SYNTHESIS OF RACEMIC OCTAPRENOL wtttcccsOH AND NONAPRENOL wtttccccsOH

UDC 542.91:541.64:547.366

N. Ya. Grigor'eva, O. A. Pinsker, V. N. Odinokov, G. A. Tolstikov, and A. M. Moiseenkov

Dolichols of the polyprenol group (I; m = 2, n > 10) containing a saturated α -isoprene unit are of exceptional importance in the biosynthesis of carbohydrate-containing biopolymers [1]. Because of the limited availability of dolichols in natural sources, the full or partial synthesis of these and related compounds (to investigate their biochemical properties) is of current interest.

The partial synthesis of dolichols as the isoprenol mixture (I; m = 2, n = 12-18), starting from the polyprenol mixture (II; m = 2, n = 12-18), has been described in the literature, mostly patent [2-4]. The possibility of obtaining individual dolichols (I) through selective hydration of the α -isoprene unit of the appropriate polyprenols (II) has also been examined [5]. In the present communication we describe the synthesis of octaprenol wttcccsOH (Ia; m = n = 3) and nonaprenol wttcccsOH (Ib; m = 3, n = 4) by means of controlled aldol condensation, described earlier in the synthesis of cis-trisubstituted olefins, including prenols (II) [6-8].

The previously unknown isoprenoid aldehyde blocks (VIIIa,b), necessary intermediates in the synthesis, were obtained in five stages from ketoaldehydes (IIIa,b), which were obtained from selective ozonolysis of natural rubber (NR) [9].

n = 2 (a), 3 (b).

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Institute of Chemistry, Academy of Sciences of the USSR, Bashkir Branch, Ufa. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1546-1552, July, 1987. Original article submitted January 20, 1986.

Selective reaction of ketoaldehyde (IIIa) with MeOH in the presence of NH_4Cl at ~25°C gave a quantitative yield of ketoacetal (IVa) [10], whose condensation with the Li derivative of ethyltrimethylsilyl acetate at ~78°C yielded ester (Va). The latter was obtained as a mixture of isomers in the proportion 2Z/2E ~ 3:2, as can be seen from a comparison in the PMR spectrum of the integral intensities of isolated CH_2-C^3 signals at δ 1.87 (Z isomer) and 2.16 ppm (E isomer) [11]. Ester (Va) was reduced (Li/NH₃, method of Chatty et al. [12]) to carbinol (VIa), which was converted in the usual manner to benzyloxyacetal (VIIa), whose hydrolysis with p-TsOH in aqueous acetone afforded aldehyde (VIIIa). Similarly, ketoaldehyde (IIIb) was converted to benzyloxyaldehyde (VIIIb) in an overall yield of ~35% through intermediate stages involving ketoacetal (IVb), ester (Vb), carbinol (VIb), and benzyloxyacetal (VIIb). It should be noted that olefination of ketoacetal (IVb) also resulted in the formation of an ester mixture (Vb) with a marked selectivity for the Z isomer (2Z/2E ~ 3:2).

Condensation of aldehyde blocks (VIIIa,b) with the Li derivative (IXa) of isoprenoid aldimine (IX) at -70° C [7] led to the disubstituted E-acroleins (Xa,b) with a stereochemical purity of >95%, as determined from PMR data (cf. [13]). Subsequent reduction of (Xa,b) to carbinols (XIa,b) and then to benzyl ethers (XIIa,b) was carried out with full preservation of the C=C configuration, as described in [6-8] for the synthesis of heptaprenol (II) (m = n = 3). Finally, debenzylation of (XIIa,b) with Li in NH₃ afforded the desired racemic prenols (Ia,b).

The structure of compounds (I), (V)-(VIII), and (X)-(XII) was confirmed by elemental analysis of the key compounds and by the available spectral methods. The observed ¹H NMR (see Experimental) and ¹³C NMR (Tables 1 and 2) spectral parameters are in good accord with those obtained for related structures [11, 13-15]. Moreover, analysis of the ¹³C NMR spectra further confirms the effect of functionalization of the central isoprene unit on the magnitude of the chemical shifts of neighboring and distant centers, as noted by us earlier [7, 8, 14]. Thus in the spectra of E-acroleins (Xa,b) methylene atoms C¹² and C¹⁶ resonate at $\delta \sim 30$ and 24 ppm, respectively, whereas in the reduced products (Ia,b) and (XIIa,b) the signal of these atoms is found at $\delta \sim 32$ ppm. This effect is also manifested in the PMR spectra of compounds (Xa,b) as a downfield shift (by ~0.4 ppm) of the methylene group in the γ position relative to the formyl group (in β - and δ -methylene groups the shift is ~0.2 ppm), compared to the same signals in spectra of the reduced products.

EXPERIMENTAL

IR spectra were obtained in CCl₄ on a UR-20 instrument; UV spectra were obtained in alcohol on a Specord UV-VIS spectrometer. PMR spectra were measured in CDCl₃* (relative to TMS) on Varian DA-60, Tesla BS-497 (100 MHz), and Bruker WM-250 spectrometers. ¹³C NMR spectra were taken in CDCl₃ on a Bruker WM-250 spectrometer with a working frequency of 62.89 MHz. The parameters for compounds (Va,b), (VIa), (VIIa), and (VIIIa,b) are given in Table 1; those for compounds (Ia,b), X(a,b), and (XIIa) are shown in Table 2. Mass spectra were obtained at 70 eV on a Varian MAT-CH-6 spectrometer. R_f values are given for a fixed SiO₂ (Silufol) layer in the system hexane-ether (1:1).* Preparative chromatography was carried out in a flash variant on silica gel L (40-100 mµ; Chemapol).

*Unless noted otherwise.

					· ·		
	$\begin{array}{c} 15 & 14 & 16 \\ \text{R}_{2} \text{ CH} & 12 \\ 13 & 12 \\ \end{array} \begin{array}{c} 17 & 0 \\ 9 \\ \end{array} \begin{pmatrix} 17 & 7 \\ 8 \\ 5 \\ \end{array} \begin{pmatrix} 6 \\ 9 \\ 5 \\ \end{array} \end{pmatrix} - \begin{pmatrix} 18 \\ 3 \\ 1 \\ 1 \\ 1 \\ \end{array} \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array} \end{pmatrix} - \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ \end{array} \end{pmatrix} - \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	(VIIIb)° c, d	68,7	36,8 29,7	37,5	25,3 125,4 125,4 126,4 24,3 28,4 28,4 28,0 23,0 23,0 23,4 23,4 23,4 23,4 23,4 23,4 23,4 23,4	19,6
		(VIIIa) d	68,7	36,8 29,7	37,5	25,3 134,4 126,3 24,3 24,3 24,3 22,9 22,9 23,3 20,8 23,3 20,8 24,3 24,3 24,3 24,3 24,3 27,9 22,9 22,9 22,9 22,9 22,9 22,9 22,9	19,6
		(VIIa) ^c	68,8	36,8 29,7	37,5	25,25 25,25,25 25,25 25,25 25,25 25,25 25,25,25 25,25,25 25,25,25 25,25,25 25,25,25 25,25,25,25 25,25,25,25 25,25,25,25,25,25,25,25,25,25,25,25,25,2	19,6
		(VIa)	60,8	39,8 29,2	37,4	12222222222222222222222222222222222222	19,4
	$\underbrace{(\text{CH}_{3}\text{O})_{4}}_{13}\underbrace{\overset{14}{\text{CH}}}_{13}\underbrace{16}_{12}\underbrace{\overset{11}{\text{O}}}_{9}\underbrace{10}_{7}\underbrace{\overset{17}{\text{O}}}_{8}\underbrace{\overset{18}{\text{O}}}_{5}\underbrace{\overset{2}{\text{O}}}_{4}\underbrace{\overset{2}{\text{O}}}_{1}\underbrace{12}_{1}\underbrace{\text{CO}_{2}\text{Et}}_{1}$	q(qA)	166, 2(Z) 166, 8(E)	116,4 159,7	$\begin{array}{c} 32,1(Z)\\ 41,2(E)\end{array}$	28,28,28,28,28,28,28,28,28,28,28,28,28,2	23,3(Z) 18,8(E)
mm process of a		(Va)	166, 2(Z) 166, 8(E)	116,3 159,8	32,1(Z) 41,2(E)	26,8 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,5	23,3(Z) 18,8(E)
· · · · · · · · · · · · · · · · · · ·	C-atom No.		1	c1 m	4	₽∞₽₽≈₽₽₽₽₽₽₽₽	18

¹³C NMR Spectra of Compounds (Va,b), (VIa), (VIIa), and (VIIIa,b) TARLE 1

arr the spectra of (Va,b) also contain signals of the $\rm CO_2C_2H_5$ group. bIn the spectrum of (Vb) the signals of atoms 9-12 have a double intensity. The spectra of (VIIa) and (VIIIa,b) also contain signals of the $\rm CH_2C_6H_5$ group. dIn the spectrum of (VIIIb) the signals of atoms 5-8 have a double intensity. Note. Signals marked by an asterisk (*) may be transposed.

C-atom	29 27 28	$=\frac{25}{26}\left(\frac{24}{23}\right)$	$\begin{pmatrix} 4 & 22 \\ \hline & 21 \end{pmatrix}$	31 19 2 2 20	$ \begin{array}{c} 7 & 16 \\ \hline 7 & 8 \\ 8 \\ \hline 8 \\ 35 \\ 35 \\ 35 \\ \end{array} \begin{array}{c} 13 & 12 \\ 14 \\ 3 \\ 32 \\ \end{array} \begin{array}{c} 9 \\ 8 \\ 7 \\ 3 \\ \end{array} \begin{array}{c} 8 \\ 5 \\ 7 \\ 3 \\ \end{array} \begin{array}{c} 5 \\ 6 \\ 7 \\ 3 \\ \end{array} \begin{array}{c} 4 \\ 5 \\ -34 \\ 3 \\ 2 \\ \end{array} \begin{array}{c} 0 \\ R \\ 3 \\ \end{array} \begin{array}{c} 4 \\ 0 \\ R \\ \end{array} \begin{array}{c} 0 \\ R \\ \end{array} \begin{array}{c} 8 \\ 5 \\ 34 \\ 3 \\ \end{array} \begin{array}{c} 1 \\ 0 \\ R \\ \end{array} \begin{array}{c} * \\ * \\ 1 \\ 1 \\ 0 \\ \end{array} \right) $					_0R′ *	om No.
110.	(Xa) †	(xb)†	(XIIA)†	(I a)	(IP)‡	(Xa) †	(Xb) ²	(XII)†	(Ia)	(I b ‡	C-ato
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 40 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ \end{array} $	$\begin{array}{c} 68,95\\ 37,7a\\ 29,95\\ 37,0a\\ 25,5\\ 124,4b\\ 136,2c\\ 32,2d\\ 124,5b\\ 135,1c\\ 32,2\\ 26,8d\\ 124,6b\\ 135,1c\\ 32,4\\ 26,9d\\ 125,2b\\ \end{array}$	68,9 37,7 a 29,9 a 25,4 124,4 b 136,2 c 32,2 26,6 124,4 b 135,0 c 32,3 26,7 d 125,1 b 135,2 c 32,1 26,8 d 125,2 b	68.8 37.6 29.8 36.9 a 25.4 124,3 b 135,4 c 32,1 26.6 d 126.8 135,2 c 30,9 27,6 153,9 143,8 24,5 27,0 d 123,5	$\begin{array}{c} 61,4\\ 40,2\\ 29,8\\ 37,7\\ 25,4\\ 124,5b\\ 135,1c\\ 32,2\\ 26,6\\ 126,7\\ 135,2c\\ 30,8\\ 27,5\\ 154,0\\ 143,7\\ 24,45\\ 26,7\\ 123,5\\ \end{array}$	61,3 40,1 29,7 37,6 25,4 124,3 b 135,0 c 32.2 26,5 124,4 b 135,2 c 32,3 26,6 d 124,6 b 135,2 c 32,3 26,8 d 125,1 b	135.0 c 39.9 27.2 d 124.5 b 134.6 c 39.9 26.6 d 124.7 b 133.6 c 25.6 17.6 16.1 23.2 e 23.4 e 19.7 194.8	135,0° 39,9 26,8 b 124,5 134,8° 39,9 27,2 125,8b 131,2 25,7 17,7 16,1 23,2° 23,4° 19,7 194,35	135,0 c 39,8 e 26,8 d 125,2 b 134,9 c 40,1 e 26,8 c 125,7 b 131,2 25,7 17,7 16,1 16,1 23,5 23,5 19,7 23,5	135,3 c 39,9 d 125,2 b 135,3 c 39,9 d 125,3 c 39,9 d 125,3 c 39,9 d 125,3 c 39,9 d 125,3 c 131,2 d 25,7 d 17,7 d 6,1 d 25,7 d 16,1 d 23,4 d 19,7 d 23,4 d	$\begin{array}{c} 135,2\\ 39,8\\ 26,9\\ 125,2\\ b\\ 135,4\\ 39,8\\ d\\ 26,8\\ b\\ 125,5\\ b\\ 131,2\\ 25,6\\ 17,7\\ 16,0\\ 23,4\\ 23,4\\ 19,6\\ 23,4\\ 19,6\\ 23,4\\ \end{array}$	$\begin{array}{c} 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ \end{array}$

TABLE 2. ¹³C NMR Spectra of Compounds (Ia,b), (Xa, b), and (XIIa)

*The signals of atoms 21-24 and 30 have a double intensity in all compounds.

+The spectra of (Xa,b) and (XII) also contain signals of the $CH_2C_6H_5$ group.

*In the spectra of (Ib) and (Xb) the signals of atoms 5-8 and 33 have a double intensity.

Note. Signals marked with the letters a-f may be transposed.

14,14-Dimethoxy-3,7,11-trimethyltetradeca-2E/Z,6Z,10Z-trienoic Acid (Va) and 18,18-Dimethoxy-3,7,11,15-tetramethyloctadeca-2E/Z,6Z,10Z,14Z-tetraenoic Acid (Vb) Ethyl Esters. A 12-ml portion of 1.3 M n-BuLi in hexane (15.6 mmoles) was added at -20°C, with mixing, to 1.47 g (14.4 mmoles) of $i-Pr_2NH$ in 150 m1 THF in an Ar atmosphere. The mixture was kept at -20°C for 40 min, treated at -78°C with 2.4 g (14.7 mmoles) ethyltrimethylsilyl acetate, allowed to stand for 1.5 h, and then treated at -78°C with 3.2 g (11.4 mmoles) of (IVa) [10] in 10 ml THF. After 1.3 h, the mixture was heated to ~25°C for 3 h, allowed to stand for another 30 min, separated out with 2.8 g NaHSO_{μ}·2H₂O, and filtered; then the precipitate was washed with ether. Standard processing of the pooled filtrate afforded 4.2 g of a light yellow, oily product, which was chromatographed on 95 g of SiO2. Gradient elution from hexane to ether (up to 5% of the latter) yielded 3.4 g (85%) of an isomeric mixture of (Va) (2Z/2E \sim 3:2), $R_f = 0.49$. IR spectrum (v, cm⁻¹): 860, 1065, 1130, 1150, 1220, 1380, 1450, 1650, 1715, 2830-3010; PMR spectrum (δ , ppm): 1.25 t and 1.27 t (3H, J = 7 Hz, CH₃CH₂), 1.60 m (2H, H_2C^{13}), 1.69 s (6H, 2CH₃), 1.87 d (1.8H, J = 1.5 Hz, Z-isomer CH₃-C³), 2.0 m (6H, 3CH₃), 2.15 m (4H, H_2C^5 ; E-isomer H_2C^4 and CH_3-C^3), 2.62 t (1.2H, J = 8 Hz, Z-isomer H_2C^4), 3.30 s (6H, $2CH_3O$, 4.13 q and 4.15 q (2H, J = 7 Hz, CH_2O), 4.32 t (1H, J = 6 Hz, HC^{14}), 5.13 m (2H, 2HC= C), 5.65 br. s (1H, HC²); mass spectrum (m/z: 321 [M - OCH₃]⁺ 290 [M - 20CH₃]⁺, 278, 262, 193, 161, 125, 93, 81, 68.

In a similar manner, 4.25 g (89%) of an isomeric mixture of (Vb) (2Z/2E ~ 3:2) was obtained from 2.4 g (14.7 mmoles) ethyltrimethylsilyl acetate and 4.0 g (11.4 mmoles) ketoacetal (IVb) [10]. bp = 194-195°C (0.05 mm); Rf = 0.65; IR spectrum (ν , cm⁻¹): 860, 1065, 1130, 1150, 1220, 1380, 1450, 1650, 1715, 2830-3010, UV spectrum: λ_{max} 230 nm (ϵ 21,900); PMR spectrum (δ ppm): 1.25 t and 1.27 t (3H, J = 7 Hz, CH₃CH₂), 1.7 m (11H, H₂C¹⁷, 3CH₃), 1.87 d (1.8H, J = 1.5 Hz, Z-isomer CH₃C³), 2.0 m (10H, 5CH₂), 2.16 m (4H, H₂C⁵; E-isomer H₂C⁴ and CH₃-C³), 2.62 t (1.2H, J = 8 Hz, Z-isomer H₂C⁴), 3.31 s (6H, 2CH₃O), 4.13 q and 4.15 q (2H, J = 7 Hz, CH₂O), 4.33 t (1H, J = 6 Hz, HC¹⁸), 5.13 m (3H, 3HC=C), 5.65 br. s (1H, HC²); mass spectrum (m/z): 420 M⁴, 419, 389, 388, 358, 357, 356, 330, 261, 229, 193, 161, 149, 135, 124, 69. Found, %: C 74.52, H 10.65. C₂₆H₄₄O₄. Calculated, %: C 74.24, H 10.56. Mol. wt. 420.60.

 $(\pm)-14-Hydroxy-4,8,12-trimethyltetradeca-4Z,8Z-dien-1-al (VIa) and (\pm)-18-Hydroxy-4,8, 12,16-tetramethyloctadeca-4Z,8Z,12Z-trien1-al (VIb) Dimentylacetals. Lithium (0.45 g; 65.0 mg-atom) was added at -40°C, with mixing, to 2.8 g (8.1 mmoles) of (Va) dissolved in 200 ml NH₃, 30 ml dioxane, and 20 ml ether in an Ar atmosphere. The reaction mixture was kept at -40°C for 1.5 h, separated out with excess EtOH, and the NH₃ evaporated. Processing of the residue by an standard procedure yielded 2.27 g of an oily product, which was chromatographed on 100 g SiO₂. Gradient elution from hexane to ether (up to 40% of the latter) afforded 1.5 g (60%) of product (VIa) (colorless oil; R_f = 0.23). IR spectrum (v, cm⁻¹): 1060, 1130, 1380, 1450, 2820-3050, 3650; PMR spectrum (<math>\delta$, ppm); 0.91 d (3H, J = 7 Hz, CH₃), 1.13 m and 1.31 m (4H, H₂C¹¹, H₂C¹³), 1.6 m (3H, H₂C²), HC¹²), 1.68 s (6H, 2CH₃), 2.1 m (8H, 4CH₃), 2.37 s (1H, OH), 3.31 s (6H, 2CH₃O), 3.67 m (2H, CH₂O), 4.37 t (1H, J = 6 Hz, HC¹), 5.1 m (2H, 2HC=C); mass spectrum (m/z): 294 (M⁺ - H₂O), 281 (M⁺ - OCH₃), 265, 249, 248, 222, 207, 179, 175, 161, 147, 125, 124, 69.

In a similar manner, 3.4 g (8.1 mmoles) of (Vb) afforded 1.84 g (60%) of product (VIb). bp = 178-180°C (0.06 mm); IR spectrum (ν , cm⁻¹): 1060, 1130, 1380, 1450, 2830-3080, 3640; PMR spectrum (δ , ppm): 0.91 d (3H, J = 7 Hz, CH₃), 1.13 m and 1.30 m (4H, H₂C¹⁵, H₂C¹⁷), 1.6 m (3H, HC², H₂C¹⁶), 1.70 s (9H, 3CH₃), 2.1 m (12H, 6CH₂), 3.32 s (6H, 2CH₃O), 3.68 m (2H, CH₂O), 4.34 t (1H, J = 6 Hz, HC¹), 5.1 m (3H, 3HC=C). Found, %: C 75.14, H 11.58. C₂₄H₄₄O₃. Calculated, %: C 75.71, H 11.65. Mol. wt. = 380.7.

 (\pm) -14-Benzyloxy-4,8,12-trimethyltetradeca-4Z,8Z-dien-1-al (VIIa) and (\pm) -18-Benzyloxy-4,8,12,16-tetramethyloctadeca-4Z,8Z,12Z-trien-1-al (VIIb) Dimethylacetals. These compounds were obtained by the standard procedure in a yield of 70-72% after chromatography on Al₂O₃ (gradient elution from hexane to 8% ether).

For (VIIa), bp = 195°C (0.01 mm); IR spectrum (ν , cm⁻¹): 700, 740-820, 1060, 1080, 1190, 1365, 1380, 1455, 2820-3000, 3030; PMR spectrum (δ , ppm): 0.91 d (3H, J = 7 Hz, CH₃), 1.20 m and 1.45 m (4H, H₂C¹¹, H₂C¹³), 1.60 m (3H, H₂C², HC¹²), 1.68 s (6H, 2CH₃), 2.0 m (8H, 4CH₃), 3.32 s (6H, 2CH₃O), 3.51 t (2H, J = 6 Hz, CH₂O), 4.36 t (1H, J = 6 Hz, HC¹), 4.52 s (2H, CH₂Ph), 5.1 m (2H, 2HC=C), 7.3 m (5H, C₆H₅); mass spectrum (m/z): 372 [M - CH₃O]⁺, 371, 339, 338, 312, 279, 247, 229, 174, 161, 135, 125, 107, 91, 69. Found, %: C 77.20, H 10.25. C₂₆H₁₂O₃. Calculated, %: C 77.57. H 10.51.

For (VIIb), $R_f = 0.57$; PMR spectrum (CCl₄, δ , ppm): 0.82 d (3H, J = 6 Hz, CH₃), 1.20-1.59 m (7H, H_2C^2 , H_2C^{15} , HC^{16} , H_2C^{17}), 1.62 s (9H, 3CH₃), 2.0 m (12H, 6CH₂), 3.15 s (6H, 2CH₃O), 3.3 t (2H, J = 7 Hz, CH₂O), 4.15 t (1H, J = 6 Hz, HC¹), 4.35 s (2H, CH₂Ph), 5.0 m (3H, 3HC=C), 7.2 m (5H, C₆H₅).

In a similar manner, 2.9 g (6.1 mmoles) of (VIIb) afforded 2.2 g (84%) of product (VIIIb), a colorless oil with a bp (bath) of 200°C (0.01 mm). IR spectrum (ν , cm⁻¹): 700, 740-820, 1030, 1100, 1204, 1365, 1375, 1450, 1728, 2720, 2820-2960, 3030, 3065, 3090; PMR spectrum (CC1₄, δ , ppm): 0.82 d (3H, J = 6 Hz, CH₃), 1.25 m (4H, 2CH₂), 1.60 m (10H, HC¹⁶, 3CH₃), 2.0 m (12H, 6CH₂), 2.30 m (2H, H₂C²), 3.38 t (2H, J = 6 Hz, CH₂O), 4.33 s (2H, CH₂Ph), 5.0 m (3H, 3HC=C), 7.2 m (5H, C₆H₅), 9.55 br. s (1H, HC¹); mass spectrum (m/z): 425 M⁺, 424, 406, 380, 333, 315, 313, 298, 233, 221, 204, 161, 135, 69. Found, %: C 81.82, H 10.37. C₂₉H₄₄O₂. Calculated, %: C 82.08, H 10.37. Mol. wt. = 424.6.

 (\pm) -1-Benzyloxy-15-formyl-3,7,11,19,23,27,31-heptamethylditriaconta-6Z,10Z,14E,18E,22E, 26E,30-heptaene (Xa) and (\pm) -1-Benzyloxy-19-formyl-3,7,11,15,23,27,31,35-octamethylhexatriaconta-6Z,10Z,14Z,18E,22E,26E,30E,34-octaene (Xb). An aldimine (IX) solution, prepared according to [7] from 2.97 g (9 mmoles) 3-geranylgeranylproionaldehyde in 5 ml ether, was added (-20°C, Ar atmosphere) during a 20-min interval, with mixing, to i-Pr₂NLi, obtained from 1.2 ml (8.5 mmoles) i-Pr₂NH in 4 ml ether and 7.3 ml 1.16 M n-BuLi in hexane (8.5 mmoles). The mixture was kept at 0°C for 2 h, treated (-70°C, 15 min) with 2.06 g (5.8 mmoles) of (VIIIa) in 8 ml ether, and kept at -70°C for 2.5 h. It was then heated for 2 h to ~25°C and left to stand overnight. The reaction mixture was dissolved in 40 ml ether, treated at 0°C with 2.3 g $(CO_2H)_2 \cdot 2H_2O$ in 45 ml H₂O, and mixed for 1.5 h at ~25°C. Subsequent processing in the usual manner yielded 4.0 g of an oily product, which was chromatographed on 90 g SiO₂. Gradient elution from hexane to ether (up to 5% of the latter) afforded 0.3 g [8% with respect tc (VIIIa)] of product (Xa), a colorless oil with a R_f of 0.43 (hexane:ether, 6:1). IR spectrum (v, cm⁻¹): 700, 740-830, 1040, 1100, 1360, 1450, 1640, 1690, 2720, 2800-3050; UV spectrum: λ_{max} 237 nm (ε 12,000); PMR spectrum (δ , ppm): 0.91 d (3H, J = 7 Hz, CH₃), 1.3 m (4H, H₂C², H₂C⁴), 1.60 s (4H, HC³, CH₃-C¹⁹), 1.65 s (9H, 3 cis-CH₃), 1.71 s (6H, 2 trans-CH₃), 1.73 s (3H, CH₃-C¹¹), 2.0 m (2OH, 10CH₂), 2.27 m (4H, H₂C¹⁶, H₂C¹²), 2.45 double t (2H, J₁ = J₂ = 7 Hz, H₂C¹³), 3.52 t (2H, J = 6 Hz, CH₂O), 4.50 s (2H, CH₂Ph), 5.15 m (5H, 5HC=C), 5.25 t (1H, J = 6.5 Hz, HC¹⁸), 6.45 t (1H, J = 7 Hz, HC¹⁴), 7.3 m (5H, C₆H₅), 9.37 s (1H, CHO); mass spectrum (m/z): 669 M⁺, 668, 650, 625, 599, 577, 559, 490, 423, 355, 337, 271, 204, 135, 68.

In a similar manner, aldimine (IX), prepared according to [7] from 2.97 g (9 mmoles) 3geranylgeranylpropionaldehyde and 2.47 g (5.8 mmoles) aldehyde (VIIIb), afforded 0.22 g [5% with respect to (VIIIb)] of product (Xb), a colorless oil with a R_f of 0.67. IR spectrum (v, cm^{-1}) : 700, 740-815, 845, 1030, 1050, 1080, 1120, 1380, 1450, 1640, 1690, 2730, 2850-3100; PMR spectrum (CCl₄, δ , ppm): 0.85 d (3H, J = 6 Hz, CH₃), 1.2 m (4H, H₂C², H₂C⁴), 1.52 br. s (13H, 4 cis-CH₃, HC³), 1.60 br. s (12 H, 4 trans-CH₃), 2.0 m (30H, 15CH₂), 3.38 t (2H, J = 6 Hz, CH₂O), 4.35 s (2H, CH₂Ph), 5.0 m (7H, 7HC=C), 6.25 t (1H, J = 6 Hz, HC¹⁸), 7.2 m (5H, C₆H₅), 9.25 s (1H, CHO); mass spectrum (m/z): 737 M⁺, 736, 718, 693, 669, 645, 627, 557, 491, 423, 341, 337, 271, 204, 135, 69.

(±)-Benzyloxy-15-hydroxymethyl-3,7,11,19,23,27,31-heptamethylditriaconta-6Z,10Z,14E,18E, 22E,26E,30-heptaene (XIa) and (±)-Benzyloxy-19-hydroxymethyl-3,7,11,15,23,27,31,35-octamethylhexatriaconta-6Z,10Z,14Z,18E,22E,26E,30E,34-octaene (XIb). A 50-mg (1.35 mmoles) portion of NaBH₄ was added, with mixing, to 0.3 g (0.45 mmole) of (Xa) in 15 ml EtOH at 0°C. The mixture was kept for about 20 min at 25°C, separated at 0°C with 0.1 ml AcOH, and evaporated to dryness. The residue was dissolved in H₂O and extracted with ether. Standard processing yielded 0.3 g of an oily product, which was chromatographed on 15 g SiO₂. Gradient elution from hexane to ether (up to 5% of the latter) afforded 0.23 g [75% with respect to (Xa)] of product (XIa), a colorless oil with a R_f of 0.48. IR spectrum (v, cm⁻¹): 700, 740-820, 1030, 1100, 1380, 1455, 2860-2980, 3040, 3620; PMR spectrum (δ , ppm): 0.91 d (3H, J = 7 Hz, CH₃), 1.25 m (4H, 2CH₂), 1.62 br. s (13H, HC³, 4 cis-CH₃), 1.72 s (9H, 3 trans-CH₃), 2.1 m (26H, 13CH₂), 3.51 t (2H, J = 6 Hz, CH₂O), 4.03 br. s (2H, <u>CH₂OH</u>), 4.51 s (2H, CH₂Ph), 5.2 m (6H, 6HC=C), 5.44 t (1H, J = 6 Hz, HC¹⁺), 7.3 m (5H, C₆H₅).

In a similar manner, 0.17 g (0.23 mmole) of (Xb) afforded 0.13 g (76%) of product (XIb), a colorless oil with a R_f of 0.47. IR spectrum (ν , cm⁻¹): 700, 745-815, 840, 1035, 1075, 1105, 1380, 1455, 1660, 2860-2980, 3040, 3100, 3620; PMR spectrum (CC1₄, δ , ppm): 0.80 d (3H, J = 6 Hz, CH₃), 1.20 m (4H, 2HC₂), 1.50 br. s (13H, HC³, 4 cis-CH₃), 1.55 s (12H, 4 trans-CH₃), 2.1 m (30H, 15CH₂), 3.4 t (2H, J = 6 Hz, CH₂O), 3.85 br. s (2H, <u>CH₂OH</u>), 4.40 s (2H, CH₂Ph), 5.0 m (8H, 8HC=C), 7.2 m (5H, C₆H₅).

In a similar manner, 0.12 g (0.16 mmole) of (XIb) afforded 60 mg (53%) of product (XIIb), a colorless oil with a Rf of 0.72. PMR spectrum (CCl₄, δ , ppm): 0.80 d (3H, J = 6 Hz, CH₃), 1.20 m (4H, 2CH₂), 1.52 br. s (13H, HC³, 4 cis-CH₃), 1.60 s (15H, 5 trans-CH₃), 2.1 m (30H, 15CH₂), 3.38 t (2H, J = 6.5 Hz, CH₂O), 4.38 s (2H, CH₂Ph), 5.0 m (8H, 8HC=C), 7.2 m (5H, C₆H₅).

(±)-3,7,11,15,19,23,27,31-Octamethylditriaconta-6Z,10Z,14Z,18E,22E,26E,30-heptaenol-1, Octaprenol wtttcccsOH (Ia), and (±)-3,7,11,15,19,23,27,31,35-Nonamethylhexatriaconta-6Z,10Z, <u>14Z,18Z,22E,26E,30E,34-octaenol-1</u>, Nonaprenol wtttccccsOH (Ib). At -35°C in an Ar atmosphere, 21 mg (3 mmoles) of Li was added, with mixing, to 50 mg (0.076 mmole) of (XIIa) in 20 ml NH₃. The mixture was separated out with NH₄Cl for 2.5 h and then processed in the usual manner. The oily product (50 mg) was chromatographed on 25 g SiO₂. Elution with hexane-ether (9:1) afforded 44 mg (90%) of product (Ia), a colorless oil with a R_f of 0.42. IR spectrum (ν , cm⁻¹): 850, 1065, 1380, 1450, 2850-2970, 3640; PMR spectrum (δ , ppm): 0.91 d (3H, J = 7 Hz, CH₃), 1.3 m (4H, 2CH₂), 1.62 br. s (13H, HC³, 4 cis-CH₃), 1.69 s (12H, 4 trans-CH₃), 2.1 m (26H, 13CH₂), 3.67 m (2H, CH₂O), 5.1 m (7H, 7HC=C); mass spectrum (m/z): 565 M⁺, 564, 563, 496, 428, 427, 409, 408.

In a similar manner, 60 mg (0.084 mmole) of (XIIb) afforded 30 mg (57%) of product (Ib), a colorless oil with a R_f of 0.52. IR spectrum (ν , cm⁻¹): 850, 1060, 1130, 1378, 1448, 1665, 2850-2970, 3030, 3690; PMR spectrum (δ , ppm): 0.91 d (3H, J = 7 Hz, CH₃), 1.3 m (4H, 2CH₂), 1.60 br. s (13H, HC³, 4 cis-CH₃), 1.69 s (15H, 5 trans-CH₃), 2.1 m (30H, 15CH₂), 3.68 m (2H, CH₂O), 5.1 m (8H, 8HC=C); mass spectrum (m/z): 633 M⁺, 632, 631, 564, 563, 496, 495, 428, 427, 426, 410, 409, 408.

CONCLUSIONS

A ten-stage synthesis of the dolichol-related racemic octaprenol wtttcccsOH and nonaprenol wtttccccsOH was carried out using controlled aldol condensation at the key stage.

LITERATURE CITED

- 1. F. W. Hemming, Biosci. Rep., <u>2</u>, 203 (1982).
- T. Onishi, S. Suzuki, F. Mori, et al., Eur. Pat. No. 0087638A₁, Chem. Abstr., <u>100</u>, 68570 (1983).
- T. Takigawa, K. Ibata, M. Okada, et al., Eur. Pat. No. 0087136A₂, Chem. Abstr., <u>100</u>, 51863z (1983).
- 4. S. Suzuki, F. Mori, T. Takigawa, et al., Tetrahedron Lett., <u>24</u>, 5103 (1983).
- 5. T. Mankowski, W. Yankowski, T. Chojnacki, and P. Frank, Biochemistry, 15, 2125 (1976).
- N. Ya. Grigorieva, I. M. Avrutov, and A. V. Semenovski, Tetrahedron Lett., <u>24</u>, 5331 (1983).
- 7. A. V. Semenovskii, N. Ya. Grigor'eva, I. M. Avrutov, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 152 (1984).
- N. Ya. Grigor'eva, I. M. Avrutov, O. A. Pinsker, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 1824 (1985).
- 9. G. A. Tolstikov, V. N. Odinokov, V. K. Ignatyuk, et al., Dokl. Akad. Nauk SSSR, 236, 901 (1977).
- V. N. Odinokov, G. A. Tolstikov, V. K. Ignatyuk, et al., USSR Inventor's Certificate No. 1026415; Byull. Izobret., No. 48 (1983).
- 11. A. S. Shashkov, N. Ya. Grigor'eva, I. M. Avrutov, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 388 (1979).
- 12. G. L. Chetty, G. S. Krishna Rao, S. Dev, and D. K. Banerjee, Tetrahedron, 22, 2311 (1966).
- 13. E. P. Prokof'ev, N. Ya. Grigor'eva, and A. V. Semenovskii, Izv. Akad. Nauk SSSR, Ser. Khim., 834 (1979).
- 14. N. Ya. Grigor'eva, O. N. Yudina, and A. M. Moiseenkov, Izv. Akad. Nauk SSSR, Ser. Khim., 2036 (1986).
- 15. F. Bohlmann, R. Zeisberg, and E. Klein, Org. Magn. Reson., 7, 426 (1975).