Experimental Section²

5,6-Dihydro-7H,12H-6-carbamyldibenz[c,f]azocine (1), --Asoln of KCNO (3.57 g, 0.044 mole) in H₂O (55 ml) was added to a soln of 5,6-dihydro-7H,12H-dibenz[c,f]azocine·HCl3 (10.8 g, 0.044 mole) in H₂O (6500 ml). After 15 days stirring at room temp, the reaction mixture afforded, when concd, a solid which was recrystd from EtOH to give 1 (6.6 g, 59.4%) as colorless crystals, mp 237-239°. Anal. $(C_{16}H_{16}N_2O) C$, H, N.

5,7,12,13-Tetrahydro-6-carbamyldibenz [c,g] azonine Compound 2 was obtained similarly in 73.2% yield from 5,7,12,-13-tetrahydro-6H-dibenz[c,g]azonine \cdot HCl 4 (12 g, 0.046 mole) and KCNO (3.75 g, 0.046 mole) in H₂O (2000 ml). Colorless crystals from 95% EtOH, mp 194-196°. Anal. (C₁₇H₁₈N₂O) C, H, N.

1-Cyano-2,3-diphenylaziridine (3).—A soln of BrCN (20.36 g, 0.19 mole) in Et₂O (80 ml) was dropped at 0-5° for 20 min into a soln of cis-2,3-diphenylaziridine⁵ (31.2 g, 0.16 mole) and Et₅N (19.4 g, 0.19 mole) in Et₂O (400 ml). The mixture was stirred for 4 hr at room temp and then filtered, the cake was repeatedly washed with Et2O, and the combined filtrates were evapd to dry-The residue was taken up with hexane and filtered to give 3 (33 g, 94%) as a colorless solid, mp 116-117°. Anal. (C_{15} - $H_{12}N_2$) C, H, N.

1-Carbamyl-2,3-diphenylaziridine (4).—A mixture of 3 (41.3 g, 0.187 mole), NaOH (75 g), H2O (130 ml), and dioxane (950 ml) was stirred for 7 days at room temp and then for 24 hr at 50° The resulting cloudy soln was evapd to dryness under reduced pressure, and the residue was taken up with H2O and little Et2O and then recrystd from C6H6 to give 4 (11.2 g, 25%) as colorless crystals, mp 158-160°. Anal. (C₁₅H₁₄N₂O) C, H, N.

(3) G. Pala, A. Mantegani, and E. Zugna, Tetrahedron, 26, 1275 (1970).

(4) G. Pala, E. Crescenzi, and G. Bietti, ibid., in press.

(5) A. Weissberger and H. Bach, Chem. Ber., 64B, 1095 (1931).

Some Derivatives of 7-Oxabicyclo[2.2.1]heptaneexo-cis-2,3-dicarboxylic Acid

SAMUEL J. DOMINIANNI* AND RONALD L. YOUNG

The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46206

Received August 15, 1970

Recently some 7-oxabicyclo [2.2.1] heptane-2,3-dicarboximides (1) with anticonvulsant activity were described. Some aryloxyethyl esters 2 were also reported² as plant growth regulators. We record herein the preparation of additional examples of 1 and of some mono esters 3, all of which proved to be highly toxic CNS depressants (Table I).

Experimental Section

N-Fluoroarylimides. 1.—A mixture of equimolar amts of 7-oxabicyclo[2.2.1]heptane-exo-cis-2,3-dicarboxylic anhydride and the appropriate fluoroaniline was heated without solvent at

TABLE I

Comp	d R or Ar	Formula ^a	$^{\mathrm{Mp},^b}_{{}^{\circ}\mathrm{C}}$	Approx ^c LD, mg/kg
1a	$o ext{-}\mathrm{FC}_6\mathrm{H}_4$	$C_{14}H_{12}FNO_3$	135 - 137	1000
1b	$m ext{-}\mathrm{FC}_6\mathrm{H}_4$	$C_{14}H_{12}FNO_3$	136-138	300
1c	$p ext{-}\mathrm{FC}_6\mathrm{H}_4$	$C_{14}H_{12}FNO_3$	168-169	300
3a	$(CH_3)_2CH$	${ m C_{11}H_{16}O_5}$	127 - 129	300
3b	$o ext{-}\mathrm{CH_3OC_6H_4CH_2}$	${ m C_{16}H_{18}O_6}$	98 - 100	30
3e	$m ext{-}\mathrm{CH_3OC_6H_4CH_2}$	$C_{16}H_{18}O_{6}$	127 - 128	30
3d	$p ext{-} ext{CH}_3 ext{OC}_6 ext{H}_4 ext{CH}_2$	$\mathrm{C}_{16}\mathrm{H}_{18}\mathrm{O}_{6}$	110 - 112	10
3e	$C_6H_5CH_2$	$C_{15}H_{16}O_{5}$	122 - 124	30
3f	$m\text{-ClC}_6\mathrm{H}_4\mathrm{CH}_2$	$\mathrm{C}_{15}\mathrm{H}_{15}\mathrm{ClO}_{5}$	143-145	30
3g	$p ext{-}\mathrm{ClC}_6\mathrm{H}_4\mathrm{CH}_2$	$\mathrm{C}_{15}\mathrm{H}_{15}\mathrm{ClO}_{5}$	158-160	30
3h	$p ext{-}\mathrm{FC}_6\mathrm{H}_4\mathrm{CH}_2$	$\mathrm{C}_{15}\mathrm{H}_{15}\mathrm{FO}_{5}$	135-136	10
3i	3,4-(OCH ₂ O)C ₆ H ₃ CH ₂	${ m C_{16}H_{16}O_7}$	145 - 147	10

^a All new compounds described gave elemental analyses for C and H within $\pm 0.4\%$ of the calculated values. Ir and nmr spectra were also in agreement with the assigned structures; in particular, the nmr spectra confirmed the assignment of exo-cis stereochemistry. 1 b Uncorr; recorded on a Mel-Temp apparatus. Dose at which fatalities occurred; compds were administered ip to mice.

150° for 1-2 hr. The cooled residue was then recrystd from EtOH.

Monoesters. 3.—A mixture of anhydride and the appropriate alcohol was heated at 125° for 1-2 hr. The cooled residue was extd with aq Na₂CO₃ and the aq extracts were acidified with HCl. The ppt was collected, washed with H2O, dried, and recrystd from an appropriate solvent, usually C_fH_f-Skelly B.

The i-Pr deriv 3a was prepared by refluxing the anhydride in

i-PrOH containing pyridine.

Potential Antidiabetics. 7.

 N^{1} -(β -Hydroxybenzylmethyl)-3-methyl-4arylhydrazono-2-pyrazolin-5-ones and N^1 -(β -Hydroxybenzylmethyl)-3-methyl-4-arylazo-5-methyl- or -phenylpyrazoles

H. G. GARG AND CHANDRA PRAKASH

Department of Chemistry, University of Roorkee, Roorkee, India

Received August 4, 1970

A few pyrazoles and related compounds appear to give promising results in antidiabetic tests^{1, 2} and, therefore, further combinations seem worthwhile studying. This paper describes the synthesis of N^{1} -(β -hydroxybenzylmethyl)-3-methyl-4-arylhydrazono-2-pyrazolin-5-ones and N^{1} -(β -hydroxybenzylmethyl)-3-methyl-4arylazo-5-methyl- or -phenylpyrazoles and also includes the hypoglycemic activity of 3-methyl-4-arylazo-5-phenylisoxazoles.2

Biological Results.—On oral administration at various doses (25-100 mg/kg) in fasted guinea pigs for 18 hr prior to and during testing, 4-phenylazo-, 4-(2-nitrophenylazo)-, 4-(3-nitrophenylazo)-, 4-(2-methylphenylazo)-, 4-(2-methoxyphenylazo)-, 4-(3-methoxyphenylazo)-, 4-(4-ethoxyphenylazo)-, 4-(2,5-dichlorophenylazo)-, and 4-(2,6-dichlorophenylazo)-3-methyl-5-phenylisoxazoles essentially displayed no hypoglycemic activity as compared with chloropropamide. After a predetermined time of peak effect the blood was ana-

⁽²⁾ Melting points are corrected and were taken on a Buchi capillary melting point apparatus. All compounds were analyzed for C, H, N and anal, results were within ±0.4% of the theoretical values,

^{*} To whom correspondence should be addressed.

⁽¹⁾ E. R. Bockstahler, L. C. Weaver, and D. L. Wright, J. Med. Chem.,

⁽²⁾ V. A. Kraft and N. N. Mel'nikov, Biol. Aktivn. Soedin., 255 (1965); Chem. Abstr., 64, 673g (1966).

⁽¹⁾ H. G. Garg, D.Sc. Thesis, Agra University, India (1969).

⁽²⁾ H. G. Garg and P. P. Singh, J. Med. Chem., 13, 1250 (1970), and ref cited therein.