A New Lignan, (-)-Berchemol, from Berchemia racemosa

Nobuko Sakurai, Shin-ichi Nagashima, Ken-ichi Kawai and Takao Inoue*

Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan. Received May 9, 1989

A new tetrahydrofuranoid lignan, named (–)-berchemol (1), mp 188—189 °C, $[\alpha]_D$ – 7.9°, $C_{20}H_{24}O_7$, was isolated together with a known lignan, (–)-secoisolariciresinol, from the stems of *Berchemia racemosa* SIEB. *et* ZUCC. (Rhamnaceae). The relative stereostructure of 1 was elucidated on the basis of chemical evidence, and spectroscopic and X-ray analysis. The absolute configuration of 1 was determined by comparison of its circular dichroism spectrum with that of (–)-olivil. (–)-Berchemol was determined to be (2R,3S,4S)-2,4-bis(4-hydroxy-3-methoxyphenyl)-3-hydroxy-3-hydroxymethyltetrahydrofuran.

Keywords Berchemia racemosa; Rhamnaceae; tetrahydrofuranoid lignan; (-)-berchemol; (-)-secoisolariciresinol; X-ray analysis; CD spectrum; 2D-NMR

The roots and stems of *Berchemia* spp. are used as a herbal medicine for cholelithiasis and hepatitis in China and Japan. In a previous paper, 1) we reported the isolation of two phenol compounds, a 3(2H)-benzofuranone, carpusin, and a diglucoside of naphtho-γ-pyrone, rubrofusarin 6-β-gentiobioside, from the stems of Berchemia racemosa SIEB. et ZUCC. (Rhamnaceae) (Japanese name: kumayanagi). As components of the stems, some phenol compounds, 2,6-dimethoxybenzoquinone,2) lignans3) and monoterpene glycosides4) were isolated and the structures were elucidated by Yamasaki et al., and some flavonoids5) were reported by Kikuchi and Sugiyama. This paper describes the isolation of a new tetrahydrofuranoid lignan, named (-)-berchemol (1), and a known lignan, (-)-secoisolariciresinol, and the elucidation of their structures on the basis of chemical and spectroscopic evidence, and X-ray analysis. The extraction and separation were carried out as described in the experimental section.

(-)-Berchemol (1) was isolated as a triacetate (1a), $[\alpha]_D + 8.7^{\circ}$, $C_{26}H_{30}O_{10}$ from the acetone extract of *B. racemosa*. On treatment with sodium methoxide, 1a afforded 1, mp $188-189^{\circ}C$, $[\alpha]_D - 7.9^{\circ}$, $C_{20}H_{24}O_7$. The proton nuclear magnetic resonance (^{1}H -NMR) and the carbon-13 nuclear magnetic resonance (^{13}C -NMR) spectra of 1a indicated that no skeletal rearrangement had occurred during acetylation. The ultraviolet absorption (UV) spectrum of 1 showed maxima at 231 and 281 nm due to aromatic rings.

The ¹H-NMR spectrum of 1 showed the presence of eight protons apart from six aromatic protons on two trisubstituted benzene rings (ABX systems) and two aryl methoxyl groups. The eight proton signals appeared as a singlet due to an oxybenzylic proton at δ 4.86 ppm, a pair of doublets of an AB system due to an oxygen-bearing methylene group at δ 3.64 and 3.89 ppm, a multiplet due to a methine group at δ 2.60 ppm, a pair of double doublets due to a benzylic methylene group at δ 2.44 and 3.07 ppm and another pair of double doublets due to an oxygenbearing methylene group at δ 3.72 and 4.17 ppm (Table I). Two dimensional ¹H-¹H correlation spectroscopy (¹H-¹H COSY) of the triacetate (1a) showed a clear group of correlations (Fig. 1). The multiplet due to a methine group (H-4) at δ 2.70 ppm, which appeared at δ 2.60 ppm in the ¹H-NMR of 1, correlated with two pairs of double doublets due to two methylene groups at δ 2.54, 3.02 and 3.72, 4.24 ppm (2H-4a, and 2H-5). Thus, the presence of the partial structure A was shown (Chart 1).

The ¹H-NMR spectrum of the acetate (**1a**) showed the signals of one aliphatic and two aromatic acetoxyl groups. A pair of downfield-shifted doublets (2H, δ 4.29 and 4.35) in **1a** was attributed to an acetoxymethylene group, and therefore, (—)-berchemol (**1**) was found to have a primary hydroxy group. Furthermore, no decoupling was detected among three pairs of doublets due to three methylene groups. In the ¹H-¹H COSY of **1a**, a doublet at δ 4.29 ppm correlated only with a doublet at δ 4.35 ppm. This implied that this methylene group and the oxybenzylic proton were isolated by oxygen or fully substituted carbon atoms.

Table I. ¹H-NMR Chemical Shifts of (-)-Berchemol (1) and the Triacetate (1a) δ ppm from TMS in CDCl₃ (J/Hz in Parentheses)

Proton No.	1	1a
H-2	4.86 s	4.91 s
H-4	2.60 m	2.70 m
H-5	3.72 dd (8.7, 4.9)	3.72 dd (8.8, 5.4)
	4.17 dd (8.7, 6.4)	4.24 dd (8.8, 6.6)
H-3a	3.64 d (11.5)	4.29 d (11.7)
	3.89 d (11.5)	4.35 d (11.7)
H-4a	2.44 dd (12.9, 12.5)	2.54 dd (13.2, 12.2)
	3.07 dd (12.9, 4.2)	3.02 dd (13.2, 3.9)
H-2'	6.90 d (1.7)	7.01 d (1.7)
H-5'	6.92 d (8.1)	7.04 d (7.9)
H-6′	6.79 dd (8.1, 1.7)	6.88 dd (7.9, 1.7)
H-2''	6.70 d (1.7)	6.79 d (1.7)
H-5''	6.85 d (6.1)	6.97 d (7.9)
H-6′′	6.69 dd (6.1, 1.7)	6.76 dd (7.9, 1.7)
OCH_3	3.88	3.83
OCH_3	3.90	3.85
OAc		2.31
OAc		2.31
OAc		2.05

OR OCH₃
-O-CH₂
-CH
-Ph-CH₂

A ion a: R=H ion b: R=CH₃

$$1: R^{1}, R^{2} = H$$
1a: $R^{1}, R^{2} = COCH_{3}$
1b: $R^{1} = CH_{3}, R^{2} = H$

Chart 1

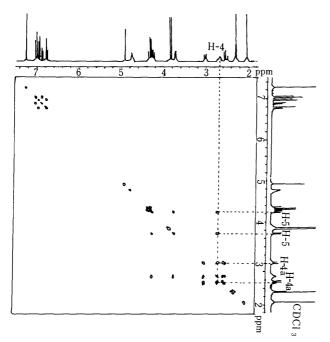


Fig. 1. ¹H-¹H COSY Spectrum of the Triacetate (1a)

TABLE II. ¹³C-NMR Chemical Shifts (-)-Berchemol (1) and Its Derivatives (1a—1c), ppm from TMS in CDCl₃ (100 MHz)

C-2 84.4 84.9 84.4 85.0 C-3 82.3 80.8 82.4 89.7 C-4 50.1 50.5 50.1 50.1 C-5 71.3 71.6 71.5 71.4 C-3a 64.3 66.1 64.4 66.7 C-4a 34.2 34.3 34.2 35.0 C-1' 128.8 138.3 132.4 131.3 C-2' 109.7 111.7 110.5 111.2 C-3'a' 146.6 151.4 149.4 146.6 C-4'b' 145.8 140.0 149.3 145.5 C-5' 114.4 122.8 111.6 113.5 C-6' 120.1 119.7 119.5 121.0 C-1'' 131.6 135.8 132.4 129.5 C-2'' 111.3 113.0 111.4 111.3 C-3''a' 146.8 151.3 149.2 146.1 C-4''b' 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.9 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 OCH ₃ 56.0 OCH ₃ 56.0 OCH ₃ 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 OAc 20.7 OAc 20.8 OAc 169.2 OAc 169.2 OAc 170.8 -O-C-O-C-O-CH ₃ 27.0 CH ₃ 27.0	Carbon No.	1	1a	1b	1c
C-4 50.1 50.5 50.1 50.1 C-5 71.3 71.6 71.5 71.4 C-3a 64.3 66.1 64.4 66.7 C-4a 34.2 34.3 34.2 35.0 C-1' 128.8 138.3 132.4 131.3 C-2' 109.7 111.7 110.5 111.2 C-3'a) 146.6 151.4 149.4 146.6 C-4'b) 145.8 140.0 149.3 145.5 C-5' 114.4 122.8 111.6 113.5 C-6' 120.1 119.7 119.5 121.0 C-1'' 131.6 135.8 132.4 129.5 C-2'' 111.3 113.0 111.4 111.3 C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.3 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 0CH ₃ 56.0 OCH ₃ 56.0	C-2	84.4	84.9	84.4	85.0
C-5 71.3 71.6 71.5 71.4 C-3a 64.3 66.1 64.4 66.7 C-4a 34.2 34.3 34.2 35.0 C-1' 128.8 138.3 132.4 131.3 C-2' 109.7 111.7 110.5 111.2 C-3'a) 146.6 151.4 149.4 146.6 C-4'b) 145.8 140.0 149.3 145.5 C-5' 114.4 122.8 111.6 113.5 C-6' 120.1 119.7 119.5 121.0 C-1'' 131.6 135.8 132.4 129.5 C-2'' 111.3 113.0 111.4 111.3 C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.3 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ OCH ₃ 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0	C-3	82.3	80.8	82.4	89.7
C-3a 64.3 66.1 64.4 66.7 C-4a 34.2 34.3 34.2 35.0 C-1' 128.8 138.3 132.4 131.3 C-2' 109.7 111.7 110.5 111.2 C-3'a) 146.6 151.4 149.4 146.6 C-4'b) 145.8 140.0 149.3 145.5 C-5' 114.4 122.8 111.6 113.5 C-6' 120.1 119.7 119.5 121.0 C-1'' 131.6 135.8 132.4 129.5 C-2'' 111.3 113.0 111.4 111.3 C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.3 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 OAc 20.7 OAc 20.8 OAc 169.0 OAc 169.0 OAc 169.2 OAc 170.8	C-4	50.1	50.5	50.1	50.1
C-4a 34.2 34.3 34.2 35.0 C-1' 128.8 138.3 132.4 131.3 C-2' 109.7 111.7 110.5 111.2 C-3'a) 146.6 151.4 149.4 146.6 C-4'b) 145.8 140.0 149.3 145.5 C-5' 114.4 122.8 111.6 113.5 C-6' 120.1 119.7 119.5 121.0 C-1'' 131.6 135.8 132.4 129.5 C-2'' 111.3 113.0 111.4 111.3 C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.3 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 0CH ₃ 56.0 OCH ₃ 56.0 OCH ₃ 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 OAc 20.7 OAc 20.8 OAc 169.0 OAc 169.2 OAc 170.8 -O-C-O-C-O-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	C-5	71.3	71.6	71.5	71.4
C-1' 128.8 138.3 132.4 131.3 C-2' 109.7 111.7 110.5 111.2 C-3'a) 146.6 151.4 149.4 146.6 C-4'h) 145.8 140.0 149.3 145.5 C-5' 114.4 122.8 111.6 113.5 C-6' 120.1 119.7 119.5 121.0 C-1'' 131.6 135.8 132.4 129.5 C-2'' 111.3 113.0 111.4 111.3 C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.9 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 0CH ₃ 56.0 OCH ₃ 56.1 56.1 56.1 OCH ₃ 56.0	C-3a	64.3	66.1	64.4	66.7
C-2' 109.7 111.7 110.5 111.2 C-3'a) 146.6 151.4 149.4 146.6 C-4'b) 145.8 140.0 149.3 145.5 C-5' 114.4 122.8 111.6 113.5 C-6' 120.1 119.7 119.5 121.0 C-1'' 131.6 135.8 132.4 129.5 C-2'' 111.3 113.0 111.4 111.3 C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.9 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0	C-4a	34.2	34.3	34.2	35.0
C-3'a) 146.6 151.4 149.4 146.6 C-4'b) 145.8 140.0 149.3 145.5 C-5' . 114.4 122.8 111.6 113.5 C-6' 120.1 119.7 119.5 121.0 C-1'' 131.6 135.8 132.4 129.5 C-2'' 111.3 113.0 111.4 111.3 C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.3 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ OCH ₃ 56.0 T56.0 OCH ₃ 56.0 OCH ₃ 56.0 OCH ₃ 56.0 OCH ₃ 56.0 T56.0 OCH ₃ 56.0 OCH ₃ 56.0 T56.0 OCH ₃ 56.0 OCH ₃ 56.0 OCH ₃ 56.0 OCH ₃ 56.0 T56.0 OCH ₃ 56.0	C-1'	128.8	138.3	132.4	131.3
C-4'h) 145.8 140.0 149.3 145.5 C-5' 114.4 122.8 111.6 113.5 C-6' 120.1 119.7 119.5 121.0 C-1'' 131.6 135.8 132.4 129.5 C-2'' 111.3 113.0 111.4 111.3 C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.3 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 56.0 56.0 OAc 20.7 0Ac 56.0 OAc 20.7 0Ac 20.8 OAc 169.0 0Ac 169.2 OAc 170.8 170.8 O-C-O-C-O-CH ₃ 27.0	C-2'	109.7	111.7	110.5	111.2
C-5' . 114.4 122.8 111.6 113.5 C-6' 120.1 119.7 119.5 121.0 C-1'' 131.6 135.8 132.4 129.5 C-2'' 111.3 113.0 111.4 111.3 C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.9 120.3 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0	C-3'a)	146.6	151.4	149.4	146.6
C-6' 120.1 119.7 119.5 121.0 C-1'' 131.6 135.8 132.4 129.5 C-2'' 111.3 113.0 111.4 111.3 C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.9 120.3 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 OCH ₃ 56	C-4'b)	145.8	140.0	149.3	145.5
C-1" 131.6 135.8 132.4 129.5 C-2" 111.3 113.0 111.4 111.3 C-3"a) 146.8 151.3 149.2 146.1 C-4"b) 144.2 138.5 147.8 144.2 C-5" 114.5 123.0 112.2 114.5 C-6" 121.5 120.9 120.9 120.9 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 OAc 20.7 OAc 20.7 OAc 20.8 OAc 169.0 OAc 169.0 OAc 169.2 OAc 170.8 -O-C-O-CH ₃ 111.0 CH ₃ 27.0	C-5' .	114.4	122.8	111.6	113.5
C-2'' 111.3 113.0 111.4 111.3 C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.9 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 OC	C-6′	120.1	119.7	119.5	121.0
C-3''a) 146.8 151.3 149.2 146.1 C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.9 OCH3 55.9 56.0 56.0 56.0 OCH3 56.1 56.1 56.1 56.1 OCH3 56.0 56.0 56.0 OAc 20.7 56.0 0 OAc 20.7 0 0 OAc 20.8 0 0 OAc 169.0 0 0 OAc 169.2 0 0 OAc 170.8 111.0 0 C-O-C-O-CH3 27.0 0 0 0	C-1′′	131.6	135.8	132.4	129.5
C-4''b) 144.2 138.5 147.8 144.2 C-5'' 114.5 123.0 112.2 114.5 C-6'' 121.5 120.9 120.9 120.3 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 OCH ₃ 56.0 OAc 20.7 OAc 20.8 OAc 169.0 OAc 169.0 OAc 169.2 OAc 170.8 -O-C-O-CH ₃ 111.0 CH ₃ 27.0	C-2''	111.3	113.0	111.4	111.3
C-5" 114.5 123.0 112.2 114.5 C-6" 121.5 120.9 120.9 120.3 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 OCH ₃ 56.0 56.0 OCH ₃ 56.0 OCH ₃ 56.0 OCH ₃ 56.0 OAc 20.7 OAc 20.8 OAc 169.0 OAc 169.2 OAc 169.2 OAc 170.8 -O-C-O-CH ₃ 111.0 27.0	C-3''a)	146.8	151.3	149.2	146.1
C-6" 121.5 120.9 120.9 120.3 OCH ₃ 55.9 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 OCH ₃ 56.0 56.0 56.0 OCH ₃ 56.0 56.0 56.0 OAc 20.7 0Ac 0Ac 0Ac OAc 169.0 0Ac 169.0 OAc 169.2 0Ac 170.8 -O-C-O-CH ₃ 111.0 27.0	C-4′′ ^{b)}	144.2	138.5	147.8	144.2
OCH ₃ 55.9 56.0 56.0 56.0 56.0 OCH ₃ 56.1 56.1 56.1 56.1 56.1 56.1 OCH ₃ 56.0 OCH ₃ 56.1 OCH ₃ 56.0 OCH ₃ 56.1 OCH ₃ 56	C-5′′	114.5	123.0	112.2	114.5
OCH ₃ 56.1 56.1 56.1 56.1 56.1 56.1 OCH ₃ 56.0 S6.0 S6.0 S6.0 S6.0 S6.0 S6.0 S6.0 S	C-6′′	121.5	120.9	120.9	120.3
OCH ₃ 56.0 OCH ₃ 56.0 OAc 20.7 OAc 20.8 OAc 169.0 OAc 169.2 OAc 170.8 -O-C-O- CH ₃ 256.0 20.8 169.0 169.0 111.0 27.0	OCH_3	55.9	56.0	56.0	56.0
OCH ₃ 56.0 OAc 20.7 OAc 20.7 OAc 20.8 OAc 169.0 OAc 169.2 OAc 170.8 -O-C-O- CH ₃ 20.7		56.1	56.1	56.1	56.1
OAc 20.7 OAc 20.7 OAc 20.8 OAc 169.0 OAc 169.2 OAc 170.8 -O-C-O-CH ₃ 111.0	OCH ₃			56.0	
OAc 20.7 OAc 20.8 OAc 169.0 OAc 169.2 OAc 170.8 -O-C-O- CH ₃ 111.0	OCH_3			56.0	
OAc 20.8 OAc 169.0 OAc 169.2 OAc 170.8 -O-C-O- CH ₃ 111.0	OAc		20.7		
OAc 169.0 OAc 169.2 OAc 170.8 -O-C-O- 111.0 CH ₃ 27.0	OAc		20.7		
OAc 169.2 OAc 170.8 -O-C-O- CH ₃ 111.0 27.0	OAc		20.8		
OAc 170.8 -O-C-O- 111.0 CH ₃ 27.0	OAc		169.0		
-O-C-O- 111.0 CH ₃ 27.0	OAc		169.2		
CH ₃ 27.0	OAc		170.8		
					111.0
CH_3 25.2					27.0
	CH_3				25.2

a, b) Assignments marked in each column may be reversed.

The ¹³C-NMR spectrum of **1** showed that, in addition to twelve aromatic and two methoxyl carbons, there were six carbon atoms, *i.e.*, three methylene carbons, two methine carbons and a quaternary carbon (Table II). The assignments of the carbon signals of **1** were made by comparison

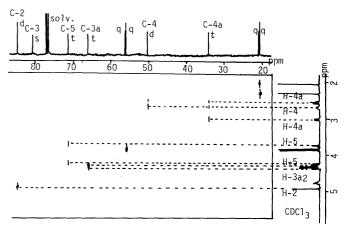


Fig. 2. ¹H-¹³C COSY Spectrum of the Triacetate (1a)

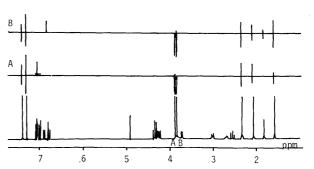


Fig. 3. ¹H-NMR (Normal and NOE Difference) Spectra of the Triacetate (1a) a

with those of (-)-massonirecinol.⁶⁾ The two dimensional ${}^{1}H^{-13}C$ COSY of **1a** also supported these assignments (Fig. 2). Based on the unsaturation number (nine) in the molecular formula it was considered that **1** has another ring besides the two phenyl rings in its structure. The ${}^{1}H$ - and ${}^{13}C$ -NMR spectra of **1**, in comparison with that of olivil,⁶⁾ suggest the presence of a tetrahydrofuran ring.

The 1 H-NMR spectrum of 1 showed four singlets (lost on addition of $D_{2}O$) due to the four hydroxyl groups. The infrared (IR) spectrum of the triacetate (1a) showed the presence of a hydroxyl group (3570 cm $^{-1}$). The fact that 1 gave 1a under the usual acetylation conditions revealed the presence of a hindered alcohol group in 1. These data and the presence of the partial structure A suggested that a tertiary hydroxyl group is located at C-3 in 1.

On methylation with diazomethane, 1 gave a dimethylether (1b), $[\alpha]_D - 8.3^\circ$, $C_{22}H_{28}O_7$. The mass spectra (MS) of 1 and 1b showed as their base peak ions m/z 137 and 151, respectively, assigned to the ions a and b, 7 arising *via* benzylic A (Chart 1).

The positions of the two phenolic hydroxyl groups and two methoxyl groups of 1 were assigned with the aid of a nuclear Overhauser effects (NOEs) experiment on 1a. When the methoxyl protons at δ 3.83 and 3.85 ppm were irradiated, NOEs were observed on aromatic protons at δ 6.79 and 7.01 ppm (X and X' of two ABX and ABX' systems), respectively. The observed difference NOE spectra are shown in Fig. 3. It was confirmed that the phenolic hydroxyl groups were located at C-4' and C-4'', and the methoxyl groups were at C-3' and C-3''.

Accordingly, the plane structure of (-)-berchemol (1).

Table III. Shielding Shifts Calculated by the Use of McConnell's Equation

В			С				
CH ₃	CH ₃ Angle (°) Distance (Å) Δδ CH ₃ Angle (°)		angle (°)	Distance (Å)			
A B	20 30	3.8 5.4	0.90 0.24	A B	40 47	5.6 6.6	0.13 0.04
AB			0.66	A—B			0.09

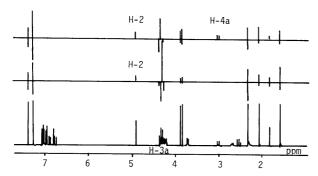


Fig. 4. ¹H-NMR (Normal and NOE Difference) Spectra of the Triacetate (1a) b

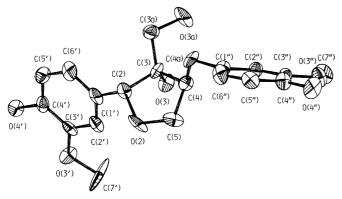


Fig. 5. ORTEP Drawing of (-)-Berchemol (1)

was established as 1 (Chart 1), which is the same as that proposed incorrectly by Freudenberg and Weinges⁸⁾ for (-)-olivil.

For the determination of the relative stereochemistry of (-)-berchemol (1), the nuclear magnetic shielding shifts were measured. (-)-Berchemol (1) was treated with acetone and p-toluenesulfonic acid to give an acetonide (1c), $C_{23}H_{28}O_7$. If the relation between the 3a-hydroxylmethyl group and the aromatic ring at C-2 in 1c is trans (partial structure B), the difference of chemical shifts due to the methyl groups should be $0.66\,\mathrm{ppm}$ on the basis of the shielding shifts calculated by the use of McConnell's equation. (1c) If the relation is (1c) (partial structure C), the

TABLE IV. Final Atomic Parameters for Non-hydrogen Atoms and Equivalent Thermal Parameters, with Estimated Standard Deviations in Parentheses, of (-)-Berchemol (1)

		` '		
Atom	X	у	z	$B_{\rm eq} (\mathring{\rm A}^2)$
O(2)	1.3081 (5)	0.9327 (3)	0.4839 (8)	4.3
O(3)	1.3962 (4)	0.8242 (2)	0.2636 (8)	2.9
O(3a)	1.4517 (5)	0.8633 (3)	-0.0953(9)	4.5
O(3')	1.0973 (4)	0.7309(3)	0.6511 (8)	3.1
O(4')	0.9427 (4)	0.7242 (2)	0.3903 (8)	3.1
O(3'')	1.8556 (4)	1.0219 (2)	0.2470 (9)	3.4
O(4'')	1.8349 (4)	1.1482 (2)	0.3057 (9)	4.2
C(2)	1.2693 (6)	0.9118 (4)	0.302(1)	2.8
C(3)	1.3680 (5)	0.8894(3)	0.195(1)	2.4
C(4)	1.4545 (6)	0.9375 (3)	0.268(1)	2.6
C(5)	1.4140 (7)	0.9565 (4)	0.466(1)	4.0
C(3a)	1.3533 (6)	0.8857 (4)	-0.017(1)	3.1
C(4a)	1.4716 (6)	0.9969 (4)	0.136(1)	3.0
C(1')	1.1839 (6)	0.8610(3)	0.329(1)	2.6
C(2')	1.1835 (6)	0.8196 (4)	0.482(1)	3.0
C(3')	1.1034 (6)	0.7745 (4)	0.504(1)	2.7
C(4')	1.0235 (6)	0.7692 (4)	0.371(1)	2.7
C(5')	1.0250 (6)	0.8099 (4)	0.212(1)	3.1
C(6')	1.1058 (6)	0.8564 (4)	0.192(1)	3.3
C(7')	1.1891 (8)	0.7174 (6)	0.759(2)	7.9
C(1'')	1.5662 (6)	1.0374(3)	0.190(1)	2.7
C(2'')	1.6550 (6)	1.0085(3)	0.201(1)	2.5
C(3'')	1.7539 (6)	1.0446 (3)	0.236(1)	2.4
C(4'')	1.7471 (6)	1.1125 (3)	0.266(1)	2.9
C(5'')	1.6489 (6)	1.1419 (3)	0.257(1)	3.2
C(6'')	1.5588 (6)	1.1051 (4)	0.223(1)	3.6
C(7'')	1.8697 (7)	0.9526 (4)	0.229 (1)	3.7

Table V. Bond Lengths (Å) for (-)-Berchemol (1) with Estimated Standard Deviations in Parentheses

O(2)-C(2)	1.434 (10)	O(2)–C(5)	1.428 (11)
O(3)-C(3)	1.458 (10)	O(3a)-C(3a)	1.433 (10)
O(3')-C(3')	1.368 (10)	O(3')-C(7')	1.411 (15)
O(4')-C(4')	1.380 (10)	O(3'')-C(3'')	1.367 (10)
O(3'')-C(7'')	1.429 (11)	O(4'')-C(4'')	1.355 (11)
C(2)-C(3)	1.525 (11)	C(2)-C(1')	1.507 (11)
C(3)-C(4)	1.554 (11)	C(3)-C(3a)	1.506 (11)
C(4)-C(5)	1.533 (12)	C(4)-C(4a)	1.538 (11)
C(4a)-C(1'')	1.500 (11)	C(1')-C(2')	1.365 (11)
C(1')-C(6')	1.381 (12)	C(2')-C(3')	1.376 (11)
C(3')-C(4')	1.378 (11)	C(4')-C(5')	1.392 (12)
C(5')-C(6')	1.400 (13)	C(1'')-C(2'')	1.382 (11)
C(1'')-C(6'')	1.404 (12)	C(2'')-C(3'')	1.365 (11)
C(3'')-C(4'')	1.402 (12)	C(4'')-C(5'')	1.380 (12)
C(5'')-C(6'')	1.383 (13)		()

difference should be 0.09 ppm (Chart 2). In the $^1\text{H-NMR}$ spectrum, the singlets due to the two C-methyl groups were observed at δ 0.77 and 1.38 ppm, and the difference of the chemical shifts between them is 0.61 ppm. Hence, the relationship between the 3a-hydroxylmethyl group and H-2 was found to be cis in the plane of the tetrahydrofuran ring (Table III).

The stereochemistry of 1a has been studied by measuring the NOE difference spectrum. The observed NOE difference spectra are shown in Fig. 4. Irradiation at the resonances due to H-3a_A (δ 4.29 ppm) produced NOEs for H-2 (4.91 ppm) and H-4a_A (3.02 ppm). Irradiation at the H-3a_B (4.35 ppm) resonance produced NOE for H-2. Therefore, it was considered that H-2, 2H-3a and H-4a_A are sterically in close proximity. Thus, the relative stereostructure of 1 was determined to be as shown in Chart 1.

Table VI. Bond Angles (°) for (–)-Berchemol (1) with Estimated Deviations in Parentheses

C(2)-O(2)-C(5) C(3")-O(3")-C(7") O(2)-C(2)-C(1') O(3)-C(3)-C(3) C(3)-C(3)-C(3a) C(2)-C(3)-C(3a) C(3)-C(4)-C(5) C(4a)-C(4)-C(5) O(3a)-C(3a)-C(3)-C(2') C(2')-C(1')-C(6') O(3')-C(3')-C(4') O(4')-C(4')-C(5') C(4')-C(5')-C(6') C(2")-C(1")-C(6') C(6")-C(1")-C(6")	110.0 (6) 116.5 (7) 109.5 (7) 108.1 (6) 108.1 (6) 113.6 (7) 102.8 (6) 113.2 (7) 106.7 (6) 121.9 (7) 120.2 (8) 124.1 (7) 121.1 (7) 119.1 (7) 119.4 (8) 118.1 (8) 122.0 (7)	C(3')-O(3')-C(7') O(2)-C(2)-C(3) C(3)-C(2)-C(1') O(3)-C(3)-C(4) C(2)-C(3)-C(4) C(3a)-C(3)-C(4) C(3)-C(4)-C(4a) O(2)-C(5)-C(4) C(4)-C(4a)-C(1') C(2)-C(1')-C(6') C(1')-C(2')-C(3') O(3')-C(4')-C(4') O(4')-C(4')-C(5') C(1')-C(6')-C(5') C(1')-C(6')-C(5') C(1')-C(6')-C(5') C(1')-C(6')-C(3')	119.0 (8) 104.3 (6) 116.3 (7) 107.2 (6) 103.0 (6) 116.4 (7) 113.5 (6) 107.9 (7) 113.2 (7) 117.9 (7) 120.1 (8) 114.9 (7) 121.7 (7) 119.2 (7) 120.0 (8) 119.9 (8) 121.5 (7)
O(4')–C(4')–C(5') C(4')–C(5')–C(6') C(2'')–C(1'')–C(6'')	119.1 (7) 119.4 (8) 118.1 (8)	C(3')–C(4')–C(5') C(1')–C(6')–C(5') C(2'')–C(1'')–C(4a)	119.2 (7) 120.0 (8) 119.9 (8)

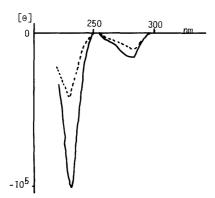


Fig. 6. CD Curves of (-)-Berchemol (1) and (-)-Olivil -----, (-)-berchemol; ----, (-)-olivil.

Methylation of **1c** with diazomethane gave an acetonide dimethyl ether (**1d**), mp 152—153 °C, $[\alpha]_D$ –2.9°, $C_{25}H_{32}O_7$, which was shown to be O-isopropylidenedihydrogmelinol-II, on the basis of the physical and spectroscopic data.¹⁰⁾

The relative structure of (-)-berchemol (1) proposed on the basis of the chemical and spectroscopic analysis was confirmed by X-ray analysis. The structure was solved by the direct method using MULTAN 80.¹¹⁾ The ORTEP drawing of the structure of (-)-berchemol (1) is shown in Fig. 5. Final atomic parameters, bond lengths and bond angles are listed in Tables IV, V and VI, respectively.

The absolute configuration of 1 was elucidated by comparison of its circular dichroism (CD) spectrum with that of (-)-olivil.¹²⁾ Both showed negative Cotton effects (229, 285 and 231, 282 nm). The similarity between the two CD spectra defined the configuration of (-)-berchemol as being the same as that of (-)-olivil (Fig. 6).

Thus (-)-berchemol (1) was concluded to be (2R,3S,4S)-2,4-bis(4-hydroxy-3-methoxyphenyl)-3-hydroxy-3-hydroxymethyltetrahydrofuran (Chart 1).

Compound 2 was isolated as a tetraacetate (2a), $[\alpha]_D$ -6.7° , $C_{28}H_{34}O_{10}$. On treatment with sodium methoxide, 2a afforded compound 2, mp 113—114 °C, $[\alpha]_D$ -25.7° ,

 $C_{20}H_{26}O_6$. Compound **2** was assigned as (-)-secoisolariciresinol on the basis of literature data. (-)-Secoisolariciresinol-O- β -D-glucopyranoside has been isolated from *B. racemosa* by Yamasaki *et al.*,³⁾ and (-)-secoisolariciresinol has been reported as a component of many plants, such as *Araucaria angustifolia*¹³⁾ and *Xanthoxylum ailanthoides*.¹⁴⁾

Experimental

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Optical rotations were measured with a JASCO DIP-181 automatic polarimeter in a 1 dm tube. UV spectra were recorded with a Shimadzu UV-250 spectrometer. IR spectra were recorded with a Hitachi 260-10 spectrometer. MS were measured on a JEOL JMS D-300 spectrometer. CD spectra were recorded on a JASCO J-500 C spectropolarimeter. $^1\text{H-}$ and $^{13}\text{C-NMR}$ spectra were recorded with JEOL JNM FX-100, GX-270 and GX-400 spectrometers with tetramethylsilane (TMS) as an internal standard. Chemical shifts are recorded in δ ppm, and signals are described as s (singlet), d (doublet), t (triplet), q (quartet) or m (multiplet). Column chromatography was performed on Kieselgel 60 (Merck, 70—230 mesh) and Sephadex LH-20 (Pharmacia Fine Chemicals). Thin layer chromatography (TLC) was carried out with precoated Kieselgel $60F_{254}$ plates (Merck) and detection was carried out by UV irradiation and by spraying 10% H_2SO_4 followed by heating.

Isolation The dried stems (3 kg) of *Berchemia racemosa* were extracted with hexane, acetone and MeOH (each 61×3) under reflux, successively. Each fraction was concentrated *in vacuo* to afford the hexane extract (9 g), acetone extract (23 g), and MeOH extract (139 g). The acetone extract was chromatographed repeatedly on SiO_2 with benzene–EtOAc and CHCl₃–MeOH, and on Sephadex LH-20 with benzene–EtOAc–MeOH–H₂O (40:40:8:1). The fraction showing a TLC spot at Rf 0.50 (CHCl₃–MeOH (5:1)) was acetylated with Ac₂O (1 ml) in pyridine (1 ml). After usual work-up, the crude product was chromatographed on SiO_2 with benzene–EtOAc (10:1-1:1) to afford a triacetate (1a) (55 mg) and a tetraacetate (2a) (50 mg).

The Triacetate (1a) A white powder. $[\alpha]_0^{21} + 8.7^{\circ} (c = 1.5, \text{CHCl}_3)$. IR $v_{\text{max}}^{\text{CCl}_4} \text{ cm}^{-1}$: 3570, 1770, 1745, 1603, 1508, 1200. MS m/z (%): 502 (M⁺, 7), 137 (100). High MS m/z: Calcd for $C_{26}H_{30}O_{10}$, 502.1839. Found: 502.1852. ¹H-NMR: Table I. ¹³C-NMR: Table II.

(-)-Berchemol (1) A mixture of 1a (55 mg) in absolute MeOH (4 ml) and 0.5% NaOMe–MeOH (4 ml) was left at room temperature for 2 h. After usual work-up, the crude product was chromatographed on SiO₂ with CHCl₃-acetone (5:2) to afford 1, colorless needles (from MeOH) (29 mg), mp 188—189 °C, [α]_D²⁰ -7.9° (c=0.3, MeOH). UV λ _{meN}^{meN} nm (log ε): 231 (4.1), 281 (3.7). IR ν _{meN}^{mex} cm⁻¹: 3530, 3485, 3380, 1617, 1520. MS m/z (%): 376 (M⁺, 17), 137 (100). High MS m/z: Calcd for C₂₀H₂₄O₇, 376.1510. Found: 376.1513. ¹H-NMR: Table I. ¹³C-NMR: Table II. CD (c=2.60 × 10⁻³, MeOH); [θ]₂₈₃ -8450, [θ]₂₂₉ -38400. Cf. (-)-Olivil (c=2.57 × 10⁻³, MeOH) [θ]₂₈₂ -15600, [θ]₂₃₁ -101000.

Methylation of 1 Compound 1 (72 mg) in MeOH (2 ml) was methylated with ethereal CH_2N_2 . After work-up as usual, the product was chromatographed on SiO₂ with CHCl₃-acetone (5:1) to give the dimethyl ether (1b) (14 mg). An oil. $[\alpha]_{L}^{20} - 8.3^{\circ}$ (c = 0.8, CHCl₃). IR $\nu_{max}^{\text{CHCl}_3}$ cm⁻¹: 3680, 3550. MS m/z: 404 (M⁺, 16), 151 (100). High MS m/z: Calcd for $C_{22}H_{28}O_7$, 404.1835, $C_9H_{11}O_2$, 151.0758. Found: 404.1843; 151.0758. ¹H-NMR (CDCl₃) δ: 3.87, 3.88, 3.89, 3.90 (each 3H, s, 4×OCH₃). ¹³C-NMR: Table II.

The Acetonide (1c) Compound 1 (16 mg) in acetone (4 ml) was treated with p-toluenesulfonic acid (10 mg) at room temperature for 24 h. After usual work-up, the product was chromatographed on SiO₂ with CHCl₃–acetone (5:1) to give 1c (14 mg). An oil. MS m/z (%): 416 (M $^+$, 21), 137 (100). High MS m/z: Calcd for C₂₃H₂₈O₇, 416.1836. Found: 416.1837. ¹H-NMR (CDCl₃) δ : 0.77, 1.38 (each 3H, s, CH₃). ¹³C-NMR: Table II.

Methylation of 1c Compound 1c (13 mg) in MeOH (2 ml) was methylated with ethereal CH₂N₂. After work-up as usual, the crude product was chromatographed on SiO₂ with benzene–EtOAc (5:1) to give the acetonide dimethyl ether (1d) (11 mg). Colorless needles (from EtOH). mp 152—153 °C. [α]_D²¹ –2.9° (c=0.4. CHCl₃). IR $\nu_{\rm max}^{\rm CCl_4}$ cm⁻¹: 1610, 1593, 1510, 1385, 1375. MS m/z (%): 444 (M⁺, 21), 151 (100). High MS m/z: Calcd for C₂₅H₃₂O₇, 444.2147. Found: 444.2142. ¹H-NMR (CDCl₃) δ: 0.77, 1.38 (each 3H, s, CH₃), 3.87 (12H, s, 4×OCH₃).

X-Ray Structure Analysis of (-)-Berchemol (1) Crystals of 1 were grown from EtOH as colorless prisms. Crystal data: $C_{20}H_{24}O_7$;

 $M_{\rm r}$ =376.41; orthorhombic; $P2_12_12_1$; a=12.631 (10), b=20.386 (22), c=7.024 (15) Å; V=1808.6 (4.5) ų; Z=4; $D_{\rm c}$ =1.383 g cm⁻³; F(000)=800. The diffraction intensities were collected from a (-)-berchemol crystal with dimensions of $0.7 \times 0.25 \times 0.1$ mm on a Rigaku AFC-5 FOS four-circle difractometer using Cu K_a radiation monochromated by means of a graphite plate. A total of 1269 refractions were measured within a 2θ range of 100° as above the $3\sigma(F)$ level.

Determination of the Structure The structure was solved by the direct method using MULTAN 80^{11} and refined by the block-matrix least-squares method. In the final refinement, anisotropic thermal parameters were used for non-hydrogen atoms. The contribution of the three hydroxyl hydrogen atoms was ignored. The final R factor was 0.064.

Tetraacetate (2a) An oil. $[\alpha]_D^{25} - 6.7^{\circ} (c = 0.8, \text{CHCl}_3)$. IR $v_{\text{max}}^{\text{CCl}_4} \text{ cm}^{-1}$: 1770, 1745, 1605, 1510, 1220. MS m/z (%): 530 (M⁺, 3). High MS m/z: Calcd for $C_{28}H_{34}O_{10}$, 530.2152. Found: 530.2159.

Compound 2 Compound 2a was treated in the same way as described for 1 to give 2. Colorless needles (from *n*-hexane-EtOAc-MeOH). mp 113—114 °C. [α]_D²¹ -25.7° (c=0.6, MeOH). (Lit. mp 112—114 °C, [α]_D²⁵ -32°)

Acknowledgements The authors are grateful to Dr. Y. Tokuoka, Kotaro Kanpo Pharmaceutical Co., Ltd., and Dr. T. Deyama, Yomeishu Seizo Co., Ltd., for supplying (—)-olivil, Prof. S. Nishibe, Higashi Nippon Gakuen University, for valuable discussions and Prof. G. Matsumura and Prof. J. Shoji, Showa University, for measurement of CD spectra. Thanks are also due to the staff of the Analytical Division of this University for measurement of spectra and elemental analyses.

References and Notes

1) T. Inoue, S. Nagashima, S. Ohata, M. Shinoda and N. Sakurai,

- Planta Medica, in press.
- S. Inoshiri, M. Sasaki, Y. Hirai, H. Khoda, H. Otsuka and K. Yamasaki, Chem. Pharm. Bull., 34, 1333 (1986).
- 3) S. Inoshiri, M. Sasaki, H. Khoda, H. Otsuka and K. Yamasaki, *Phytochemistry*, **26**, 2811 (1987).
- 4) S. Inoshiri, M. Saiki, H. Khoda, H. Otsuka and K. Yamasaki, *Phytochemistry*, 27, 2869 (1988).
- 5) M. Kikuchi and M. Sugiyama, The 27th Annual Meeting of the Tohoku Branch of the Pharmaceutical Society of Japan, 1988.
- 6) Z. Shen and O. Theander, Phytochemistry, 24, 364 (1985).
- S. F. Fonseca, L. T. Nielsen and E. A. Rúveda, *Phytochemistry*, 18, 1703 (1979).
- 8) K. Freudenberg and K. Weinges, Tetrahedron Lett., 1962, 1077.
- 9) H. M. McConnell, J. Chem. Phys., 27, 226 (1957).
- 10) A. J. Birch and M. Smith, J. Chem. Soc., 1964, 2705.
- 11) a) P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq and M. M. Woolfson, "MULTAN 80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data," Universities of York, England, and Louvain, Belgium (1980); b) C. K. Johnson, "ORTEP II, A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations," Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. (1976).
- 12) The CD spectrum of (-)-olivil showed positive Cotton effects according to ref. 6, but, the authentic sample showed two negative Cotton effects as mentioned in Experimental?
- 13) S. F. Fonseca, J. P. Campello, L. E. S. Barata and E. A. Rúveda, *Phytochemistry*, 17, 499 (1978).
- H. Ishii, T. Ishikawa, M. Mihara and M. Akaike, Yakugaku Zasshi, 103, 279 (1983).