A.B ring moieties; in the  $\gamma$  motif the ketone molecules are sandwiched by ring D and its side chain. The guest ketones react photochemically only with those C atoms on the channel wall and whose exposed C-H bonds are directed toward the channel. The photoaddition takes place by abstraction of the steroid H atom by the ketone oxygen O', followed by bond formation between the guest carbonyl atom C' and the steroid C atom.

Photoaddition was found to occur between guest C'=O' and the steroid C-H group when the distances from atom O' to C and from C' to C were as long as 3.4 and 4.2 Å, respectively,



Figure 14. DCA-ethyl methyl ketone. Peak distribution and relative heights from an electron density difference map. Two guest molecules were constructed from the peaks.

implying a high degree of reorganization during reaction. According to the packing diagrams, the angle between the plane of the guest ketone moiety >C'=O' and the steroid C—H bond of the to-be-abstracted H varies over a wide angular range from about 50° to 90°.

Photoaddition was found to occur at sites C5 and C6 in the  $\alpha$  motif, these atoms being centrally located on the wide channel wall. Photoaddition does not occur at sites on the steroid side chain comprising the narrow channel wall; these sites are relatively far removed from the guest ketone C'=O' group. By similar reasoning we account for photoaddition to site C16 in the  $\gamma$  motif. This atom is centrally located on the wide channel wall.

The photochemical studies have indicated that the addition reactions are topochemically controlled but appear to depend also on the orientation of the >C'=O' moiety of the guest molecule with regard to the steroid C-H bond as well as on the fit between nearest-neighbor guest molecules in the channel. Use of the prochiral methyl alkyl ketone guests for comparison between the stereochemistry of the host-guest arrangement at the reaction site and the absolute configuration of the newly generated chiral C center of the photoproduct proved to be unsuccessful. This is because the methyl alkyl ketone guest molecules form cyclic quasi-centrosymmetric dimers in the channel leading to diastereomeric photoproducts, and so it is hardly possible to deduce which guest yields which diastereomeric product.

Hydroxylation at position C5 was found to take place when geometric conditions were satisfied for abstraction of H5 by the guest ketone to occur but could not be followed by bond formation between C5 and the ketone. The hydroxylation reaction involved occluded molecular  $O_2$  in the channel.

Having established the feasibility for performing stereo- and regiospecific reactions in these complexes, we exploited such systems to elucidate the molecular pathway of the photoaddition step by using prochiral aromatic ketones as the guest. This work will be described in the following papers in this series.

#### 5. Experimental Section

**5.1. General Chemical Procedure.** All complexes have been prepared by cocrystallization of DCA with the guest, using the guest as solvent for crystallization, except for the complex with cyclohexanone, where absolute methanol was used as solvent. The crystallizations were carried out by slow evaporation of the solvents. The approximate host-guest ratios were determined by the integration in their <sup>1</sup>H NMR spectra.

In a characteristic experiment, 5–10 g of the complex was irradiated at room temperature through Pyrex dishes  $\lambda >> 290$  nm for about 10 days. The crystals were in powder form. Single crystals preserve their integrity upon irradiation. The irradiation products were separated by chromatography on silica gel 1:100 and eluted with CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH/ AcOH in a ratio of 94.5:5.0:0.5. The products were detected by TLC

**Table III.** Structure-Factor Refinement for (a) DCA-Acetone (103 K), (b) DCA-Acetone (293 K), (c) APA-Acetone (293 K), (d) DCA-Diethyl Ketone (293 K), (e) DCA-Cyclohexanone (293 K), (f) DCA-Ethyl Methyl Ketone (103 K), (g) DCA-Ethyl Methyl Ketone (293 K), and (h) DCA-Methyl Pentyl Ketone (103 K)

|                                    | а                    | b                   | c                  | d                     | e                     | f                | g                   | h                |
|------------------------------------|----------------------|---------------------|--------------------|-----------------------|-----------------------|------------------|---------------------|------------------|
| no. refined parameters             | 432                  | 416                 | 253                | 289                   | 505                   | 426              | 426                 | 426              |
| criterion for $F_{obsd}$ exclusion | $F \leq 3\sigma(F)'$ | $F \leq 3\sigma(F)$ | $F < 1.4\sigma(F)$ | $F \leq 1.4\sigma(F)$ | $F \leq 1.4\sigma(F)$ | $F < 3\sigma(F)$ | $F \leq 3\sigma(F)$ | $F < 2\sigma(F)$ |
| no. of $F_{obsd}$ in refinement    | 1877                 | 1851                | 2264               | 2485                  | 4490                  | 2961             | 1867                | 2723             |
| weighting scheme                   | $1/\sigma^2(F)$      | 1                   | $1/\sigma^2(F)$    | $1/\sigma^2(F)$       | $1/\sigma^2(F)$       | $1/\sigma^2(F)$  | $1/\sigma^2(F)$     | $1/\sigma^2(F)$  |
| R <sup>a</sup>                     | 0.072                | 0.086               | 0.083              | 0.108                 | 0.086                 | 0.097            | 0.097               | 0.058            |
| $R_w^a$                            | 0.067                | 0.067               |                    |                       |                       | 0.096            | 0.105               | 0.056            |

 ${}^{a}R = \sum |F_{o} - |F_{c}|| / \sum F_{o}, R_{w} = \sum w^{1/2} |F_{o} - |F_{c}|| / \sum w^{1/2} C_{o},$ 

**Table IV.** Deoxycholic Acid-Acetone (103 K): (a) x, y, and z Coordinates (×10<sup>4</sup>) and  $U_{cq}^{a}$  (×10<sup>3</sup>, Å<sup>2</sup>) of the C and O Atoms of Deoxycholic Acid (Average  $\sigma(U_{eq}) = 0.004$  Å<sup>2</sup>), (b) x, y, and z Coordinates (×10<sup>4</sup>) and Isotropic U (Å<sup>2</sup>, ×10<sup>3</sup>) of H Atoms of Deoxycholic Acid (Average  $\sigma(U) = 0.012$  Å<sup>2</sup>. Average  $\sigma(x)$ ,  $\sigma(y)$ , and  $\sigma(z) = 20$ , 40, and 70 (×10<sup>4</sup>), respectively, (c) x, y, and z Coordinates (×10<sup>4</sup>) of the Guest Acetone Molecules<sup>a</sup> G1, G2, and G3 (The Isotropic U of each Atom = 0.053 (3) Å<sup>2</sup>)

| (a) x, y, z, and $U_{eq}$ of C and O Atoms | of Deoxycholic Acid |
|--------------------------------------------|---------------------|
|--------------------------------------------|---------------------|

| atom                                    | x                                       | У                       | z                | $U_{ m eq}$ | atom         | x                        | У                                  | z                             | $U_{eq}$ |
|-----------------------------------------|-----------------------------------------|-------------------------|------------------|-------------|--------------|--------------------------|------------------------------------|-------------------------------|----------|
| C(1)                                    | 1229 (3)                                | 2170 (4)                | 3542 (9)         | 30          | C(15)        | 1628 (3)                 | 5648 (4)                           | -2491 (9)                     | 30       |
| C(2)                                    | 677 (3)                                 | 1 897 (4)               | 2946 (8)         | 29          | C(16)        | 1373 (3)                 | 6687 (4)                           | -2330 (9)                     | 30       |
| ĊĠ                                      | 698 (3)                                 | 1 181 (4)               | 1363 (9)         | 32          | C(17)        | 1079 (3)                 | 6714 (4)                           | -443(8)                       | 22       |
| C(4)                                    | 996 (3)                                 | 1619 (4)                | -275(8)          | 28          | C(18)        | 1868 (3)                 | 6189 (4)                           | 1443 (9)                      | 30       |
| C(5)                                    | 1556 (3)                                | 1927(4)                 | 289 (9)          | 32          | C(19)        | 2122(3)                  | 2764 (5)                           | 2726 (11)                     | 41       |
| C(6)                                    | 1861 (3)                                | 2365(4)                 | -1371(10)        | 34          | C(20)        | 1078(3)                  | 7775(4)                            | 380 (8)                       | 26       |
| C(0)                                    | 1660 (3)                                | 2 303 (4)               | -1038 (0)        | 20          | C(21)        | 802 (3)                  | 7850 (4)                           | 2240 (0)                      | 20       |
| C(r)                                    | 1600(3)                                 | $\frac{3300}{4101}$     | -1756(9)         | 20          | C(21)        | 846 (3)                  | 8520 (5)                           | -1020(9)                      | 20       |
|                                         | 1037 (3)                                | $\frac{4101}{2660}$ (4) | -303(9)          | 20          | C(22)        | 295 (2)                  | 0.525(5)                           | -1020(9)                      | 20       |
| C(9)                                    | 1552(5)                                 | 3 000 (4)               | 1344 (9)         | 20          | C(23)        | 203 (3)                  | 0.337(3)                           | -1308(9)                      | 34       |
| C(10)                                   | 1558 (3)                                | 2 649 (4)               | 19/5 (9)         | 30          | C(24)        | 89 (3)<br>1(5 (3)        | 9101 (4)                           | -2870 (8)                     | 29       |
|                                         | 1200 (3)                                | 4 4 20 (4)              | 2915 (8)         | 27          | O(23)        | 105(2)                   | 932 (3)<br>5 205 (2)               | 830 (8)                       | 30       |
| C(12)                                   | 1013 (3)                                | 5 396 (4)               | 2253 (8)         | 24          | 0(26)        | 481 (2)                  | 5205(3)                            | 1041 (0)                      | 21       |
| C(13)                                   | 1337 (3)                                | 5862 (4)                | 662 (8)          | 24          | O(27)        | 84 (2)                   | 10045 (3)                          | -2482 (6)                     | 48       |
| C(14)                                   | 1382 (3)                                | 5077 (4)                | -900 (9)         | 26          | 0(28)        | -72 (2                   | 8832 (3)                           | -4473 (7)                     |          |
| ato                                     | om x                                    | γ                       | Z                | <u> </u>    | atom         | x                        | γ                                  | Z                             | U        |
|                                         | (b) $x, y, z$ , and $U$                 | J of H Atoms o          | f Deoxycholic Ac | id          |              | (c) $x, y, z,$           | and $U$ of Guest                   | Molecules                     |          |
| H(1                                     | ) 1258                                  | 2 577                   | 4637             | 37          |              |                          |                                    |                               |          |
| H(1                                     | ') 1419                                 | 1 534                   | 3 8 2 0          | 37          | Mo           | lecule G1 [ $\sigma(x)$  | $z), \ \sigma(y), \ \sigma(z) = z$ | 11, 23, 35 (×10°)             | ),       |
| H(2                                     | :) 495                                  | 1 587                   | 3 995            | 13          |              |                          | respectively]                      |                               |          |
| H(2                                     | 2') 441                                 | 2 478                   | 2 348            | 13          | O(1)         | 2630                     | 519                                | 4970                          |          |
| H(3                                     | 6) 884                                  | 548                     | 1 588            | 5           | C(1)         | 1888                     | -502                               | 5 307                         |          |
| H(4                                     | ) 781                                   | 2 2 2 8                 | -712             | 36          | H(1)         | 1791                     | -430                               | 6 489                         |          |
| H(4                                     | /) 974                                  | 1 069                   | -1158            | 36          | H(2)         | 1659                     | -499                               | 4 3 4 2                       |          |
| H(5                                     | i) 1743                                 | 1 3 5 5                 | 801              | 25          | H(3)         | 2015                     | -1114                              | 4871                          |          |
| H(6                                     | ) 2224                                  | 2 5 1 5                 | ~1 007           | 51          | C(2)         | 2340                     | -77                                | 4 229                         |          |
| H(6                                     | i') 1839                                | 1 944                   | -2454            | 51          | C(3)         | 2378                     | -300                               | 2 2 2 4                       |          |
| H(7                                     | <sup>'</sup> ) 1292                     | 3 3 2 3                 | -2 334           | 19          | H(4)         | 2006                     | -277                               | 1755                          |          |
| H(7                                     | ") 1917                                 | 3 566                   | -2891            | 19          | H(5)         | 2529                     | -957                               | 2 400                         |          |
| H(8                                     | ) 1941                                  | 4158                    | 141              | 5           | H(6)         | 2605                     | 229                                | 1 432                         |          |
| H(9                                     | 976                                     | 3 501                   | 858              | 0           |              |                          |                                    | o .o. o                       |          |
| H(1                                     | 1) 1082                                 | 4 0 9 7                 | 3 907            | 15          | MC           | plecule G2 [ $\sigma(z)$ | $x$ ), $\sigma(y)$ , $\sigma(z) =$ | 9, 18, 36 (×10 <sup>-</sup> ) | ,        |
| H(1                                     | 1') 1617                                | 4 4 7 9                 | 3 684            | 15          | <b>a</b> (1) |                          | respectively]                      |                               |          |
| H(1                                     | 2) 1013                                 | 5 898                   | 3 280            | 6           | O(1)         | 2252                     | -493                               | 11 237                        |          |
| H(1                                     | 4) 1019                                 | 4 9 2 8                 | -1 266           | 8           | C(1)         | 2817                     | 231                                | 9036                          |          |
| нà                                      | 5) 2013                                 | 5654                    | -2 550           | 20          | H(1)         | 2579                     | 38                                 | 8 202                         |          |
| нà                                      | 5') 1547                                | 5 361                   | -3710            | 20          | H(2)         | 2962                     | 849                                | 9062                          |          |
| HÌI                                     | 6) 1089                                 | 6756                    | -3 271           | 26          | H(3)         | 3157                     | -30                                | 9011                          |          |
| Hù                                      | 6') 1647                                | 7 181                   | -2 389           | 26          | C(2)         | 2633                     | 30                                 | 10983                         |          |
| HO                                      | 7) 713                                  | 6 504                   | -620             | 0           | C(3)         | 2928                     | 466                                | 12 542                        |          |
| H                                       | 8) 2076                                 | 6 5 5 8                 | 528              | 37          | H(4)         | 2898                     | 1201                               | 12 289                        |          |
| HO                                      | 8') 2109                                | 5 668                   | 1 725            | 37          | H(5)         | 3279                     | 192                                | 12 507                        |          |
| HO                                      | 8") 1807                                | 6618                    | 2 519            | 37          | H(6)         | 2688                     | 301                                | 13740                         |          |
| HO                                      | 9) 2359                                 | 3073                    | 1 8 1 9          | 51          |              |                          |                                    | 0 10 22 (1104)                |          |
| HO                                      | 9') 2298                                | 2185                    | 3 1 3 9          | 51          | мс           | siecule G3 $[\sigma($    | $x$ ), $\sigma(y)$ , $\sigma(z) =$ | 9, 19, 33 (×10)               | ,        |
| H(1                                     | 9'') 2179                               | 3 2 1 3                 | 3711             | 51          | 0(1)         | 2210                     | respectively                       | 2.070                         |          |
| H(2                                     | (1471)                                  | 7967                    | 417              | 1           | O(1)         | 2210                     | -313                               | 2869                          |          |
| H(2                                     | 1) 1001                                 | 7 5 2 6                 | 3 2 5 6          | 20          | C(1)         | 2742                     | 565                                | 4 969                         |          |
| H(2                                     | (1/) 434                                | 7 4 9 6                 | 2 3 3 7          | 20          | H(1)         | 2511                     | 329                                | 5 809                         |          |
| H()                                     | ···/                                    | 8 575                   | 2 587            | 20          | H(2)         | 3089                     | 581                                | 5144                          |          |
| H()                                     | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | 8452                    | -2 181           | 20          | H(3)         | 2755                     | 1247                               | 4724                          |          |
| н(2<br>Ц(2                              | 2) 1045                                 | 0 707                   | _434             | 20          | C(2)         | 2610                     | 166                                | 3 080                         |          |
| 11(2<br>11(2                            | (2) (3) (3) (3)                         | 8 375                   | -504             | 32          | C(3)         | 2986                     | 324                                | 1 550                         |          |
| 11(2<br>11(2                            |                                         | 7760                    | -2.265           | 32          | H(4)         | 3301                     | -111                               | 1 780                         |          |
| L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -5, 241<br>(5) 114                      | 211                     | _360             | 17          | H(5)         | 3044                     | 1032                               | 1714                          |          |
| П(2<br>Ц/1                              | (c) 110<br>(c) 250                      | 5 2 1 9                 | 2 600            | 48          | H(6)         | 2799                     | 80                                 | 271                           |          |
| H(2                                     | (8) -273                                | 9257                    | -5002            | 25          |              |                          |                                    |                               |          |

<sup>a</sup> Equivalent temperature factor  $U_{eq} = \frac{1}{3\sum_{ij}U_{ij}a^*_i a^*_j a_i a_j}$ . <sup>b</sup> Each acetone molecule was refined as a rigid body; thus all atoms of each molecule have the same  $\sigma(x)$ ,  $\sigma(y)$ , and  $\sigma(z)$ .

by using eluent  $CH_2Cl_2/CH_3OH/AcOH$  in a ratio of 90.5:9.0:0.5 and phosphormolybdic acid as the coloring spray. Methyl esters of the products were prepared by esterification with diazomethane.

**Compound 1:** TLC  $R_f = 0.3$  (DCA has  $R_f = 0.6$ ); mp 175-180 °C (crystallized from methanol/methylene chloride); mass spectrum (methyl ester), m/e 464 (M<sup>+</sup>), 446 (M - H<sub>2</sub>O), 428 (M - 2H<sub>2</sub>O), 410 (M - 3H<sub>2</sub>O), 385 (C<sub>25</sub>H<sub>37</sub>O<sub>3</sub>), 355 (M - 2H<sub>2</sub>O - ring A), 313 (M - 2 H<sub>2</sub>O - side chain), 295 (M - 3H<sub>2</sub>O - side chain), <sup>1</sup>H NMR (CD<sub>3</sub>OD)  $\delta$  0.70 (3 H, s, 18-H), 0.95 (3 H, d, J = 6 Hz, 21-H), 1.10 (3 H, s, 19-H), 1.28 (3 H, s, CH<sub>3</sub>C(OH)CH<sub>3</sub>), 1.35 (3 H, s, CH<sub>3</sub>C(OH)CH).

**Compound 2**: TLC  $R_f = 0.55$ ; mp 213-215 °C (methanol/methylene chloride); mass spectrum (methyl ester), m/e 464 (M<sup>+</sup>), 446 (M - H<sub>2</sub>O),

428 (M – 2H<sub>2</sub>O), 410 (M – 3H<sub>2</sub>O), 395 ((C<sub>25</sub>H<sub>37</sub>)<sub>3</sub>), 355 (M – 2H<sub>2</sub>O – ring A), 313 (M – 2H<sub>2</sub>O – side chain), 295 (M – 3H<sub>2</sub>O – side chain); <sup>1</sup>H NMR (CD<sub>3</sub>OD)  $\delta$  0.69 (3 H, s, 18-H), 1.0 (3 H, d, J = 5.5 Hz, 21-H), 1.04 (3 H, s, 19-H), 1.22 (3 H, s, CH<sub>3</sub>C(OH)CH<sub>3</sub>), 1.24 (3 H, s, CH<sub>3</sub>C(OH)CH<sub>3</sub>).

**Compound 3:** TLC  $R_f = 0.45$ ; mp 218-221 °C (methanol/acetic acid); mass spectrum (methyl ester), m/e 404 (M - C<sub>3</sub>H<sub>8</sub>O), 386 (M - C<sub>3</sub>H<sub>8</sub>O - H<sub>2</sub>O), 368 (M - C<sub>3</sub>H<sub>8</sub> - 2H<sub>2</sub>O), 255 (M - C<sub>3</sub>H<sub>8</sub>O - 2H<sub>2</sub>O - side chain), 59 (C<sub>3</sub>H<sub>7</sub>O); <sup>1</sup>H NMR (CD<sub>3</sub>OD)  $\delta$  0.69 (3 H, s, 18-H), 1.1 (3 H, s, 19-H), 1.3 (3 H, s, CH<sub>3</sub>C(OH)CH<sub>3</sub>), 1.35 (3 H, s, CH<sub>3</sub>C-(OH)CH<sub>3</sub>).

Compound 4. This compound was prepared according to the procedure

| able V. (AIA) / | rpoenone riera r |           | . <i>x</i> , and <i>y</i> , and <i>z</i> ( |              |          |           |            |
|-----------------|------------------|-----------|--------------------------------------------|--------------|----------|-----------|------------|
| atom            | x                | У         | Z                                          | atom         | x        | У         | Z          |
|                 |                  |           | Apocho                                     | lic Acid     |          |           |            |
| C(1)            | 6412 (3)         | -1911 (5) | 2981 (9)                                   | C(2)         | 5868 (3) | -2405 (5) | 2872 (8)   |
| C(3)            | 5863 (3)         | -3083 (5) | 1316 (9)                                   | C(4)         | 5994 (2) | -2581 (4) | -394 (8)   |
| C(5)            | 6548 (2)         | -2085 (4) | -275 (8)                                   | C(6)         | 6677 (2) | -1608 (5) | -2056 (9)  |
| C(7)            | 6321 (3)         | -742 (4)  | -2401 (8)                                  | C(8)         | 6300 (2) | -90 (4)   | -858 (8)   |
| C(9)            | 6187 (2)         | -553 (4)  | 941 (7)                                    | C(10)        | 6576 (2) | -1383 (4) | 1269 (9)   |
| C(11)           | 6158 (3)         | 150 (4)   | 2451 (8)                                   | C(12)        | 5913 (2) | 1094 (4)  | 1907 (8)   |
| C(13)           | 6263 (2)         | 1558 (4)  | 432 (8)                                    | C(14)        | 6319 (2) | 836 (4)   | -1088(8)   |
| C(15)           | 6328 (3)         | 1340 (5)  | -2822 (8)                                  | C(16)        | 6275 (3) | 2389 (5)  | -2358 (9)  |
| C(17)           | 6007 (2)         | 2414 (4)  | -500 (8)                                   | C(18)        | 6824 (2) | 1798 (4)  | 1195 (11)  |
| C(19)           | 7165 (2)         | -1033 (5) | 1495 (2)                                   | C(20)        | 6065 (2) | 3375 (4)  | 376 (10)   |
| C(21)           | 5768 (4)         | 3409 (5)  | 2215 (10)                                  | C(22)        | 5883 (2) | 4187 (5)  | -807 (10)  |
| C(23)           | 5273 (3)         | 4128 (5)  | -1296 (11)                                 | C(24)        | 5127 (2) | 4958 (6)  | -2472 (11) |
| C(25)           | 5319 (2)         | -3473 (3) | 1230 (7)                                   | C(26)        | 5367 (1) | 968 (3)   | 1290 (5)   |
| O(27)           | 5100 (2)         | 5765 (4)  | -2034 (7)                                  | C(28)        | 5027 (2) | 4703 (3)  | -4115 (6)  |
| H(1)            | 642              | -147      | 398                                        | H(1')        | 671      | -241      | 318        |
| H(2)            | 560              | -191      | 263                                        | H(2')        | 580      | -270      | 403        |
| H(3)            | 621              | -356      | 157                                        | H(4)         | 571      | -208      | -57        |
| H(4′)           | 600              | -300      | -144                                       | H(5)         | 681      | -260      | 3          |
| H(6)            | 664              | -208      | -303                                       | H(6′)        | 708      | -142      | -198       |
| H(7)            | 594              | -96       | -266                                       | H(7′)        | 647      | -41       | -348       |
| H(9)            | 582              | -81       | 69                                         | H(11)        | 654      | 25        | 292        |
| H(11')          | 594              | -13       | 343                                        | H(12)        | 591      | 154       | 294        |
| H(15)           | 601              | 116       | -357                                       | H(15')       | 667      | 123       | -350       |
| H(16)           | 607              | 274       | -325                                       | H(16')       | 666      | 267       | -229       |
| H(17)           | 562              | 225       | -68                                        | H(18′)       | 686      | 240       | 182        |
| H(18')          | 708              | 195       | 31                                         | H(18'')      | 704      | 130       | 172        |
| H(19)           | 731              | -70       | 249                                        | H(19')       | 742      | -152      | 143        |
| H(19")          | 734              | -71       | 33                                         | H(20)        | 646      | 346       | 65         |
| H(21)           | 590              | 310       | 312                                        | H(21')       | 537      | 312       | 228        |
| H(21")          | 572              | 405       | 283                                        | H(22)        | 592      | 482       | -19        |
| H(22')          | 607              | 422       | -198                                       | H(23)        | 507      | 417       | -10        |
| H(23')          | 521              | 352       | -193                                       | H(25)        | 528      | -377      | 10         |
| H(26)           | 510              | 124       | 214                                        | H(28)        | 493      | 522       | -491       |
|                 |                  |           | Ace                                        | tone         |          |           |            |
| C(1)            | 7248 (6)         | 5277 (8)  | 4847 (15)                                  | C(2)         | 7272 (6) | 4173 (8)  | 4588 (15)  |
| C(3)            | 6747 (6)         | 5523 (8)  | 5241 (15)                                  | <b>O</b> (1) | 7587 (6) | 5568 (8)  | 43880 (15) |
| H(2)            | 692              | 390       | 494                                        | H(2')        | 754      | 389       | 545        |
| H(2")           | 734              | 395       | 338                                        | H(3)         | 671      | 619       | 538        |
| H(3')           | 668              | 522       | 646                                        | H(3")        | 648      | 528       | 439        |

of Keinan and Mazur<sup>17</sup> by dehydration of compounds **1** and **2** on SiO<sub>2</sub>-supported FeCl<sub>3</sub>: mp 212–214 °C (methanol); mass spectrum (methyl ester), 446 (M<sup>+</sup>), 428 (M – H<sub>2</sub>O), 410 (M – 2H<sub>2</sub>O), 395 (M – 2H<sub>2</sub>O – Me), 355 (M – 2H<sub>2</sub>O – ring A), 313 (M – 2H<sub>2</sub>O – side chain), 295 (M – 3H<sub>2</sub>O – side chain), 115 (side chain) <sup>1</sup>H NMR (CD<sub>3</sub>CO<sub>2</sub>D)  $\delta$  0.71 (3 H, s, C18-H), 0.78 (3 H, s, 19-H), 1.66 (6 H, s, C(CH<sub>3</sub>)<sub>2</sub>]; <sup>13</sup>C NMR (CD<sub>3</sub>CO<sub>2</sub>D)  $\delta$  35.7 (C1), 31.2 (C2), 72.7 (C3), 35.9 (C4), 47.3 (C5), 124.0 (C6), 29.1 (C7), 37.9 (C8), 34.7 (C9), 36.6 (C10), 30.0 (C11), 74.8 (C12), 47.6 (C13), 49.1 (C14), 24.6 (C15), 28.4 (C16), 47.9 (C17), 13.1 (C18), 23.2 (C19), 36.3 (C20), 17.5 (C21), 31.6 (C22 and C23), 133.0 (C(CH<sub>3</sub>)<sub>2</sub>), 31.6, 29.7 (C(CH<sub>3</sub>)<sub>2</sub>).

**Compound 5.** This compound was prepared from compound 4 by esterification with MeOH/HCl, diacetylation in acetic anhydride and pyridine, and oxidation with RuO<sub>4</sub>. RuO<sub>4</sub> was prepared from RuO<sub>2</sub> and NaIO<sub>4</sub> in aqueous solution and extracted with CCl<sub>4</sub>. The procedure is according to D. G. Lee:<sup>21</sup> mass spectrum, m/e 504 (M<sup>+</sup>), 444 (M - A<sub>c</sub>OH), 384 (M - 2A<sub>c</sub>OH), 269 (M - 2A<sub>c</sub>OH - side chain, 121, 95 (see Scheme III); <sup>1</sup>H NMR (CD<sub>1</sub>Cl<sub>3</sub>)  $\delta$  0.73 (3 H, s, 18-H), 0.84 (3 H, s, 19-H), 2.0 (3 H, s, CH<sub>3</sub>C), 2.1 (3 H, s, CH<sub>3</sub>C), 3.6 (3 H, s, OCH<sub>3</sub>).

**Compound 6:** TLC  $R_f = 0.4$ ; mp 190–195 °C (methanol/methylene chloride); mass spectrum (methyl ester), m/e 492 (M<sup>+</sup>), 474 (M – H<sub>2</sub>O), 456 (M – 2H<sub>2</sub>O), 445 (M – H<sub>2</sub>O – Et), 427 (M – 2H<sub>2</sub>O – Et), 409 (M – 3H<sub>2</sub>O – Et), 323 (M – 3H<sub>2</sub>O – side chain), 87 (C<sub>5</sub>H<sub>11</sub>O); <sup>1</sup>H NMR (CD<sub>3</sub>OD)  $\delta$  0.71 (3 H, s, 18-H), 0.9 (3 H, s, 19-H).

**Compound 7:** TLC  $R_f = 0.3$ ; mp 165–167 °C (methanol); mass spectrum (methyl ester), m/e 422 (M<sup>+</sup>), 404 (M – H<sub>2</sub>O), 386 (M – 2H<sub>2</sub>O), 368 (M – 3H<sub>2</sub>O), 332 (C<sub>21</sub>H<sub>32</sub>O<sub>3</sub>), 289 (M – H<sub>2</sub>O – side chain), 271 (M – 2H<sub>2</sub>O – side chain), 261 (C<sub>17</sub>H<sub>25</sub>O<sub>2</sub>), 253 (M – 3H<sub>2</sub>O – side chain), 115 (side chain); <sup>1</sup>H NMR (CD<sub>3</sub>OD)  $\delta$  0.72 (3 H, s, 18-H), 0.87 (3 H, s, 19-H); <sup>13</sup>C NMR (CD<sub>3</sub>OD)  $\delta$  36.9 (C1), 29.3 (C2), 69.2 (C3),

41.4 (C4), 78.0 (C5), 30.45 (C6), 29.3 (C7), 37.25 (C8), 36.2 (C9), 40.15 (C10), 29.6 (C11), 74.7 (C12), 47.2 (C13), 49.0 (C14), 24.6 (C15), 28.4 (C16), 47.8 (C17), 13.0 (C18), 16.6 (C19), 36.4 (C20), 17.5 (C21), 31.65 (C22), 31.6 (C23).

**Compound 8:** TLC  $R_f = 0.55$ ; mp 200–205 °C dec; <sup>1</sup>H NMR (C-D<sub>3</sub>OD)  $\delta$  0.87 (3 H, s, 18-H), 0.9 (3 H, s, 19-H); <sup>13</sup>C NMR (CD<sub>3</sub>OD)  $\delta$  36.0 (C1), 30.8 (C2), 73.0 (C3), 36.4 (C4), 43.3 (C5), 27.0 (C6), 28.1 (C7), 36.5 (C8), 35.0 (C9), 35.1 (C10), 29.0 (C11), 75.1 (C12), 47.8 (C13), 49.6 (C14), 30.3 (C15), 30.8 (C16), 53.5 (C17), 15.9 (C18), 23.5 (C19), 34.3 (C20), 17.9 (C21), 32.7 (C22), 32.4 (C23), 77.1 (cyclohexyl C-OH), 47.2, 39.0 (o-C atoms of cyclohexyl), 22.8, 22.7 (m-C atoms of cyclohexyl), 26.5 (p-C atoms of cyclohexyl).

**Compound 9.** Compound 8 was dissolved in ether mixed with silica gel impregnated with FeCl<sub>3</sub>·6H<sub>2</sub>O<sup>17</sup> to yield, quantitatively, compound 9: mass spectrum (methyl ester), m/e 486.3693 (M<sup>+</sup>, C<sub>31</sub>H<sub>50</sub>O<sub>4</sub>, calcd 486.3708), 468 (M - H<sub>2</sub>O), 450 (M - 2H<sub>2</sub>O), 386 (M - H<sub>2</sub>O - C<sub>6</sub>H<sub>9</sub>), 369 (M - side chain), 353 (M - side chain - H<sub>2</sub>O), 343 (C<sub>23</sub>H<sub>35</sub>O<sub>2</sub>). Compounds 10a + 10b: TLC  $R_f = 0.37$ ; mass spectrum (methyl

**Compounds 10a + 10b**: TLC  $R_f = 0.37$ ; mass spectrum (methyl ester), m/e 478 (M<sup>+</sup>), 460 (M - H<sub>2</sub>O), 442 (M - 2H<sub>2</sub>O), 424 (M - 3H<sub>2</sub>O), 404 (M - C<sub>4</sub>H<sub>10</sub>O), 385 (C<sub>25</sub>H<sub>37</sub>O<sub>3</sub>), 327 (M - 2H<sub>2</sub>O - side chain), 309 (M - 3H<sub>2</sub>O - side chain), 115 (side chain); <sup>1</sup>H NMR (C-D<sub>3</sub>OD)  $\delta$  0.7 (3 H, s, C18-H), 0.9 (3 H, s, 19-H), 1.1 (3 H, s, CH<sub>3</sub>C-(OH)CH<sub>2</sub>CH<sub>3</sub>).

**Compounds 11a and 11b**: TLC  $R_f = 0.52$ ; mass spectrum, m/e 404 (M - C<sub>4</sub>H<sub>10</sub>O), 273 (M - C<sub>4</sub>H<sub>10</sub>O - H<sub>2</sub>O - side chain), 255 (M - C<sub>4</sub>H<sub>10</sub>O - 2H<sub>2</sub>O - side chain), 73 (C<sub>4</sub>H<sub>9</sub>O); <sup>1</sup>H NMR (CD<sub>3</sub>OD)  $\delta$  0.7 (3 H, s, 18-H), 1.1 (3 H, s, 19-H), 1.27 (3 H, s, CH<sub>2</sub>C(OH)CH<sub>2</sub>CH<sub>3</sub>).

**5.2.** X-ray Structure Determination. X-ray diffraction data were measured from the following complexes: (a) DCA with each of the guests, acetone, diethyl ketone, cyclohexanone, ethyl methyl ketone, and methyl pentyl ketone and (b) APA with acetone. Three-dimensional X-ray diffraction data were collected on a Siemens diffractometer by using Cu K $\alpha$  radiation from all the crystals at room temperature with the exception of DCA-methyl pentyl ketone. The resulting structure-factor least-squares refinements indicated that the guest molecules in

<sup>(21)</sup> Lee, D. G. In "Oxidation"; Augustine, R. L., Ed.; Marcel Dekker: New York, 1984; Vol. 1.

<sup>(22)</sup> Coppens, P.; Leiserowitz, L.; Rabinovich, D. Acta Crystallogr. 1965, 18, 1035.

Table VI. Deoxycholic Acid-Diethyl Ketone (at 293 K): x, y, and z Coordinates ( $\times 10^4$  for C and O and  $\times 10^3$  for H)

| atom    | x                      | v                      | Z                                       | atom                       | x                               | ν          | 7.                    |
|---------|------------------------|------------------------|-----------------------------------------|----------------------------|---------------------------------|------------|-----------------------|
| C(1)    | 1202 (2)               | 22(5 (5)               | 2550 (14)                               | <u> </u>                   | (54 (2))                        | 1090 (5)   | 2001 (16)             |
| C(1)    | 1203(3)                | 2 203 (3)              | 1436(14)                                | C(2)                       | 0.04(3)                         | 1960 (5)   | 2901 (10)             |
| C(3)    | 1530(3)                | 2035 (5)               | $\frac{1420}{346}$ (14)                 | C(4)                       | 1825 (3)                        | 2411 (6)   | -270(14)<br>-1224(16) |
| C(3)    | 1530(3)                | 2033 (3)               | -1992(15)                               | C(0)                       | 1655(5)<br>1652(3)              | 2411 (0)   | -1334(10)             |
| C(1)    | 1041(3)                | 3432(0)                | -1002(15)                               | C(0)                       | 1022(3)                         | 4132(0)    | -267(3)               |
| C(3)    | 1311(3)<br>1244(3)     | 3 /42 (4)<br>4 491 (5) | 2877(10)                                | C(10)                      | 1000(3)                         | 5400 (5)   | 2262(11)              |
| C(11)   | 1244 (3)               | 5 934 (5)              | 615 (13)                                | C(12)                      | 1375 (3)                        | 5164 (5)   | -860(12)              |
| C(15)   | 1619 (4)               | 5711(6)                | -2493 (14)                              | C(14)                      | 1373(3)                         | 6739 ( 6)  | -300(12)              |
| C(17)   | 1019(4)<br>1088(3)     | 6786 (5)               | -275(17)                                | C(18)                      | 18857 (3)                       | 6256 (6)   | -2311 (10)            |
| C(17)   | 2075(3)                | 2825 (6)               | 2820 (19)                               | C(20)                      | 1087(3)                         | 7849 (5)   | 285 (14)              |
| C(21)   | $\frac{2075}{824}$ (3) | 7916 (6)               | 2320(17)<br>2152(15)                    | C(20)                      | 865 (3)                         | 8581 (6)   | -1036(14)             |
| C(23)   | 303(4)                 | 8 4 3 0 (7)            | -1713(19)                               | C(24)                      | 98 (4)                          | 9211 (6)   | -2845(15)             |
| O(25)   | 153(2)                 | 1039 (5)               | 871(11)                                 | O(26)                      | 482(2)                          | 5314(4)    | 1614(9)               |
| C(27)   | 83(4)                  | 10.098 (5)             | -2482(15)                               | O(28)                      | -62(2)                          | 8950 (4)   | -4460(11)             |
| H(1)    | 117                    | 276                    | 457                                     | H(1')                      | 138                             | 166        | 404                   |
| H(2)    | 46                     | 257                    | 244                                     | H(2')                      | 45                              | 167        | 307                   |
| H(3)    | 86                     | 68                     | 100                                     | H(4)                       | 80                              | 228        |                       |
| H(3)    | 102                    | 118                    | -124                                    | H(5)                       | 171                             | 143        | 70                    |
| H(6)    | 178                    | 105                    | -230                                    | H(6')                      | 221                             | 244        | -102                  |
| H(7)    | 178                    | 195                    | -239                                    | H(7/)                      | 188                             | 274        | -102                  |
| H(8)    | 100                    | 426                    | 13                                      | H(0)                       | 96                              | 362        | 205                   |
| H(11)   | 159                    | 420                    | 343                                     | H(11')                     | 101                             | J02<br>410 | 383                   |
| H(12)   | 100                    | 507                    | 332                                     | H(14)                      | 101                             | 500        | -123                  |
| H(12)   | 152                    | 540                    | -369                                    | H(15')                     | 200                             | 574        | -238                  |
| H(15)   | 112                    | 686                    | -305                                    | H(16')                     | 165                             | 775        | -238                  |
| H(17)   | 72                     | 667                    | -535                                    | H(18)                      | 207                             | 564        | 186                   |
| H(18')  | 180                    | 661                    | 261                                     | H(18")                     | 207                             | 648        | 54                    |
| H(10)   | 220                    | 312                    | 201                                     | H(10')                     | 214                             | 340        | 370                   |
| H(19")  | 229                    | 229                    | 315                                     | H(20)                      | 146                             | 804        | 47                    |
| H(21)   | Q1                     | 738                    | 305                                     | H(21')                     | 44                              | 783        | 216                   |
| H(21'') | 03                     | 853                    | 294                                     | H(22)                      | 110                             | 858        | -214                  |
| H(22')  | 88                     | 924                    | -41                                     | H(23)                      | 7                               | 837        | -63                   |
| H(23')  | 28                     | 781                    | -247                                    | H(25)                      | ý                               | 75         | -30                   |
| H(26)   | 23                     | 555                    | 255                                     | H(28)                      | -16                             | 910        | -593                  |
| 11(20)  | 25                     | 555                    | 200                                     | 11(20)                     | 10                              | 210        | 575                   |
|         |                        | Diethyl Ket            | one $[\sigma(x), \sigma(y), \sigma(z)]$ | $(x) = 2, 3, 6 (\times 1)$ | 0 <sup>4</sup> ), Respectively] |            |                       |
| C(1)    | 2521                   | -21                    | 2221                                    | C(2)                       | 2599                            | -48        | 104                   |
| C(3)    | 3114                   | 448                    | -395                                    | C(4)                       | 2042                            | -496       | 3074                  |
| C(5)    | 2067                   | -358                   | 5176                                    | C(1)                       | 2855                            | 365        | 3178                  |
| H(1)    | 316                    | 43                     | -177                                    | H(2)                       | 344                             | 12         | 2                     |
| H(3)    | 314                    | 116                    | -15                                     | H(4)                       | 231                             | 30         | -52                   |
| H(5)    | 261                    | -74                    | -33                                     | H(6)                       | 204                             | -121       | 277                   |
| H(7)    | 172                    | -18                    | 257                                     | H(8)                       | 204                             | 32         | 566                   |
| H(9)    | 235                    | -71                    | 585                                     | H(10)                      | 175                             | -67        | 573                   |

DCA-acetone and in DCA-ethyl methyl ketone could not be unambiguously located. Consequently, X-ray diffraction data of these two complexes and of DCA-methyl pentyl ketone were measured from crystals cooled to 103 K on a Nonius CAD4 diffractometer by using Mo Ka radiation. The cell dimensions of all these crystals were determined by a least-squares procedure based on 20-25 reflections measured on the diffractometer (Table II). Details on X-ray intensity data collected from these crystals are also given in Table II.

The X-ray crystal structure refinements were carried out by using SHELX.<sup>23</sup> Comparison of cell constants and intensity diffraction data indicated that the DCA host structure of the complexes with acetone, diethyl ketone, ethyl methyl ketone, and methyl pentyl ketone are isomorphous, belonging to the  $\alpha$ -packing motif (see section 2). The cell constants and diffraction data of DCA-cyclohexanone indicated that its host arrangement is isomorphous with that of DCA-di-*tert*-butyldiperoxymonocarbonate, a crystal structure we had already solved<sup>12</sup> and which belongs to the  $\gamma$  motif (see section 2). Thus, initial structure-factor least-squares refinement, involving the host atoms of DCA only were straightforward.

The C and O atoms of the host molecules were refined with individual anisotropic temperature factors. The H atoms of the host molecules whose positions were fixed by virtue of molecular structure (i.e., CH and CH<sub>2</sub>) were inserted into their chemically reasonable positions. The methyl and hydroxyl H atoms were located by  $\Delta\rho(x,y,z)$  syntheses. The x,y,z and U(isotropic) parameters of the H atoms were allowed to vary in the refinement of the low-temperature structures but were generally kept fixed in the final stages of refinement of the room-temperature structures.

The function minimized was  $w(F_o - F_c)^2$  in which  $F_o$  and  $F_c$  are the observed and calculated structure factors and the weight  $w = 1/\sigma^2(F_o)$ , where  $\sigma(F_o)$  was derived from counting statistics and the match between measured symmetry-related reflections. Each structure was refined in two blocks, full matrix not being feasible. The reliability factors given are  $R(F) = \sum |F_o - |F_c|/\sum F_o$  and  $R_w(F) = w^{1/2} \sum |F_o - F_c|/\sum w^{1/2} F_o$ . The scattering factors for H, C, and O were taken from ref 24.

5.3. DCA-Acetone. Incorrect Guest Structure of DCA-Acetone (at 293 K). Anisotropic refinement of the host molecule of the room-temperature structure yielded R = 0.13. The resulting electron density difference map yielded a peak distribution in the channel coplanar to within 0.2 Å and coincident with the channel axis. One acetone molecule, with a geometry taken from acetone-solvated complexes, was fitted to this peak distribution. The only way of fitting these acetone molecules as closely as possible along the channel axis was by translation of 7.2 Å. This meant that every alternate guest crystallographic site along the channel axis was vacant, resulting in a maximum occupancy of 0.5 for acetone. Refinement yielded high-temperature factors (av 0.19  $Å^2$ ) for the guest atoms, which suggested that the acetone arrangement might be incorrect. Moreover, it was difficult to establish, from the diffraction data, which of the three peripheral atoms C2, C3, and O1 was oxygen. Thus, in order to better locate the guest atoms, X-ray diffraction data of DCA-acetone were measured from a crystal cooled to 103 K.

Structure Determination of DCA-Acetone (at 103 K). Anisotropic least-squares refinement of the host molecule DCA with low-temperature X-ray diffraction data gave R = 0.12. The resulting electron density difference may yielded eight strong peaks with heights ranging from 0.9 to  $1.5 \text{ e/Å}^3$ . The number of peaks and their heights indicated that more than one guest molecule per asymmetric unit existed in the channel. We fitted two guest acetone molecules G1 and G2 to these peak positions. At this stage, we adopted the following refinement procedure. The temperature factors of G1 and G2 were fixed at  $0.05 \text{ Å}^2$ . This value is

<sup>(23)</sup> Sheldrick, G. M. "SHELX: Program for Crystal Structure Determination": University of Cambridge: England, 1976.

Table VII. Deoxycholic Acid-Cyclohexanone (at 293 K): x, y, and z Coordinates ( $\times 10^4$  for Atoms C and O and  $\times 10^3$  for H) of the Independent Deoxycholic Acid Molecules A and B and the Guest Cyclohexanone

| atom             | x                    | у                          | Ζ                        | atom            | x                    | У                       | Ζ                        |  |
|------------------|----------------------|----------------------------|--------------------------|-----------------|----------------------|-------------------------|--------------------------|--|
|                  |                      |                            | Deoxycholic A            | cid, Molecule A | l                    |                         |                          |  |
| <b>C</b> (1)     | 3817 (2)             | 3 274 (4)                  | -5640 (4)                | C(2)            | 4300 (2)             | 2979 (4)                | -5212 (4)                |  |
| C(3)             | 4216 (2)             | 2 256 (4)                  | -4405 (4)                | C(4)            | 3866 (2)             | 2 697 (4)               | -3680 (4)                |  |
| C(5)             | 3374 (2)             | 3 005 (4)                  | -4127 (4)                | C(6)            | 3019 (2)             | 3 4 4 3 (4)             | -3355 (4)                |  |
| C(7)             | 3185 (2)             | 4477 (4)                   | -3012(4)                 | C(18)           | 3276 (2)             | 5 2 2 4 (4)             | -3821(4)                 |  |
| C(9)             | 3035 (2)             | 4 /01 (4)                  | -4365(4)<br>-5318(4)     | C(10)           | 3445 (2)             | 3 /4 / (4)<br>6 505 (4) | -4954 (4)                |  |
| C(11)            | 3632 (2)             | 5 5 5 2 (4)<br>6 9 7 7 (1) | -3310(4)<br>-4174(4)     | C(12)           | 3983 (2)             | 6303(4)                 | -4911(4)<br>-2438(4)     |  |
| C(15)            | 3032(2)<br>3237(2)   | 6762(4)                    | -2675(4)                 | C(14)           | 3512(2)<br>3512(2)   | 7781(4)                 | -2665(4)                 |  |
| C(13)            | 3849(2)              | 7812 (4)                   | -3535(4)                 | C(18)           | 3169(2)              | 7 358 (4)               | -4690(4)                 |  |
| C(19)            | 2949 (2)             | 3869 (4)                   | -5493 (4)                | C(20)           | 3892 (2)             | 8 8 9 5 (4)             | -3928 (4)                |  |
| C(21)            | 4186 (2)             | 8 965 (4)                  | -4861 (4)                | C(22)           | 4103 (2)             | 9616 (4)                | -3191 (4)                |  |
| C(23)            | 4641 (3)             | 9412 (5)                   | -2885 (5)                | C(24)           | 4843 (2)             | 10219 (5)               | -2265 (4)                |  |
| O(25)            | 4696 (2)             | 2044 (3)                   | -3995 (3)                | O(26)           | 4456 (1)             | 6 283 (3)               | -4483 (3)                |  |
| O(27)            | 4694 (2)             | 11057 (3)                  | -2223 (3)                | O(28)           | 5211 (2)             | 9916 (3)                | -1734 (3)                |  |
| H(1')            | 305                  | 203                        | -58/                     | H(1)            | 380                  | 3/0                     | -614                     |  |
| H(2)             | 404                  | 208                        | -344                     | H(2)            | 447                  | 163                     | -494                     |  |
| H(5)             | 319                  | 239                        | -441                     | H(4')           | 383                  | 221                     | -318                     |  |
| H(6')            | 266                  | 345                        | -358                     | H(6)            | 302                  | 295                     | -279                     |  |
| H(7′)            | 291                  | 476                        | -258                     | H(7)            | 349                  | 442                     | -265                     |  |
| H(9)             | 394                  | 464                        | -417                     | H(8)            | 293                  | 537                     | -418                     |  |
| H(11')           | 400                  | 521                        | -576                     | H(11)           | 345                  | 569                     | -568                     |  |
| H(14)            | 384                  | 592                        | -318                     | H(12)           | 403                  | 700                     | -546                     |  |
| H(15')           | 287                  | 688                        | -288                     | H(15)           | 323                  | 644                     | -205                     |  |
| $H(10^{\circ})$  | 325                  | 835<br>763                 | -203                     | H(10)<br>H(17)  | 370                  | 761                     | -204                     |  |
| H(18'')          | 318                  | 796                        |                          | H(18')          | 302                  | 691                     | -518                     |  |
| H(10')           | 265                  | 415                        | -510                     | H(19)           | 291                  | 441                     | -599                     |  |
| H(20)            | 355                  | 913                        | -411                     | H(19")          | 282                  | 332                     | -589                     |  |
| H(21')           | 441                  | 957                        | -492                     | H(21)           | 445                  | 845                     | -498                     |  |
| H(22)            | 387                  | 963                        | -263                     | H(21″)          | 400                  | 887                     | -546                     |  |
| H(23)            | 482                  | 923                        | -344                     | H(22')          | 409                  | 1034                    | -346                     |  |
| H(25)            | 479                  | 1/6                        | -349                     | H(23')          | 460                  | 878                     | -246                     |  |
| П(28)            | 332                  | 1040                       | -134                     | H(20)           | 4/2                  | 001                     | -4/9                     |  |
| <b>.</b>         |                      |                            | Deoxycholic A            | cid, Molecule B |                      |                         |                          |  |
| C(1)             | 3937 (2)             | 3 3 3 3 (4)                | -781 (4)                 | C(2)            | 4438 (2)             | 3021 (4)                | -441 (4)                 |  |
| C(3)             | 4387 (2)             | 2 293 (4)                  | 360 (4)                  | C(4)            | 4077 (2)             | 2727 (4)                | 1153 (4)                 |  |
| C(3)             | 3436 (2)             | 3004(4)<br>4531(4)         | 1860(4)                  | C(8)            | 3230(2)<br>3487(2)   | 5 303 (4)<br>5 277 (4)  | 1033(4)                  |  |
| C(9)             | 3810(2)              | 4815 (4)                   | 328(4)                   | C(10)           | 3596(2)              | 3807(4)                 | -32(4)                   |  |
| C(11)            | 3908 (2)             | 5 596 (4)                  | -438 (4)                 | C(12)           | 4125 (2)             | 6 579 (4)               | -76 (4)                  |  |
| C(13)            | 3802 (2)             | 7 041 (4)                  | 712 (4)                  | C(14)           | 3733 (2)             | 6238 (4)                | 1475 (4)                 |  |
| C(15)            | 3485 (2)             | 6804 (4)                   | 2301 (4)                 | C(16)           | 3732 (3)             | 7848(4)                 | 2261 (4)                 |  |
| C(17)            | 4040 (2)             | 7 896 (4)                  | 1307 (4)                 | C(18)           | 3313 (2)             | 7 387 (4)               | 269 (4)                  |  |
| C(19)            | 3074 (2)             | 3937 (4)                   | -465 (4)                 | C(20)           | 4034 (2)             | 8970 (4)                | 933 (4)                  |  |
| C(21)            | 4320 (3)             | 9060 (4)                   | -13(4)                   | C(22)           | 4239 (2)             | 9726 (4)                | 1638 (4)                 |  |
| O(25)            | 4871(2)              | 2048(3)                    | 673 (3)                  | O(26)           | 4618 (1)             | 6389 (3)                | 265 (3)                  |  |
| O(27)            | 4960 (2)             | 11238(3)                   | 2445 (3)                 | O(28)           | 5031 (2)             | 10056 (3)               | 3505 (3)                 |  |
| H(1)             | 397                  | 386                        | -125                     | H(1')           | 375                  | 275                     | -102                     |  |
| H(2)             | 462                  | 361                        | -16                      | H(2')           | 462                  | 271                     | -95                      |  |
| H(3)             | 424                  | 163                        | 13                       | H(4)            | 426                  | 328                     | 146                      |  |
| H(4')            | 402                  | 217                        | 166                      | H(5)            | 339                  | 246                     | 63                       |  |
| H(0)             | 323                  | 309                        | 219                      | H(0')           | 290                  | 300                     | 138                      |  |
| H(8)             | 315                  | 541                        | 88                       | н(7)<br>Н(9)    | 320<br>414           | 461                     | 63                       |  |
| H(1)             | 358                  | 573                        | -74                      | H(11')          | 413                  | 527                     | -91                      |  |
| H(12)            | 416                  | 701                        | -60                      | H(14)           | 406                  | 606                     | 170                      |  |
| H(15)            | 356                  | 646                        | 289                      | H(15')          | 311                  | 681                     | 218                      |  |
| H(16)            | 391                  | 796                        | 281                      | H(16')          | 343                  | 835                     | 222                      |  |
| H(17)            | 439                  | 774                        | 142                      | H(18)           | 306                  | 683                     | 14                       |  |
| H(18')           | 306                  | 782                        | 61                       | H(18")          | 334                  | 782                     | -30                      |  |
| 日(18)<br>日(1971) | 207<br>280           | 333<br>409                 | -15                      | H(20)           | 304                  | 434                     | -105                     |  |
| H(21)            | 419                  | 950                        | -53                      | H(21')          | 465                  | 935                     | 2                        |  |
| H(21")           | 432                  | 843                        | -41                      | H(22)           | 401                  | 973                     | 223                      |  |
| H(22')           | 425                  | 1 041                      | 138                      | H(23)           | 405                  | 943                     | 146                      |  |
| H(23')           | 471                  | 887                        | 237                      | H(25)           | 484                  | 175                     | 131                      |  |
| H(26)            | 484                  | 680                        | -1                       | H(28)           | 518                  | 1 063                   | 388                      |  |
|                  |                      |                            | Guest Cyc                | lohexanone      |                      |                         |                          |  |
| C(1)             | 2752 (9)             | 237 (18)                   | -2779 (20)               | C(2)            | 2999 (8)             | 539 (16)                | -3704 (18)               |  |
| C(3)             | 2049 (8)<br>2032 (6) | 414 (14)<br>526 (13)       | -4469 (13)<br>-3449 (14) | C(4)<br>C(6)    | 2203 (7)<br>2361 (6) | -327 (12)               | -4518 (11)<br>-2474 (11) |  |
| -(-)             |                      | 220 (13)                   | 2 (17)                   | ~(0)            | 2001 (U)             | 200 (12)                |                          |  |

Table VII (Continued)

| atom | <i>x</i> | у        | Ζ          | atom  | x   | У    | z    |   |
|------|----------|----------|------------|-------|-----|------|------|---|
| O(1) | 2871 (8) | 592 (17) | -2054 (17) |       |     |      |      | - |
| H(2) | 310      | 126      | -368       | H(2') | 329 | 11   | -383 |   |
| H(3) | 247      | 107      | -452       | H(3') | 286 | 30   | -505 |   |
| H(4) | 201      | -6       | -497       | H(4') | 242 | -94  | -479 |   |
| H(5) | 178      | 1        | -334       | H(5') | 186 | -119 | -348 |   |
| H(6) | 217      | -34      | -190       | H(6′) | 252 | -123 | -235 |   |

| <b>Table VIII.</b> Deoxycholic Acid-Ethyl Methyl Ketone (at 103 K): (a) x, y, and z Coordinates (×10 <sup>4</sup> ) and $U_{eq}$ (Å <sup>2</sup> , ×10 <sup>3</sup> ) of the C and O Atom of          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deoxycholic Acid (The Average $\sigma(U_{eo}) = 0.003$ Å), (b) x, y, and z Coordinates (×10 <sup>4</sup> ) and Isotropic U (Å <sup>2</sup> , ×10 <sup>3</sup> ) of H Atoms of Deoxycholic             |
| Acid (Average $\sigma(x)$ , $\sigma(y)$ , $\sigma(z)$ , and $\sigma(U)$ are 0.002, 0.004, 0.009, and 0.01 Å <sup>2</sup> ), (c) x, y, and z Coordinates <sup>b</sup> of the Guest Ethyl Methyl Ketone |
| Molecules G and G' (The Isotropic U Values of Each Guest Atom is 0.077 (3) $Å^2$ )                                                                                                                    |

| atom                   | x                  | У            | Z                   | $U_{eq}$       | atom  | x                       | У                               | Z                              | $U_{\rm eq}$                 |
|------------------------|--------------------|--------------|---------------------|----------------|-------|-------------------------|---------------------------------|--------------------------------|------------------------------|
| C(1)                   | 1220 (2)           | 2186 (5)     | 3548 (9)            | 21             | C(15) | 1637 (3)                | 5672 (4)                        | -2484 (9)                      | 26                           |
| C(2)                   | 662 (2)            | 1921 (5)     | 2942 (9)            | 22             | C(16) | 1382 (2)                | 6 708 (4)                       | -2354 (9)                      | 20                           |
| C(3)                   | 684 (2)            | 1 207 (4)    | 1334 (9)            | 21             | C(17) | 1084 (2)                | 6747 (4)                        | -443 (8)                       | 16                           |
| C(4)                   | 996 (2)            | 1 639 (4)    | -281(8)             | 18             | C(18) | 1875 (2)                | 6 208 (4)                       | 1460 (10)                      | 21                           |
| C(5)                   | 1554(2)            | 1941 (4)     | 299 (9)             | 19             | C(19) | 2119(2)                 | 2767(5)                         | 2765 (10)                      | 24                           |
| C(6)                   | 1862 (2)           | 2 368 (4)    | -1343(10)           | 21             | C(20) | 1077(2)                 | 7 795 (4)                       | 369 (9)                        | 18                           |
| C(7)                   | 1655(2)            | 3396(4)      | -1911 (9)           | 20             | C(21) | 798 (3)                 | 7 874 (5)                       | 2226 (9)                       | 27                           |
| C(8)                   | 1633(2)            | 4112(4)      | -277(9)             | 18             | C(22) | 864 (2)                 | 8573 (4)                        | -1051(9)                       | 21                           |
| C(0)                   | 1332(2)            | 3671(4)      | 1350 (8)            | 10             | C(22) | 284(2)                  | 8358 (5)                        | -1619(9)                       | 24                           |
| C(3)                   | 1552(2)            | 2656(A)      | 2007 (0)            | 12             | C(23) | 207 (2)                 | 0183(4)                         | -2807 (0)                      | 27                           |
| C(10)                  | 1357(2)            | 4 4 2 7 (4)  | 2007 (9)            | 10             | O(24) | 163(2)                  | 9105(+)                         | -2097 (9)                      | 20                           |
| C(11)                  | 1200(2)            | 4427(4)      | 2921 (9)            | 16             | O(25) | 103(2)                  | 5 2 2 2 (3)                     | 1654 (6)                       | 29                           |
| C(12)                  | 1010(2)<br>1227(2) | 5905 (4)     | 2203 (0)<br>693 (9) | 10             | O(20) | 490 (1)                 | 10058(3)                        | 1034(0)                        | 19                           |
| C(13)                  | 1337(2)<br>1306(2) | 5 000 (4)    | 002 (0)             | 13             | O(27) | 04 (2)<br>76 (2)        | 10030(3)                        | -2301(7)                       | 30                           |
| C(14)                  | 1390 (2)           | 5 090 (4)    | -005 (0)            | 15             | 0(28) | -76 (2)                 | 8851 (3)                        | -4494 (0)                      | 20                           |
| atom                   | x                  | <u>y</u>     | <i>Z</i>            | U <sup>a</sup> | atom  | x                       | <u>y</u>                        | <u>z</u>                       | <i>U</i> <sup><i>u</i></sup> |
| (b)                    | x, y, z, and U     | of H Atoms o | f Deoxycholic Ac    | id             |       | (c) $x, y, z,$          | and $U$ of Guest                | Molecules                      |                              |
| H(1)                   | 1243               | 2554         | 4726                | 74             |       |                         |                                 |                                |                              |
| H(1')                  | 1382               | 1757         | 4017                | 74             | Mc    | plecule G [ $\sigma(x)$ | $\sigma(y), \ \sigma(z) = 1$    | 0, 24, 37 (×10 <sup>4</sup> )  |                              |
| H(2)                   | 497                | 2426         | 2137                | 25             |       |                         | Respectively]                   |                                |                              |
| H(2')                  | 511                | 1623         | 4069                | 25             | O(1)  | 2686                    | 282                             | 3656                           |                              |
| H(3)                   | 893                | 603          | 1527                | 12             | C(1)  | 1972                    | -486                            | 5126                           |                              |
| H(4)                   | 1111               | 1101         | -1109               | 37             | H(1)  | 2135                    | -187                            | 6071                           |                              |
| H(4')                  | 802                | 2143         | -933                | 37             | H(2)  | 1622                    | -425                            | 4892                           |                              |
| H(5)                   | 1722               | 1308         | 646                 | 102            | H(3)  | 1925                    | -1178                           | 5128                           |                              |
| H(6)                   | 1770               | 2040         | -2518               | 48             | C(2)  | 2296                    | -207                            | 3458                           |                              |
| H(6')                  | 2241               | 2440         | -1138               | 48             | C(3)  | 2101                    | -520                            | 1603                           |                              |
| H(7)                   | 1865               | 3549         | -3030               | 25             | H(4)  | 1757                    | -158                            | 1445                           |                              |
| H(7')                  | 1258               | 3308         | -2305               | 25             | H(5)  | 2078                    | -1238                           | 1690                           |                              |
| H(8)                   | 1996               | 4193         | 2                   | 25             | C(4)  | 2454                    | -278                            | -15                            |                              |
| H(9)                   | 987                | 3545         | 905                 | 25             | HÌGÌ  | 2802                    | -555                            | 182                            |                              |
| H(11)                  | 1581               | 4705         | 3696                | 25             | H(7)  | 2553                    | 480                             | -58                            |                              |
| H(11')                 | 988                | 4067         | 3756                | 25             | H(8)  | 2322                    | -535                            | -1236                          |                              |
| H(12)                  | 1026               | 5971         | 3465                | 25             | (0)   |                         | 000                             |                                |                              |
| H(14)                  | 1030               | 4945         | -1070               | 25             | Mo    | plecule G' $[(x)$       | , $\sigma(y)$ , $\sigma(z) = 1$ | 1, 26, 32 (×10 <sup>4</sup> ), |                              |
| H(15)                  | 2145               | 5444         | -2407               | 77             |       |                         | Respectively]                   |                                |                              |
| H(15')                 | 1605               | 5380         | -3843               | 77             | O(1)  | 2246                    | -330                            | -320                           |                              |
| H(15)                  | 1776               | 7360         | -2515               | 20             | C(1)  | 2995                    | 604                             | -1045                          |                              |
| $\mathbf{U}(16')$      | 1163               | 6850         | -2313               | 20             | H(1)  | 2857                    | 480                             | -2166                          |                              |
| H(10)                  | 725                | 6534         | -3493               | 20             | H(2)  | 3090                    | 1220                            | -649                           |                              |
| $\Pi(17)$<br>$\Pi(18)$ | 2000               | 6616         | -097                | 51             | H(3)  | 3335                    | 388                             | -754                           |                              |
|                        | 2088               | 5792         | 443                 | 51             | C(2)  | 2615                    | 120                             | 276                            |                              |
| H(18)                  | 2098               | 5/83         | 2042                | 51             | C(3)  | 2707                    | 265                             | 2298                           |                              |
| H(10)                  | 1803               | 0582         | 2/00                | 51             | H(4)  | 2665                    | 1002                            | 2501                           |                              |
| H(19)                  | 2410               | 2970         | 1952                | 10             | H(S)  | 3056                    | -1                              | 2504                           |                              |
| $H(19^{\circ})$        | 2167               | 2098         | 3283                | 10             | C(4)  | 2338                    | -282                            | 3571                           |                              |
| H(19'')                | 2112               | 3225         | 3643                | 16             | H(6)  | 2330                    | -088                            | 3295                           |                              |
| H(20)                  | 1451               | 7906         | 622                 | 25             | H(0)  | 1942                    | -120                            | 3295                           |                              |
| H(21)                  | 1033               | 7541         | 3111                | 22             | H(7)  | 1742                    | -129                            | 4002                           |                              |
| H(21')                 | 445                | 7638         | 1988                | 22             | r1(0) | 2423                    | 201                             | 4723                           |                              |
| H(21")                 | 657                | 8479         | 2800                | 22             |       |                         |                                 |                                |                              |
| H(22)                  | 930                | 9224         | -485                | 20             |       |                         |                                 |                                |                              |
| H(22')                 | 1136               | 8359         | -2063               | 20             |       |                         |                                 |                                |                              |
| H(23)                  | 50                 | 8357         | -393                | 7              |       |                         |                                 |                                |                              |
| H(23')                 | 331                | 7661         | -2190               | 7              |       |                         |                                 |                                |                              |
| H(25)                  | 164                | 692          | -421                | 34             |       |                         |                                 |                                |                              |
| H(26)                  | 143                | 5301         | 2256                | 72             |       |                         |                                 |                                |                              |
| H(28)                  | -98                | 9489         | -5121               | 40             |       |                         |                                 |                                |                              |

(a) x, y, z, and  $U_{eq}$  of C and O Atoms of Deoxycholic Acid

<sup>a</sup> The H atoms of each CH<sub>2</sub> or CH<sub>3</sub> group were assigned the same U value. The H atoms H(2), H(2'), H(7), H(7')...H(14) were each assigned the same U value of 0.025 Å<sup>2</sup>. <sup>b</sup> The guest molecules G and G' were each refined as a rigid body; thus, all atoms of each molecule have the same  $\sigma(x)$ ,  $\sigma(y)$ , and  $\sigma(z)$ .

**Table IX.** Deoxycholic Acid-Methyl Pentyl Ketone (at 103 K): (a) x, y, and z Coordinates (×10<sup>4</sup>) and  $U_{eq}$  (Å<sup>2</sup>, ×10<sup>3</sup>) of the C and O Atoms of Deoxycholic Acid (Average  $\sigma(U_{eq}) = 0.002$  Å<sup>2</sup>), (b) x, y, and z Coordinates (×10<sup>4</sup>) and Isotropic U (Å<sup>2</sup>, ×10<sup>3</sup>) of H Atoms of Deoxycholic Acid (Average  $\sigma(x)$ ,  $\sigma(y)$ ,  $\sigma(z)$ , and  $\sigma(U)$  are 0.0015, 0.0025, 0.005, and 0.01 Å<sup>2</sup>, Respectively), (c) x, y, and z Coordinates<sup>b</sup> of the Guest Methyl Pentyl Ketone Molecules G and G' (The Isotropic U of Each Guest Atom = 0.057 (2) Å<sup>2</sup>)

| (a) $x$ | , y, z, | and L | Jea and | C and | O Atoms | of Deox | ycholic Acid |
|---------|---------|-------|---------|-------|---------|---------|--------------|
|---------|---------|-------|---------|-------|---------|---------|--------------|

|                  |                |                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                           |                 |  |
|------------------|----------------|------------------|-----------------------------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|-----------------|--|
| atom             | x              | <i>y</i>         | Z                                       | $U_{\rm eq}$ | atom             | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y                          | Z                         | U <sub>eq</sub> |  |
| C(1)             | 1201 (1)       | 2274 (2)         | 3483 (5)                                | 18           | C(15)            | 1614 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5726 (3)                   | -2585 (5)                 | 22              |  |
| $\tilde{C}(2)$   | 645 (1)        | 2013 (3)         | 2918 (5)                                | 18           | C(16)            | 1375 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6775 (3)                   | -2428(5)                  | 21              |  |
| C(3)             | 657 (1)        | 1292(3)          | 1311(5)                                 | 20           | C(17)            | 1088 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6827(2)                    | -531(5)                   | 16              |  |
| C(4)             | 964 (1)        | 1720(3)          | -304(5)                                 | 17           | C(18)            | 1879 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6281(3)                    | 1343(5)                   | 19              |  |
| C5)              | 1525 (1)       | 2 003 (3)        | 255 (5)                                 | 19           | C(19)            | 2094 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2823(3)                    | 2678 (6)                  | 23              |  |
| CíÓ              | 1826 (1)       | 2428(3)          | -1412(5)                                | 21           | C(20)            | 1092(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7887(2)                    | 260 (5)                   | 16              |  |
| $\vec{C}(7)$     | 1637(2)        | 3455(2)          | -1979(5)                                | 19           | $\tilde{C}(21)$  | 827 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7977 (3)                   | 2136(5)                   | 21              |  |
| Č(8)             | 1631 (1)       | 4186(2)          | -367(5)                                 | 16           | C(22)            | 861 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8644 (2)                   | -1127(5)                  | 18              |  |
| C(9)             | 1321(1)        | 3754(2)          | 1283 (4)                                | 13           | C(23)            | 288(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8451 (3)                   | -1663(6)                  | 27              |  |
| C(10)            | 1535 (1)       | 2732 (2)         | 1924 (5)                                | 16           | C(24)            | 87 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9264 (3)                   | -2919(5)                  | 22              |  |
| C(II)            | 1264 (1)       | 4 527 (2)        | 2834 (5)                                | 16           | O(25)            | 126(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1086(2)                    | 790 (4)                   | 26              |  |
| C(12)            | 1023 (1)       | 5 511 (2)        | 2190 (5)                                | 16           | O(26)            | 490 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5340(2)                    | 1617 (3)                  | 17              |  |
| C(13)            | 1339 (1)       | 5964 (2)         | 591 (4)                                 | 14           | O(27)            | 60 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10138(2)                   | -2467(4)                  | 37              |  |
| C(14)            | 1381 (1)       | 5166 (2)         | -943 (5)                                | 15           | O(28)            | -59(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8956 (2)                   | -4554 (4)                 | 23              |  |
| atom             | Y              | v                | 7                                       | <u>I</u> /   | atom             | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | 7                         |                 |  |
| (h)              | w w a and U    | of II. A tomo of | Deerwahalia Asi                         |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                           |                 |  |
| U(1)             | x, y, z, and U | 2701             | Jeoxycholic Aci                         | 20           |                  | (c) $x, y, z, z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and U of Guest             | Molecules                 |                 |  |
| п(1)<br>П(1)     | 11/0           | 2701             | 4343                                    | 30           |                  | leoule C [-()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a(u) = (-1) - 2            | 11 16 (~104)              |                 |  |
| H(1)             | 1562           | 2500             | 2405                                    | 44           | IVIU             | $\int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial t} dt = \frac{\partial f}{\partial t} \int \frac{\partial f}{\partial$ | $\sigma(y), \sigma(z) = 7$ | , 14, 16 (×10'),          |                 |  |
| H(2)             | 454            | 1672             | 2475                                    | 12           | O(1)             | 2757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Act 267                    | 1 201                     |                 |  |
| H(2)             | 400            | 661              | 1584                                    | 15           | C(1)             | 2737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 555                        | 4 204                     |                 |  |
| П(J)<br>Ц(A)     | 074            | 1212             | 1251                                    | 27           | $\mathbf{U}(1)$  | 2049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -333                       | 5420                      |                 |  |
|                  | 750            | 2220             | -022                                    | 52           | H(1)             | 1701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -333                       | 5 1 9 5                   |                 |  |
| H(4)             | 1707           | 1205             | -922                                    | 20           | $\Pi(2)$         | 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -491                       | 5 217                     |                 |  |
|                  | 1799           | 1050             | -2456                                   | 29           | $\Gamma(3)$      | 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1240                      | 2006                      |                 |  |
|                  | 2202           | 2542             | -1230                                   | 30           | C(2)             | 2378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -118                       | 3900                      |                 |  |
|                  | 1002           | 2342             | -1230                                   | 24           | U(3)             | 2199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -275                       | 19/4                      |                 |  |
| H(7)             | 1902           | 3204             | -3040                                   | 16           | H(4)             | 1052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 002                        | 1 8 2 0                   |                 |  |
| H(8)             | 12/4           | 1373             | -2411                                   | 10           | $\Gamma(3)$      | 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -992                       | 1039                      |                 |  |
| П(8)<br>Ц(0)     | 1903           | 4525             | 820                                     | 16           | U(4)             | 2337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121                        | 491                       |                 |  |
| $\mathbf{H}(11)$ | 1601           | 1633             | 2202                                    | 20           | H(0)<br>H(7)     | 2907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -131                       | 697                       |                 |  |
| H(11/)           | 1023           | 4033             | 3303                                    | 15           | $\Gamma(7)$      | 2045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0/0                        | 1 409                     |                 |  |
| H(12)            | 1023           | 4203             | 2003                                    | 19           | U(9)             | 2360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -103                       | -1 400                    |                 |  |
| H(12)            | 1021           | 5031             | -1320                                   | 10           |                  | 2350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -908                       | -1652                     |                 |  |
| H(15)            | 1000           | 5733             | -2449                                   | 21           | $\Gamma(3)$      | 2032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 206                        | -1032                     |                 |  |
| H(15)            | 1520           | 5380             | -2449                                   | 22           | U(10)            | 2730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300                        | -2935                     |                 |  |
| H(15)            | 1529           | 7208             | -2520                                   | 23           | $\mathbf{U}(10)$ | 2670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1010                       | -2755                     |                 |  |
| H(16')           | 1124           | 6800             | -2330                                   | 10           | C(7)             | 2079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1019                       | -3008                     |                 |  |
| H(10)            | 732            | 6630             | -600                                    | 16           | U(1)             | 2505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -912                       | -47886                    |                 |  |
| H(18)            | 2074           | 6711             | -099                                    | 21           | H(12)<br>H(12)   | 2395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -012                       | -4000                     |                 |  |
| H(18')           | 2074           | 5745             | 1930                                    | 16           | H(13)            | 2203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 265                        | -5733                     |                 |  |
| H(18'')          | 1844           | 6694             | 2535                                    | 10           | 11(14)           | 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 203                        | -5752                     |                 |  |
| H(10)            | 7380           | 3087             | 1855                                    | 53           | Mo               | lecule G' $[\sigma(x)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sigma(v), \sigma(z) = 7$ | $, 15, 16 (\times 10^4),$ |                 |  |
| H(19')           | 2305           | 2156             | 3042                                    | 16           |                  | • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Respectively]              |                           |                 |  |
| H(19'')          | 2116           | 3263             | 3724                                    | 21           | O(1)             | 2360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -429                       | 365                       |                 |  |
| H(20)            | 1451           | 8110             | 451                                     | 11           | C(1)             | 3096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 481                        | -578                      |                 |  |
| H(21)            | 1043           | 7644             | 3069                                    | 31           | H(1)             | 2957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 287                        | -1654                     |                 |  |
| H(21')           | 497            | 7616             | 2053                                    | 26           | H(2)             | 3186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1120                       | -317                      |                 |  |
| H(21'')          | 772            | 8674             | 2456                                    | 21           | H(3)             | 3438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 294                        | -260                      |                 |  |
| H(22)            | 892            | 9267             | -526                                    | 4            | C(2)             | 2726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66                         | 845                       |                 |  |
| H(22')           | 1064           | 8607             | -2212                                   | 29           | C(3)             | 2822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 333                        | 2809                      |                 |  |
| H(23)            | 94             | 8516             | -459                                    | 53           | H(4)             | 2774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1077                       | 2860                      |                 |  |
| H(23')           | 265            | 7833             | -2181                                   | 34           | H(5)             | 3173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92                         | 3 0 5 4                   |                 |  |
| H(25)            | 122            | 793              | -423                                    | 44           | C(4)             | 2463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -147                       | 4 1 9 7                   |                 |  |
| H(26)            | 270            | 5594             | 2588                                    | 50           | H(6)             | 2471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -866                       | 4 0 6 9                   |                 |  |
| H(28)            | -191           | 9535             | -5179                                   | 69           | H(7)             | 2066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -27                        | 3 8 7 9                   |                 |  |
| 11(20)           | 171            | 1000             | 5177                                    | 07           | C(5)             | 2593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93                         | 6138                      |                 |  |
|                  |                |                  |                                         |              | H(8)             | 2988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -158                       | 6 486                     |                 |  |
|                  |                |                  |                                         |              | H(9)             | 2565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 778                        | 6 364                     |                 |  |
|                  |                |                  |                                         |              | C(6)             | 2228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -370                       | 7 566                     |                 |  |
|                  |                |                  |                                         |              | H(10)            | 2254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1106                      | 7 408                     |                 |  |
|                  |                |                  |                                         |              | H(11)            | 1895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -17                        | 7 597                     |                 |  |
|                  |                |                  |                                         |              | C(7)             | 2395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -175                       | 9476                      |                 |  |
|                  |                |                  |                                         |              | H(12)            | 2776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -530                       | 9 6 9 4                   |                 |  |
|                  |                |                  |                                         |              | H(13)            | 2449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 508                        | 9847                      |                 |  |
|                  |                |                  |                                         |              | H(14)            | 2150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -519                       | 10354                     |                 |  |

<sup>b</sup> The guest molecules G and G' were each refined as a rigid body; thus, all atoms of each molecule have the same  $\sigma(x)$ ,  $\sigma(y)$ ,  $\sigma(z)$ .

very close to the refined temperature factors of ethyl methyl ketone and methyl pentyl ketone in their complexes with DCA (see section 5.6 and 5.7). The acetone molecules were refined as rigid bodies, yielding R =0.099, and occupancies of 0.34 (2) for G1 and 0.33 (2) for G2. We then fixed the occupancies of G1 and G2 at  $^{1}/_{3}$  and refined one temperature factor parameter of both G1 and G2. The resulting U value appeared to be too high at 0.09 Å<sup>2</sup>, suggesting that the model was still not correct, as evidenced by a difference map showing five peaks in the channel region

with heights ranging from 0.7 to 1.0  $e/Å^3$ . Four of these peaks were easily fitted to an acetone molecule. Therefore, a third acetone guest G3 was inserted and refined as a rigid group. R converged to 0.072. The resulting occupancies of the three acetone molecules were each close to 0.2 (0.24 (1) for G1, 0.18 (1) for G2, and 0.24 (1) for G3; the guest molecular thermal parameter, taken to be the same for G1 and G2 and G3, refined to 0.056 (3)  $Å^2$ ). The occupancies of G1, G2, and G3 were each set equal to 0.2 for reasons outlined in section 3.2. Refinement yielded an overall guest temperature factor of 0.053 (3)  $Å^2$  and R stayed put at 0.072. As a check that the oxygen and carbon atoms of each acetone molecule had been correctly located, the contributions of each of these atoms were removed one at a time from the least-squares refinement and an electron density difference map was calculated after a least-squares cycle. The resulting peak heights and their positions indicated that these atoms were correctly placed. The peak heights of the oxygen atoms of G1, G2, and G3 were 1.1, 1.1, and 1.2 e/Å3, respectively; those of the carbon atoms ranged from 0.7 to 0.9  $e/Å^3$ .

Refinement of DCA-Acetone (at 293 K). We used the final x, y, zcoordinates of the low-temperature structure of DCA-acetone as a starting model for refinement of the structure at 293 K, which yielded an R value of 0.086. The final isotropic U value for the guest atoms was 0.113 (6) Å<sup>2</sup>, keeping the occupancies of molecules G1, G2, and G3 each fixed at 0.2.

5.4. APA-Acetone (at 293 K). The crystal structure was determined via MULTAN.<sup>25</sup> The C' and O' atoms of the guest acetone were unambiguously located because the plane of the acetone moiety >C'=O' is perpendicular to the channel axis so that there is no molecular overlap between symmetry-related guest sites along the channel. The host-guest molar ratio is 1:1. On refinement R converged to 0.083.

5.5. DCA-Diethyl Ketone (at 293 K). The host atoms were refined anisotropically to an R value of 0.15. A difference map yielded a set of peaks in the channel coplanar to within 0.25 Å. The two atomic peaks corresponding to the guest C'=O' system were clearly evident. The remaining four C atoms of the molecule were easily assigned to the peak distribution. These peaks were interpreted in terms of one guest molecule per asymmetric unit. The guest molecule G is so oriented in the channel that only every alternate crystallographic site in the channel may be occupied, namely G sites related by c translation [i.e., G(x,y,z), G(x,y,z)(1 + z), G(x,y, 2 + z)], as shown in Figure 8A. Adjacent guest sites related by twofold screw symmetry, i.e., G(x,y,z),  $G(\frac{1}{2} - x, -y, \frac{1}{2} + z)$ , are precluded because that would lead to interpenetration between neighboring guest molecules. Thus, the maximum occupancy of the guest molecule equals 0.5. On refinement this occupancy value was assigned to diethyl ketone which was treated as a rigid body. A final R value of 0.11 was obtained, and the average isotropic U value of diethyl ketone converged to 0.15 Å<sup>2</sup>

5.5. DCA-Methyl Pentyl Ketone (at 103 K). Refinement of the host structure yielded an R = 0.13. The resulting electron density difference map displayed seven independent distinct peaks within the channel, coplanar to within 0.2 Å, with heights ranging from 1.0 to 2.3 e/Å as shown in Figure 12. These peaks are arranged in a pseudocentrosymmetric pattern, indicating an even number of coplanar guest molecules per asymmetric unit. These peaks were interpreted in terms of two independent guest molecules G and G', forming a pseudocentrosymmetric dimer.

A molecular model of the guest<sup>26</sup> was fitted to the peak positions and was constrained as a rigid group with the same temperature parameter for both G and G' during the refinement. The occupancy factors of the two guests G and G' were refined separately to values of 0.174 (5) and 0.159 (5). An overall thermal parameter of 0.057 (2)  $Å^2$  for G and G' was obtained. The total occupancy was 0.333 (7), almost equal to 1:3.

We now digress to demonstrate in terms of guest packing in the channel that the maximum total occupancy is 1:3 and that the occupancies of G and G' should be exactly the same. For this analysis, we shall naturally assume the derived crystallographic locations of G and G'

We first pose the question whether G and G' each pack in separate strings GGGGG and G'G'G'G'G' along a channel. In each such a string, nearest-neighboring guests would occupy every third consecutive crystallographic site in the channel, as shown in Figure 13 for G' molecules. Were G and G' to form such separate strings, the maximum total guest

occupancy would be 1:3, the observed value. In this arrangement, there appears to be no constraint for the occupancies of G and G' to be almost equal to each other, as was actually found. The alternative arrangement within a channel is shown in Figure 11, containing nicely packed GG' dimers 13 juxtaposed along the channel by a translation repeat of 3c so the maximum guest occupancy is 1:3, and the molar ratio of G to G' is 1:1. This latter value is only two esd's removed from the X-ray derived molar ratio of 1.09 (5). The discrepancy of 0.09 may be accounted for in terms of the pronounced molecular overlap between G and G' in the



refinement and hence a high correlation between the molecular occupancies of G and G'. Assuming the guest arrangement in Figure 11, as against Figure 13, obviates the need to explain why G and G' are differently oriented and offset with respect to each other. The proposed arrangement of acetyl groups in dimer form 13 actually occurs in crystal structures of 4-acetylbiphenyl derivatives.<sup>27</sup> Motif 13 is analogous to the H-bonded carboxylic acid dimer 14 and the "dimer" 15 found in the crystal structures of acetic acid28 and the complex DCA-acetic acid.11 Dimer 13 and 15 has been interpreted in terms of an attractive C-H-O Coulomb interaction.<sup>29</sup> Thus, we conclude that G and G' appear in dimer form 13. On this basis we assumed that the individual occupancies of G and G' are each 1:6 in the final cycles of refinement. The overall thermal parameter of the guest remained unchanged as well as the final R and  $R_w$  values of 0.058 and 0.056, respectively.

For our molecular model of methyl pentyl ketone, we had taken the C=O and  $C_{\alpha}$ --C<sub> $\beta$ </sub> bonds of O=C--C<sub> $\alpha$ </sub>--C<sub> $\beta$ </sub> to be cis to each other, which is consistent with the relative atomic peak heights from difference Fourier maps and from crystal structures which contain methyl alkyl ketone moieties.<sup>26,30</sup> Moreover, similar conformations exist in the solid for the analogous molecular systems of the  $\alpha,\beta$  saturated carboxylic acids and esters, primary and secondary amides, N-methylacetamide, and the peptide linkage, as depicted in Scheme VII.

Nevertheless, we carried out the following least-squares analysis to verify the inserted cis conformation. The moieties  $C(CH_2)_4CH_3$  of the methyl pentyl ketone guests G and G' were each refined as rigid bodies. The two remaining atoms O1 and C1 of each guest were refined freely but for a restraint in distance of 2.34 Å between O1 and C1. The refined geometries (in angstroms, Scheme VIII) confirm unequivocally that  $O = C - C_{\alpha} - C_{\beta}$  is cis. This refinement yielded R = 0.060 and  $R_{w} =$ 0.059.

5.7. DCA-Ethyl Methyl Ketone. Structure Determination at 103 K. Anisotropic refinement of DCA with the low-temperature (103 K) X-ray diffraction data yielded an R = 0.13. An electron-density difference synthesis exhibited several peaks in the channel with heights ranging from 1.0 to 2.2 e/Å<sup>3</sup>. The peaks were coplanar in an almost centrosymmetric pattern (Figure 14). This peak distribution was interpreted in terms of two independent guest molecules G and G', forming a pseudocentrosymmetric pair. The ketone oxygen atoms were located from peak height (i.e., the highest of the seven peaks) and peak-peak distances. The molecular model of ethyl methyl ketone was derived from the crystal structure of 9-keto-trans-2-decenoic acid.<sup>26</sup> G and G' were refined as rigid groups and were assigned the same temperature factor. The refined occupancy factors of ethyl methyl ketone molecules were 0.23 (2) for G' and 0.25 (2) for G. When G and G' were refined with the same occupancy factor, 0.241 (3) was obtained. Following arguments parallel to those outlined above for methyl pentyl ketone, we may conclude that G and G' form a string of centrosymmetric dimers which are related to each other by a translation axis of 2c in the channel as shown in Figure 9. In this packing motif, the occupancies of the G and G' molecules are each 0.25, which fits very close to the refined value of 0.24. The intermolecular distances between guest molecules G and G' both for intra- and interdimer contacts are most reasonable, i.e., 3.4 Å between C1(G) and

<sup>(24) (</sup>a) Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42, 3175. (b) Cromer, D. T.; Mann, J. B. Acta Crystallogr., Sect. A 1968, A24, 321.

<sup>(25)</sup> Germain, G.; Main, P.; Woolfson, M. M. Acta Crystallogr., Sect. A 1971, A27, 368.

<sup>(26)</sup> Model derived from the crystal structure of 9-keto-*trans*-2 decenoic acid: Cromer, D. T.; Larson, A. C. Acta Crystallogr., Sect. B 1972, B28, 2128.

<sup>(27)</sup> Sutherland, H. H.; Hoy, T. G. Acta Crystallogr., Sect. B 1968, B24,
1207. Sutherland, H. H.; Hoy, T. G. Ibid. 1969, B25, 2385.
(28) Nahringbauer, I. Acta Chem. Scand. 1970, 24, 453.

<sup>(29)</sup> Berkovitch-Yellin, Z.; Leiserowitz, L. Acta Crystallogr., Sect. B 1984, B40, 159

<sup>(30)</sup> King, T. J.; Rodrigo, S.; Wallwork, S. C. J. Chem. Soc. D 1969, 683. Charles, C.; Braeckman, J. C.; Daloze, D.; Tursch, B.; Declercq, J. P.; Germain, G.; van Meerssche, M. Bull. Soc. Chim. Belg. 1978, 87, 481. Dideberg, O.; Dupont, L.; Christofidis, I. Cryst. Struct. Commun. 1976, 5, 377; Gri-gorleva, N. V.; Margolis, N. V.; Shokhor, I. N.; and Tselinskii, I. V. Zh. Strukt. Khim. 1969, 10, 559.

O1(G'), 3.8 Å between O1(G) and C1(G'), and 4.6 Å across the gap C4(G')--C4(G). Therefore, the occupancies of G and G' were kept fixed at 0.25, yielding R = 0.099,  $R_w = 0.097$ , and an isotropic U value of 0.077 (3) Å<sup>2</sup> for the guest atoms.

We had assumed for G and G' a cis  $C_{\beta}$ — $C_{\alpha}$ —C=O conformation as had been definitely indicated by the difference map in which the oxygen peaks were by far the highest (Figure 14) and by the evidence already provided above in the analysis on DCA-methyl pentyl ketone. Moreover, the acetyl moieties of the ethyl methyl ketone G and G' molecules occupy almost the same locations (relative to steroid host) in the channel as the corresponding H<sub>3</sub>CCOC<sub>2</sub>H<sub>4</sub> moieties of methyl pentyl ketone. Nevertheless, least-squares calculations were carried out to verify the positions of atoms O1 and C1 of ethyl methyl ketone in a procedure akin to that adopted on methyl pentyl ketone. The refinement yielded R = 0.095 and  $R_{\rm w} = 0.094$ . The refined geometries of the guests, shown in Scheme IX (in angstroms) did not distinguish between the oxygen and methyl groups certainly not in terms of the esd's in the C=O and C-CH<sub>3</sub> bond lengths. Nevertheless, in terms of all the facts presented here, there can be no doubt as to the cis conformation of  $C_{\theta}$ — $C_{\alpha}$ —C=O in ethyl methyl ketone.

Structure Determination (at 293 K). The final x, y, and z coordinates of DCA-ethyl methyl ketone at 103 K were used as a starting model for refinement of the room-temperature crystal structure. An R value of 0.097 was obtained. The isotropic thermal parameter of the guest molecules converged to 0.169 (6) Å<sup>2</sup>, keeping the occupancies of G and G' each fixed at 0.25.

**5.8.** DCA-Cyclohexanone (at 293 K). The crystal structure was solved by MULTAN<sup>25</sup> although we had strong reason to believe that the host structure was isomorphous with that of DCA-di-*tert*-butyl diper-oxymonocarbonate,<sup>12</sup> as indeed it proved to be. The host structure belongs to the  $\gamma$  motif. The C and O atoms of the guest molecule were unambiguously located, not being subject to disorder by virtue of the 14-Å c axis. The occupancy of the guest molecule was taken to be 0.5, its maximum possible value. Refinement proceeded smoothly to an R

value of 0.086; the average U value of the guest C and O atoms was 0.23  $Å^2$ .

**5.9. Results of X-ray Crystal Structure Refinements.** Details on the final cycle of refinements are given in Table III. The atomic x, y, and z coordinates and  $U_{eq}$  of DCA-acetone (at 103 K), APA-acetone, DCA-diethyl ketone, DCA-cyclohexanone, DCA-ethyl methyl ketone (at 103 K), and DCA-methyl pentyl ketone are listed in Tables IV-IX, respectively. Anisotropic temperature factors  $U_{ij}$  bond lengths, and bond angles are listed in supplementary material Tables 4S-9S; the x, y, and z coordinates of DCA-acetone (at 293 K) and DCA-ethyl methyl ketone (at 293 K) are listed in Tables 4S and 8S, respectively.

Acknowledgment. We thank Prof. M. D. Cohen for fruitful discussions. We thank the Israel/U.S. Binational Science Foundation and the Israel Academy of Science and Humanities for financial support.

**Registry No. 1**, 66014-00-4; **1** (methyl ester), 95484-83-6; **2**, 66014-23-1; **2** (methyl ester), 95484-84-7; **3**, 66971-13-9; **3** (methyl ester), 95615-84-2; **4**, 66014-20-8; **5**, 95484-85-8; **6**, 83035-68-1; **6** (methyl ester), 95484-86-9; **7**, 58678-36-7; **7** (methyl ester), 95484-87-0; **8**, 77522-07-7; **9**, 95484-88-1; **9** (methyl ester), 95484-89-2; **10** (isomer 1), 95586-12-2; **10** (methyl ester) (isomer 1), 95484-90-5; **10** (isomer 2), 95586-13-3; **10** (methyl ester) (isomer 2), 95484-91-6; **11** (isomer 1), 95586-14-4; **11** (isomer 2), 95586-15-5; DCA-<sup>1</sup>/<sub>2</sub>clohexanone, 95484-92-7; DCA-<sup>1</sup>/<sub>2</sub>(ethyl methyl ketone), 83035-64-7; DCA-<sup>1</sup>/<sub>3</sub>(methyl pentyl ketone), 95484-93-8; APA-acetone, 66971-12-8.

Supplementary Material Available: Thermal parameters, bond angles, and bond lengths of molecules A and B (26 pages). Ordering information is given on any masthead page.

## Reaction Pathways in Crystalline Host-Guest Inclusion Complexes: Rotation by a Net 180° of the Acetyl Group on Photoaddition of Guest-Acetophenone and -m-Chloroacetophenone to the Atom C5 of Host Deoxycholic Acid

C. P. Tang,<sup>1a</sup> H. C. Chang,<sup>1a</sup> R. Popovitz-Biro,<sup>1a</sup> F. Frolow,<sup>1a</sup> M. Lahav,<sup>\*1a</sup> L. Leiserowitz,<sup>\*1a</sup> and R. K. McMullan<sup>1b</sup>

Contribution from the Department of Structural Chemistry, The Weizmann Institute of Science, Rehovot, Israel 76100, and the Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11793. Received July 11, 1984

Abstract: The crystalline host-guest channel inclusion complexes 5:2 (DCA) deoxycholic acid-acetophenone ( $C_6H_5C'OCH_3$ ) and 3:1 DCA-m-chloroacetophenone ( $CLC_6H_4C'OCH_3$ ) each yield on UV irradiation a photoproduct via addition of guest to the steroid tertiary carbon atom C5 with the formation of a new chiral carbon center C'(OH)(CH<sub>3</sub>)( $C_6H_5$ )(DCA) of S configuration. The crystal structures of the two host-guest complexes were determined by low-temperature (103 K) X-ray diffraction; a low-temperature (16 K) neutron study was made on DCA-C<sub>6</sub>H<sub>5</sub>COCD<sub>3</sub>. The inclusion compounds DCA-C<sub>6</sub>H<sub>5</sub>COCH<sub>3</sub> and DCA-CLC<sub>6</sub>H<sub>4</sub>COCH<sub>3</sub> each contain two crystallographically independent guest molecules G and G' arranged along the channel axes such that both G and G' should form the same diastereomeric product at C5. A comparison of the stereochemistry of each of the two isolated photoproducts and the host-guest arrangements at the reaction sites in each corresponding complex indicates that photoaddition of the guest molecule to C5 takes place with a net rotation of 180° by the guest acetyl group.

### 1. Introduction

1.1. Statement of the Problem. In the previous paper in this issue,<sup>2</sup> we described the regiospecific solid-state photoaddition of

several guest aliphatic ketones to the host deoxycholic acid (referred to as DCA) in the channels of the bile acids. A comparative analysis of the stereochemistries of the reaction products formed,

(2) Popovitz-Biro, R.; Tang, C. P.; Chang, H. C.; Lahav, M.; Leiserowitz, L. J. Am. Chem. Soc., preceding paper in this issue.

<sup>(1) (</sup>a) Weizmann Institute of Science. (b) Brookhaven National Laboratory.