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ABSTRACT: We report a transition-metal-free synthesis of
benzofurans from benzothiophenes and phenols that exploits
the unique reactivity of sulfoxides. Through a sequence
involving an interrupted Pummerer reaction and [3,3]
sigmatropic rearrangement, phenols can be combined with
readily accessible yet synthetically unexplored benzothiophene
S-oxides to provide C3-arylated benzofuran products. The
products from this approach can undergo subsequent
functionalization to gain access to a range of important
benzofuran derivatives.

The benzofuran motif is a key structural unit found in a
variety of functional molecules, from naturally occurring

bioactive compounds to manmade organic electronics.1

Demand for this important subunit has resulted in a range of
methods for its construction.2 A common route for benzofuran
synthesis is through ring closure of ortho-substituted phenol
derivatives (Scheme 1a).3 However, the phenol generally
requires prefunctionalization (i.e., ortho-halogenated phenols I
are required), and the approach proceeds by (i) attachment of
the alkynyl/alkenyl chain via transition-metal-catalyzed cross-
coupling (I to II) followed by (ii) transition-metal-catalyzed
ring closure (II to III). More recently, efforts have targeted a
more direct synthesis of benzofurans via C−H coupling of
simple phenols with alkenes and alkynes (Scheme 1b).4

Despite this tremendous progress, most reactions require the
addition of transition metals and the development of routes to
benzofurans that do not require such metals remains an
important goal.
The trapping of nucleophiles by activated sulfoxides through

interrupted Pummerer-type processes has begun to spawn a
variety of useful transformations.5 In particular, this mode of
reactivity has allowed the facile transformation of C−H bonds
in the absence of transition metals.6 This mode of reactivity
has recently been harnessed by Yorimitsu and co-workers for
the synthesis of 2-methylthiobenzofurans by reaction of simple
phenols with ketene dithioacetal monoxides (Scheme 1c).7,8

We have recently described the arylation of benzothiophene
S-oxides, readily prepared from the parent benzothiophene by
simple oxidation, via an interrupted Pummerer-type reaction
(Scheme 1d, (i)).9 In this process, phenol substrates are
captured by activated benzothiophene S-oxides before [3,3]
sigmatropic rearrangement leads to the formation of the S,O-
acetals IV. Acid-mediated ring-opening of these intermediates
then provides the C3-arylated benzothiophenes through
cleavage of the C−O bond. This provides a novel route to
functionalized benzothiophenes and, importantly, does not

require the use of transition-metal additives. In a proposed
divergent approach, we speculated as to whether the
intermediate thioacetals IV could also allow access to
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Scheme 1. (a−c) Current Methods for the Synthesis of
Benzofurans and (d) Using Sulfoxides for the Divergent
Synthesis of Benzothiophenes and Benzofuransa

aTM = transition metal.
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benzofuran derivatives through selective cleavage of the C−S
bond (Scheme 1d, (ii)).
Here, we describe a transition-metal-free synthesis of C3-

arylated benzofurans via the C−H functionalization of simple
phenol reagents. Our strategy represents a unique approach in
which one molecule, the benzothiophene, is deconstructed for
the assembly of another, the desired benzofuran. We also detail
how the benzofuran products can undergo further derivatiza-
tion through the use of desulfinylative cross-coupling methods.
This procedure demonstrates that a variety of synthetically
useful heterocyclic molecules can be constructed from simple
phenols and previously unexploited benzothiophene S-oxides.
To begin our investigation, we set about synthesizing the key

thioacetal intermediate 3a (Scheme 2). Using our previously

reported conditions, we found that thioacetal 3a could be
prepared through activation of the benzothiophene S-oxide 2′
with trifluoroacetic anhydride (TFAA) followed by addition of
phenol 1. This provided the thioacetal 3a in 60% isolated yield.
The benzothiophene S-oxides 2′ were easily prepared from the
corresponding benzothiophenes 2. After oxidation of the
benzothiophene 2, the crude material was filtered to provide
the benzothiophene S-oxide 2′ as a solution in CH2Cl2 suitable
for use in subsequent steps. Importantly, isolation of the
sulfoxide was not required.
With the desired thioacetal in hand, we then considered

methods for cleaving the C−S bond in favor of the C−O bond.
From our previous report, we had observed cleavage of the C−
O bond in the presence of acid, which led to the formation of
C3-arylated benzothiophene products (Scheme 1d).9 Our
strategy for selective cleavage of the C−S bond was to first

oxidize the thioacetal to the thioacetal S,S-dioxide. We
hypothesized that converting the sulfide to the sulfone would
render the C−S bond more susceptible to bond cleavage.10

Upon treatment of thioacetal 3a with m-CPBA, the desired
sulfone 4a was isolated in 68% yield. Both the thioacetal 3a
and the sulfone 4a could also be prepared on gram scale
without detriment to the yield.
The desired thioacetal S,S-dioxide 4a could also be directly

prepared from simple phenol and benzothiophene (Scheme
2b). Thus, following oxidation of benzothiophene 2 and
filtration, benzothiophene S-oxide 2′ was activated using
TFAA before addition of the phenol to form the thioacetal
3a in situ. The addition of m-CPBA to the same pot resulted in
the formation of the desired thioacetal S,S-dioxide 4a in 86%
overall yield. In general, the one-pot procedure provided
greater overall yields than the stepwise procedure.
With an efficient method for the preparation of sulfones 4 in

hand, we assessed the generality of this sequence. The yields
provided in Scheme 3 are the result of the one-pot procedure,

though we have also prepared and fully characterized each
thioacetal intermediate 3.11 A range of electron-deficient
phenols reacted well under the reaction conditions (4b−h).
Substituents in both the ortho and para positions of the phenol
were tolerated, although the para-substituted phenols provided
superior yields, likely due to less steric hindrance around the

Scheme 2. (a) Preparation, Isolation, and X-ray
Crystallographic Analysis of Thioacetal 3a and Thioacetal
S,S-Dioxide 4a and (b) One-Pot Synthesis of Thioacetal S,S-
Dioxide 4aa

aReaction conditions. [O]: benzothiophene (1.0 equiv), m-CPBA
(1.2 equiv), BF3·OEt2 (8.0 equiv) then filtration. Sulfone formation:
TFAA (1.5 equiv), phenol (1.5 equiv), then m-CPBA (2.4 equiv).

Scheme 3. Scope of the One-Pot Synthesis of Thioacetal
S,S-Dioxidesa

aReaction conditions. [O]: benzothiophene (1.0 equiv), m-CPBA
(1.2 equiv), BF3·OEt2 (8.0 equiv) then filtration. Sulfone formation:
TFAA (1.5 equiv), phenol (1.5 equiv), then m-CPBA (2.4 equiv).
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point of bond formation (4a−g). When meta-substituted
phenols were used, a mixture of regioisomeric products was
formed, although the major isomer (4h) could be isolated in
41% yield.12 The least sterically crowded regioisomer was
favored in this case. Phenols bearing electron-donating
functional groups were poor substrates in this reaction;
however, 3,5-dimethylphenol gave a respectable yield of the
desired sulfone 4i.
We also investigated the scope with respect to the

benzothiophene S-oxide. As seen for the phenol substrates, a
range of electron-donating and electron-withdrawing sub-
stituents were tolerated at each position (C4, C5, C6, and C7)
of the benzothiophene S-oxide (4j−n). The use of C2-
substituted benzothiophene S-oxides led to thioacetal S,S-
dioxides bearing a quaternary carbon center (4o−q). The
presence of electron-releasing methoxy groups on the benzene
ring of the benzothiophene typically leads to less efficient
arylation as the stability and electrophilicity of the activated S-
oxide is reduced.9a In addition to halide substituents, we have
previously shown that electron-withdrawing nitro groups are
compatible with the arylation.9a

Having investigated the generality of the procedure we now
looked to collapse these structures to form the desired
benzofuran products 5. We proposed that the C−S bond in
the sulfone would be more susceptible to bond cleavage than
the C−O bond upon treatment with base. Indeed, analysis of

the bond lengths in the crystal structures of the thioacetal 3r
and thioacetal S,S-dioxide 4b supported our hypothesis
(Scheme 2). For example, the C−O and C−S bonds of the
thioacetal 3r are 1.458 and 1.799, respectively. Oxidation with
m-CPBA resulted in the formation of thioacetal S,S-dioxide 4b,
which possesses a shorter C−O bond (1.421) and a longer C−
S bond (1.847) compared to thioacetal 3r.
The addition of NaOMe resulted in the formation of the

desired C3-arylated benzofuran products (Scheme 4). The
sulfinate products were converted in situ to the corresponding
sulfones by treatment with MeI. Using these conditions, we
transformed each of the sulfones (Scheme 3) to the
corresponding benzofurans in good to very high yields. We
were pleased to observe the formation of products bearing a
halo group (5e, 5h, 5j, 5l−n) as these would likely undergo
competing reactions in more conventional approaches
involving transition metal catalysts. Products 5o−q revealed
that the C2 substituent, which initially resides on the
benzothiophene substrate, can be efficiently transferred to
the benzofuran. This allowed access to C2,C3-disubstituted
benzofurans from simple phenol starting materials. We also
demonstrated that a range of electrophiles other than MeI
could be used to quench the sulfinate upon completion of the
base-mediated bond cleavage event (5r−t).
Based on previous reports, we have proposed a mechanism

for the formation of the benzofuran products from

Scheme 4. Scope of the Transition Metal-Free Synthesis of Benzofuransa

aReaction conditions: thioacetal S,S-dioxide 2 (1.0 equiv), NaOMe (1.5 equiv), MeI (1.5 equiv). bR4−X (3.0 equiv). ctBuOK used instead of
NaOMe.
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benzothiophenes and phenols (Scheme 5).9 The process
begins with oxidation of the benzothiophene 2 to the

benzothiophene S-oxide 2′. The phenol is then captured by
the activated sulfoxide V in an interrupted Pummerer-type
process. The resultant aryloxysulfonium salt VI then undergoes
spontaneous [3,3] sigmatropic rearrangement and cyclization
to form the thioacetal intermediate 3. Oxidation of the
thioacetal provides sulfone 4 before addition of base gives
access to the desired benzofuran product 5.
Sulfinate salts are a class of versatile compounds that have

recently found use as coupling partners in palladium-catalyzed
cross-coupling reactions.13 We therefore envisioned a sub-
sequent desulfinative cross coupling of aryl halides with our
sulfinate-containing benzofuran products. If successful, this
would establish sulfoxides as a traceless activating group for
C−H functionalization in this method. Thus, the intermediate
aryl sulfinates, formed from treatment of the sulfones 4 with
base, underwent desulfinative palladium-catalyzed cross-cou-
pling in the same pot to provide the desired biphenyl
benzofurans 6 (Scheme 6). This procedure gave good to
very high yields for all substrates tested. A range of aryl
bromides were applicable including electron-deficient (6b, 6f),
electron-rich (6d), and heteroaromatic bromides (6c, 6e). In
addition, ortho-, meta-, and para-substituted (6b, 6d, 6f)
substrates all gave similarly high yields. The formation of 6d
was particularly impressive as it represents an efficient process
for the cross-coupling of two sterically encumbered ortho-
substituted reagents.14 We believe this displays the potential
for accessing a range of substituted benzofuran derivatives
from benzothiophene S-oxides and phenols. Importantly, no
trace of the sulfoxide group that is present in the starting
material remained upon formation of the product.
We have reported on the synthesis of benzofurans from

simple phenol starting materials. The reaction utilizes the
unique reactivity of benzothiophene S-oxides to promote the
C−H functionalization of phenols without the requirement for
transition metal catalysts. The approach grants access to a
variety of C3-arylated benzofurans that can also undergo
further derivatization. In combination with our previous
studies, we have shown that a common sulfoxide starting

material provides selective access to C3-arylated benzothio-
phenes or C3-arylated benzofurans through a divergent
strategy.
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