Tetrahedron 68 (2012) 1729-1735

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of two osteoclast-forming suppressors, demethylincisterol A_3 and chaxine A

Arata Yajima*, Yuuma Kagohara, Keisuke Shikai, Ryo Katsuta, Tomoo Nukada

Department of Fermentation Science, Faculty of Applied Biological Science, Tokyo University of Agriculture (NODAI), Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan

ARTICLE INFO

Article history: Received 22 September 2011 Received in revised form 19 December 2011 Accepted 21 December 2011 Available online 23 December 2011

Keywords: Chaxine A Demethylincisterol A₃ Osteoclast Osteoporosis

ABSTRACT

The synthesis of two potent osteoclast-forming suppressing agents isolated from the Chinese mushroom *Agrocybe chaxingu*, demethylincisterol A₃ and chaxine A, was accomplished using ergocalciferol as the starting material. Our methodology for the synthesis of demethylincisterol A₃ and chaxine A featured the construction of a butenolide moiety by the intramolecular Horner–Wadsworth–Emmons reaction under Masamune–Roush conditions. This is the first reported synthesis of chaxine A.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An imbalance between bone formation, which is mediated by osteoblasts, and resorption, which is mediated by osteoclasts, is related to metabolic bone diseases, such as osteoporosis and osteopetrosis. Osteoclasts are multinucleated giant cells developed from hematopoietic stem cells of the monocyte-macrophage lineage.^{1,2} The hematopoietic precursor cells differentiate into osteoclasts under the control of two critical cytokines, receptor activator of NFkB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Tumor necrosis factor α (TNF- α) also accelerates osteoclastogenesis, particularly in states of inflammatory osteolysis causing rheumatoid arthritis.³ Thus, an inhibitor or a suppressor of these cytokines that mediates osteoclast differentiation would be a candidate anti-osteoporosis chemotherapeutic agent. In 2006, Kawagishi and co-workers isolated the two potent osteoclast formation suppressing compounds from the mushroom Agrocybe chaxingu, which is found only in mountainous areas in South China (Fig. 1).^{4,5} One of the two compounds, demethylincisterol A_3 (2), was first reported as a synthetic intermediate in the synthesis of 17methylincisterol⁶ and has been isolated from various fungi.⁷ Mansoor and co-workers reported the isolation of 2 and the (17S)-isomer of **2** from a marine sponge; these compounds have cytotoxic effects on certain tumor cell lines.⁸ The second compound was chaxine A, which is a previously unknown compound (1) (Fig. 1).

The stereochemistry of chaxine A was elucidated by extensive NMR analyses and comparison of the NMR data with those of **2**, but the absolute configuration of **1** remained undetermined. These two were shown to compounds significantly reduce the number of tartrate-resistant acid phosphatase (TRAP)-(+) multinucleated cells in a co-culture of osteoblastic cells and bone marrow cells without cytotoxicity in the presence of RANKL.^{4,5} Because bone resorption can be suppressed by the inhibition of osteoclast formation, this result indicates that these two compounds might be candidate chemotherapeutic agents for the treatment of bone diseases, such postmenopausal osteoporosis. As mentioned above, the availability of *A. chaxingu*, from which **1** and **2** can be isolated, is limited, and

Fig. 1. The structures of demethylincisterol A₃, chaxine A, and related natural products.

^{*} Corresponding author. Tel.: +81 3 5477 2264; fax: +81 3 5477 2622; e-mail address: ayaji@nodai.ac.jp (A. Yajima).

^{0040-4020/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.12.057

the contents of the compounds in the mushroom are low, i.e., 1.4 mg of **1** and 8.1 mg of **2** from 1.5 kg of dried fruiting bodies of *A. chaxingu*.⁵ Furthermore, natural products containing a γ -hydroxybutenolide moiety related to chaxine A have been reported.⁹ We were, therefore, interested in synthesizing demethylincisterol A₃ and chaxine A to establish a concise method for the synthesis of the characteristic moiety and also to confirm the stereostructure of chaxine A. This paper describes the results of our synthetic studies of demethylincisterol A₃ and the first synthesis of chaxine A.

2. Results and discussion

A wide variety of the synthetic approaches for γ -hydroxvbutenolide derivatives have been reported. For example, Sodano and co-workers reported the synthesis of demethylincisterol $A_3(2)$ as a synthetic intermediate in the synthesis of 17-methylincisterol, employing the hetero Diels-Alder reaction of a diene with singlet oxygen as the key step.⁶ Although the chemical yield was low (approximately 0.14%), Sakaguchi and co-workers directly prepared 2 using the photo-oxidative degradation of ergosterol.¹⁰ These approaches require the use of photo-reaction equipment. Takikawa and co-workers synthesized a cytotoxic sesquiterpene, glaucescenolide (**3**), via a γ -ketoacid derivative as a precursor of butenolide.¹¹ The butenolide was oxidized via a furan derivative to give glaucescenolide in high yield.¹² This approach cannot be used for the synthesis of 1 or 2 because the appropriate starting material cannot be obtained easily. Our retrosynthetic analysis is summarized in Scheme 1. The γ -hydroxybutenolide moiety of **1** and **2** was introduced by oxidation of butenolide A constructed by an intramolecular cyclization reaction of B. The α -acyloxy ketone B was obtained from C, which can be derived from ergocalciferol.

Scheme 1. Retrosynthetic analysis of demethylincisterol A₃ and chaxine A.

Weinreb and co-workers synthesized (+)-14,15dihydronorsecurinine (**4**) and related alkaloids that contain fused butenolide ring systems via a tandem acylation-Wittig reaction of acyloin derivatives with the Bestmann ylide.¹³ Because the butenolide can be converted into the corresponding γ -hydroxybutenolide via furan oxidation, we therefore employed these simple and successive approaches for the synthesis of demethylincisterol A₃. According to the literature,¹⁴ ketone **6** was prepared from ergocalciferol (**5**) (Scheme 2). The corresponding silyl enol ether of **6** was oxidized with OsO_4 and NMO to yield the relatively unstable acyloin **7** as a single stereoisomer. The relative stereochemistry of **7** was confirmed after the construction of a butenolide ring (vide infra). Unfortunately, we could not obtain the desired butenolide **8** by the reaction of **7** with the Bestmann ylide¹⁵ under various conditions, probably because of the instability of **7**. Next, we investigated the copper-catalyzed tandem acylation-Wittig reaction under the mild conditions developed by Matsuo and Shindo.¹⁶ Under these conditions, the reaction of **7** with a modified thioester (Ph₃P=CHCOSC₆H₃Me₂) was not observed. With these disappointing results, we subsequently investigated an alternative approach.

In the total synthesis of dehydrololiolide, Mori and co-workers reported a simple approach employing an intramolecular Reformatsky reaction and a Horner-Wadsworth-Emmons (HWE) reaction to construct a butenolide moiety.¹⁷ First, we applied the Reformatsky reaction for the construction of the butenolide ring. The acylation of 7 with bromoacetyl bromide, followed by the intramolecular Reformatsky reaction with zinc dust under sonication, gave hydroxylactone 9 in moderate yield. Unfortunately, however, the dehydration of 9 to obtain 8 was unsuccessful using various reagents, such as dehydrating reagents, acids, and bases. Moreover, it was notably difficult to convert the hydroxyl group of 9 into the corresponding ester or sulfonate, which might have been the result of the steric hindrance caused by the angular methyl group shielding the hydroxyl group. The only transformation that occurred was the dehydration of 9 with SOCl₂ under reflux conditions in pyridine to give undesired tetrasubstituted olefin **10**. This compound might be formed from 8 by isomerization because 10 would be thermodynamically favored over 8 (vide infra). Next, we examined the HWE approach, i.e., phosphonate 11 was subjected to the intramolecular HWE reaction under the optimized conditions, Masamune–Roush conditions,¹⁸ to produce the desired butenolide 8 in 82% yield. However, the conversion of butenolide 8 into the corresponding furan was unsuccessful using DIBAL as a reducing agent.¹⁹ The major products that we could isolate were the starting material and diol 13 together with hydroxyaldehyde 12 instead of a lactol. The favored conformation of hydroxyaldehyde 12 possesses an axially oriented hydroxyl group that would prevent the formation of the furan ring through a lactol. Furthermore, we observed an epimerization at C-4 of 8 to afford 14 under basic conditions, such as those of the intramolecular HWE reaction or the silvloxyfuran formation reaction conditions, that is, in the presence of TBSOTf and a base. The epimerized butenolide 14 was formed at first, and 14 was subsequently isomerized to yield the corresponding γ , δ -unsaturated lactone **10** after a prolonged reaction time. These results indicate that both of the ring systems of butenolides 8 and 14 are highly strained, which made it to difficult to form the furan derivatives. Because the obtained diol 13 was the synthetic intermediate of Sodano's synthesis of demethylincisterol $A_{3,6}^{6}$ the stereochemistry of **13** was confirmed by a comparison of the ¹H NMR spectra. Finally, **13** was oxidized with the Jones reagent according to Sodano's method to afford demethylincisterol A₃ in a low yield. The overall yield of demethylincisterol A₃, based on ergocalciferol, was 11.4% after eight steps. This compound's properties, such as the NMR spectra, were identical to those of the reported data.⁴ Although the overall chemical yield of our synthesis of demethylincisterol A₃ was lower than that of Sodano's synthesis, our synthesis is convenient and scalable.

Using the developed methodology, we synthesized chaxine A by starting from **6** (Scheme 3). The reduction of the double bond of **6** was found to be quite difficult. Namely, under standard catalytic hydrogenation conditions, epimerization at C-3a adjacent to the carbonyl group occurred. As in the case of the intramolecular HWE reaction described above, the ring system of **8** is highly strained, probably because of the repulsion between the angular methyl group and the bulky side chain. Therefore, we tentatively reduced

Scheme 2. Synthesis of demethylincisterol A₃. Reagents, conditions, and yields: (a) Ref. 14: (i) KMnO₄, EtOH, H₂O, -15 °C; (ii) Pb(OAC)₄, pyridine, CH₂Cl₂, -15 °C, 80% in two steps; (b) LDA or LiHMDS, TMSCI, THF, -78 °C; (b) OSO₄, NMO, THF, H₂O, *t*-BuOH; (c) BrCH₂COBr, pyridine, DMAP, CH₂Cl₂, 59% in three steps; (d) Zn, HMPA, THF, sonication, 66%; (e) SOCl₂, pyridine, reflux, 82%; (f) (EtO)₂POCH₂COOH, EDC, DMAP, CH₂Cl₂, 53% in three steps; (g) LiCl, DBU, THF, 0 °C, 82%; (h) DIBAL (4 equiv), CH₂Cl₂, -78 °C, 50–60% of **13**, and 30–40% of **12**; (i) DIBAL (7 equiv), CH₂Cl₂, toluene, -78 °C, 84%; (j) Jones reagent, acetone, 0 °C, 39%.

Scheme 3. Synthesis of chaxine A. Reagents, conditions, and yields: (a) NaBH₄, MeOH; (b) H₂, PtO₂, AcOH, 89% in two steps; (c) Dess–Martin periodinane, NaHCO₃, CH₂Cl₂, 0 °C, 93%; (d) LiHMDS, TMSCl, THF, -78 °C; (e) OsO₄, NMO, THF, H₂O, *t*-BuOH; (f) (EtO)₂POCH₂COCl, pyridine, DMAP, CH₂Cl₂, 52% in three steps; (g) LiCl, DBU, THF, 0 °C, 86%; (h) DIBAL (7 equiv), CH₂Cl₂, toluene, -78 °C, 95%; (i) 1-Me-AZADO, NaOCl, KBr, TBAB, NaHCO₃, CH₂Cl₂, H₂O; (j) Jones reagent, acetone, 0 °C, 67% in two steps.

the carbonyl group of 6 with NaBH₄ to avoid the undesired epimerization. The resulting alcohol whose stereochemistry was deduced by its ¹H NMR spectrum²⁰ was subjected to catalytic hydrogenation with Adams' catalyst in acetic acid under a hydrogen atmosphere to give **15** (89%). Oxidation of the hydroxyl group with Dess-Martin periodinane gave 16 (93%). Phosphonate 17 was prepared by the developed method via an acyloin (52% in three steps), and the intramolecular HWE reaction under carefully controlled conditions gave butenolide 18 in 86%. The stereochemistry of 18 was confirmed by NOE experiments. Diol 19 was obtained by the reduction of 18 with an excess amount of DIBAL, and the subsequent Jones oxidation of 19 gave chaxine A in 38% yield. Although the synthesis of chaxine A was achieved, we further investigated the final oxidation reaction to improve the yield. Under the Jones oxidation conditions, we observed multiple products using TLC analysis. To avoid the side reactions, we investigated the step-wise oxidation processes. Namely, we assumed that the mild oxidation of diol 19 into the corresponding ketoaldehyde 20 without reformation of lactone 18 would be possible because we obtained hydroxyaldehyde 12 in the previous reaction shown in Scheme 2. As expected, the 1-Me-AZADO-mediated oxidation developed by Iwabuchi²¹ of diol **19** proceeded smoothly to give ketoaldehyde **20**, and, subsequently, the resulting ketoaldehyde was directly oxidized under Lindgren-Kraus-Pinnick condition²² in one pot to afford **1** in moderate yield (57%). Finally, we obtained **1** by the step-wise oxidation of 19 using Iwabuchi oxidation and Jones oxidation with a 67% yield. The overall yield of chaxine A, based on ergocalciferol, was 18.8% after ten steps. The ¹H and ¹³C NMR spectra of the synthetic **1** were identical with those of the reported data. and the optical rotation value of the synthetic **1** was in good accord with that of the natural product.⁴ The absolute stereochemistry of chaxine A was confirmed to be that proposed by Kawagishi.

3. Conclusion

We achieved the synthesis of demethylincisterol A₃ and the first synthesis of chaxine A employing the intramolecular HWE reaction as a key step to construct the tricyclic ring systems of these compounds. The proposed stereochemistry of natural chaxine A was confirmed by direct comparison of the physical properties between the synthetic and the natural **1**. Because the developed method to construct a fused γ -hydroxybutenolide structure, specifically, butenolide formation by the intramolecular HWE reaction under Masamune–Roush conditions followed by reduction and oxidation by the combination of Iwabuchi and Jones oxidations, is versatile and practical, it is applicable to the synthesis of related natural products and may be useful for the syntheses of the analogues of chaxine A including chaxines $B-E^{23}$ to develop an antiosteoporosis chemotherapeutic agent.

4. Experimental

4.1. General

Optical rotations were measured on a Jasco P-2100 polarimeter. IR spectra were measured on a Jasco IR-4100 spectrometer. ¹H NMR spectra were recorded on a Jeol ECS400 (400 MHz) spectrometer using CDCl₃ at δ =7.26 or CD₃OD at δ =3.30 as an internal standard. ¹³C NMR spectra were recorded on a Jeol ECS400 (100 MHz) spectrometer using CDCl₃ at δ =77.0 or CD₃OD at δ =49.0 as an internal standard. Elemental compositions were analyzed on a J-Science MICROCORDER JM10 apparatus. High-resolution EI-MS and ESI-MS data were recorded on Jeol JMS-HX110 and Waters SYNAPT G2 spectrometers. Column chromatography was performed with Wakogel-C200 silica gel.

4.1.1. (1R,3aR,5R,7aR,1'R,2'E,4'R)-5,6,7,7a-Tetrahydro-5-bromoacetoxy-7*a*-*methyl*-1-(1',4',5'-*trimethyl*-2'-*hexenyl*)-3*a*H-*indan*-4-*one*. To a stirred solution of LDA [prepared from 87.6 µl (624 µmol) of diisopropylamine and n-BuLi (378 µl, 624 µmol, 1.65 M solution in hexane)] in THF (1 ml) at $-78 \degree$ C was added **6**¹⁴ (143 mg, 520 μ mol) and HMPA (66 µl) in THF (2 ml) was added dropwise, and the mixture was stirred for 45 min. After addition of TMSCI (107 ul. 624 umol), the reaction mixture was stirred for 1.5 h at the same temperature. Next, the mixture was poured into water. The aqueous phase was extracted with ether. The combined organic layers were washed with water and brine and dried with Na₂SO₄. Removal of the solvent in vacuo yielded the crude silyl enol ether. A stirred solution of the silvl enol ether and N-methylmorpholine-N-oxide (216 µl, 1.04 mmol, 4.8 M solution in water) in THF/H₂O (3/1, 14 ml) was treated with 264 μ l of 1% (w/v) *t*-BuOH solution of OsO₄ (10 µmol). The resulting yellow solution was stirred at room temperature overnight, followed by the addition of 100 mg of NaHSO₃, filtration, and the removal of the THF in vacuo. The aqueous phase was extracted with CH₂Cl₂, and the combined organic extracts were washed with brine and dried over MgSO₄. Removal of the solvent in vacuo afforded a dark brown oil. This oil was dissolved in CH₂Cl₂ (2.5 ml), and DMAP (ca. 4 mg), pyridine (84 µl, 1.04 mmol), and bromoacetyl bromide (90 µl, 1.04 mmol) were successively added to the resulting solution at 0 °C. After stirring for 1.5 h, the mixture was diluted with water and extracted with CH₂Cl₂. The combined organic extracts were washed with brine and were dried over MgSO₄. After concentration in vacuo, the residue was purified by column chromatography (hexane/ethyl acetate=80/1) to give the titled compound (126 mg, 59% in three steps) as a yellow oil; $[\alpha]_{D}^{25}$ –36.1 (c 1.0, CHCl₃); ν_{max} (liquid film) 2958, 2871, 1749, 1458, 1385, 1267, 1159, 1108, 995, 971, 886, 870 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.66 (s, 3H), 0.82 (d, *J*=6.8 Hz, 3H), 0.83 (d, *J*=6.8 Hz, 3H), 0.91 (d, J=6.4 Hz, 3H), 1.04 (d, J=6.9 Hz, 3H), 1.2-2.2 (m, 12H), 3.16 (dd, J=7.3, 11.4 Hz, 1H), 3.85 (s, 2H), 4.95 (dd, J=3.0, 3.0 Hz, 1H), 5.17 (dd, J=8.5, 15.5 Hz, 1H), 5.24 (dd, J=7.8, 15.5 Hz, 1H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 12.5, 17.6, 18.5, 19.6, 20.0, 21.0, 25.4, 27.7, 29.5, 33.0, 34.3, 39.9, 42.8, 50.9, 56.7, 58.4, 78.2, 132.8, 134.6, 165.9, 205.7. HRMS (ESI): $M+Na^+$, observed 435.1499; expected for $C_{21}H_{33}O_3NaBr$: 435.1511.

4.1.2. (3aR,3bR,5aR,6R,8aR,1'R,2'E,4'R)-3a,3b,4,5,5a,7,8,8a-Octahydro-3a-hydroxy-5a-methyl-6-(1',4',5'-trimethyl-2'-hexenyl)-2H-indeno[5,4-b]dihydrofuran-2-one (9). The suspension of the above compound (50.0 mg, 121 µmol), zinc powder (2.76 g, 42.2 mmol), and HMPA (20.9 µl, 121 µmol) in THF (1 ml) was sonicated for 2 h. Next, the mixture was poured into 2 N HCl solution and filtered. The aqueous phase was extracted with ether. The combined organic extracts were washed with saturated aqueous NaHCO₃ solution and brine and were dried over MgSO₄. After concentration in vacuo, the residue was purified by column chromatography (hexane/ethyl acetate=10/1) to give the titled compound **9** (26.6 mg, 66%) as a white powder; $[\alpha]_D^{25}$ +15.9 (*c* 0.67, CHCl₃); ν_{max} (KBr) 3538, 2959, 2930, 2871, 1744, 1459, 1369, 1206, 1190, 1107, 1004, 969 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.82 (d, J=6.8 Hz, 3H), 0.85 (d, J=6.9 Hz, 3H), 0.89 (s, 3H), 0.92 (d, J=6.8 Hz, 3H), 1.01 (d, J=6.9 Hz, 3H), 1.15-1.86 (m, 14H), 2.03 (m, 3H), 2.58 (d, *J*=16.5 Hz, 1H), 2.61 (d, *J*=16.5 Hz, 1H), 4.38 (dd, J=3.0, 3.0 Hz, 1H), 5.14 (dd, J=7.8, 15.5 Hz, 1H), 5.22 (dd, J=7.8, 15.5 Hz, 1H); δ_{C} (100 MHz, CDCl₃) 12.3, 17.6, 18.9, 19.6, 20.0, 20.8, 22.0, 27.0, 33.1, 33.7, 39.8, 40.9, 42.8, 44.8, 50.9, 55.9, 76.0, 82.1, 132.5, 134.9, 174.3. HRMS (ESI): M+Na⁺, observed 357.2397; expected for C₂₁H₃₄O₃Na: 357.2406.

4.1.3. (3bRS,5aR,6R,1'R,2'E,4'R)-3b,4,5,5a,7,8-Hexahydro-5a-methyl-6-(1',4',5'-trimethyl-2'-hexenyl)-2H-indeno[5,4-b]dihydrofuran-2-one (**10**). To a stirred solution of **9** (10 mg, 30 μ mol) in pyridine (1 ml) was added SOCl₂ (11 μ l, 150 μ mol), and the mixture was

stirred for 30 min at room temperature. After addition of an additional SOCl₂ (11 μ l, 150 μ mol), the reaction mixture was stirred for 30 min at 110 °C. Next, the mixture was cooled and poured into water. The aqueous phase was extracted with ether. The combined organic layers were washed with water, saturated aqueous NaHCO₃ solution, and brine and were dried with Na₂SO₄. After concentration in vacuo, the residue was purified by column chromatography (hexane/ethyl acetate=80/1) to give the titled compound **10** (8.2 mg, 86%) as a yellow oil; $[\alpha]_D^{25}$ +17.5 (*c* 0.10, CHCl₃); ν_{max} (liquid film) 2958, 2929, 2871, 1784, 1465, 1370, 1260, 1174, 1138, 1010, 973, 803 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.82–0.86 (m, 6H), 0.89 (s, 3H), 0.92, 0.93 (each d, J=6.8 Hz, total 3H), 1.01, 1.06 (each d, J=6.4 Hz, total 3H), 1.25–1.90 (m, H), 2.05–2.25 (m, 4H), 2.99 (d, J=20.6 Hz, 1H), 3.08 (m, 1H), 4.82 (m, 1H), 5.21 (dd, J=7.8, 15.5 Hz, 1H), 5.26 (dd, J=7.8, 15.5 Hz, 1H); δ_{C} (100 MHz, CDCl₃) 14.1, 17.6, 19.7, 20.0, 20.5, 21.5, 25.9, 26.6, 28.1, 29.7, 31.9, 32.0, 32.7, 33.1, 39.2, 42.8, 42.9, 43.7, 53.8, 68.5, 78.8, 121.9, 132.8, 134.7, 146.9, 175.6. HRMS (ESI): M+H⁺, observed 317.2479; expected for C₂₁H₃₃O₂: 317.2481.

4.1.4. (1R,3aR,5R,7aR,1'R,2'E,4'R)-5,6,7,7a-Tetrahydro-5-(diethylphosphonoacetoxy)-7a-methyl-1-(1',4',5'-trimethyl-2'-hexenyl)-3aH-indan-4-one (11). To a stirred solution of 6^{14} (15.8 mg, 57.4 μ mol) in THF (0.5 ml) at $-78 \,^{\circ}$ C was added dropwise LiHMDS (68.8 µl, 68.8 µmol, 1.0 M solution in THF), and the mixture was stirred for 45 min. After addition of TMSCl (6 µl, 69 µmol), the reaction mixture was stirred for 2 h at the same temperature. Next, the mixture was poured into a saturated aqueous NaHCO₃ solution. The aqueous phase was extracted with ether. The combined organic layers were washed with brine and dried with MgSO₄. Removal of the solvent in vacuo yielded the crude silvl enol ether. A stirred solution of the silvl enol ether and N-methylmorpholine-N-oxide (29 µl, 143 µmol, 4.8 M solution in water) in THF/H₂O (3/1, 2 ml) was treated with 32 µl of a 1% (w/v) t-BuOH solution of OsO₄ (1 µmol). The resulting yellow solution was stirred at room temperature overnight, followed by the addition of 5 mg of NaHSO₃, filtration, and the removal of the THF in vacuo. The aqueous phase was extracted with CH₂Cl₂, and the combined organic extracts were dried over MgSO₄. Removal of the solvent in vacuo afforded a dark brown oil. This oil was dissolved in CH₂Cl₂ (0.5 ml), and DMAP (ca. 5 mg), diethylphosphonoacetic acid (18 µl, 110 µmol), and EDC (19.8 mg, 115 µmol) were successively added to the resulting solution at 0 °C. After stirring for 48 h at room temperature, the mixture was diluted with water and extracted with EtOAc. The combined organic extracts were washed with water, saturated aqueous NH₄Cl solution, and brine and were dried over MgSO₄. After concentration in vacuo, the residue was purified by column chromatography (hexane/ethyl acetate=2/1) to give the titled compound **11** (14.4 mg, 53% in three steps) as a colorless oil; [found: C, 63.58; H, 9.07. C₂₅H₄₃O₆P requires C, 63.81; H, 9.21%]; $[\alpha]_D^{26}$ –17.8 (c 1.0, CHCl₃); ν_{max} (liquid film) 3470, 2960, 2872, 1746, 1461, 1386, 1268, 1114, 1025, 973, 905, 869, 836 cm $^{-1};\ \delta_{\rm H}$ (400 MHz, CDCl₃) 0.65 (s, 3H), 0.82 (d, J=7.3 Hz, 3H), 0.83 (d, J=6.8 Hz, 3H), 0.91 (d, J=6.4 Hz, 3H), 1.03 (d, J=6.9 Hz, 3H), 1.4–1.9 (m, 9H), 1.34 (t, J=6.9 Hz, 6H), 2.04 (m, 2H), 2.13 (m, 1H), 3.00 (d, J=21.5 Hz, 2H), 3.03 (dd, J=7.3, 11.5 Hz, 1H), 4.16 (m, 4H), 4.91 (t, J=3.4 Hz, 1H), 5.16 (dd, J=7.8, 15.5 Hz, 1H), 5.23 (dd, J=7.8, 15.5 Hz, 1H); δ_{C} (100 MHz, CDCl₃) 12.5, 16.3, 16.4, 17.6, 18.5, 19.6, 20.0, 21.0, 27.8, 29.6, 33.0, 33.8, 34.3, 35.1, 39.8, 42.9, 51.1, 56.7, 58.1, 62.71, 62.76, 62.83, 77.9, 132.8, 134.6, 164.5, 164.6, 205.7. HRMS (ESI): M+Na⁺, observed 493.2674; expected for C₂₅H₄₃O₆NaP: 493.2695.

4.1.5. (3bR,5aR,6R,8aR,1'R,2'E,4'R)-3a,3b,4,5,5a,7,8,8a-Octahydro-5a-methyl-6-(1',4',5'-trimethyl-2'-hexenyl)-2H-indeno[5,4-b]furan-2-one (**8**). To a stirred and cooled (0 °C) solution of **11** (240 mg,

508 µmol) in THF (3 ml) under an Ar atmosphere were added LiCl (32.3 mg, 761 µmol) and DBU (83.4 µl, 558 µmol). The mixture was stirred for 1 h at 0 °C and subsequently quenched with water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography (hexane/ethyl acetate=20/1) to give the titled compound **8** (132 mg, 82%) as a colorless oil; [found: C, 79.52; H, 9.92. $C_{21}H_{32}O_2$ requires C, 79.70; H, 10.19%]; $[\alpha]_D^{26}$ –91.3 (*c*=1.0, CHCl₃); ν_{max} (liquid film) 2958, 2873, 1754, 1641, 1460, 1384, 1329, 1156, 1084, 1018, 972, 941, 897, 849, 805 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.82 (d, *J*=6.8 Hz, 3H), 0.83 (d, J=6.8 Hz, 3H), 0.91 (s, 3H), 0.92 (d, J=6.8 Hz, 3H), 1.01 (d, *I*=6.4 Hz, 3H), 1.25–1.60 (m, 5H), 1.83–2.13 (m, 6H), 2.31 (m, 1H), 2.69 (m, 1H), 5.15 (dd, J=7.8, 15.5 Hz, 1H), 5.26 (dd, J=7.8, 15.5 Hz, 1H), 5.30 (m, 1H), 5.70 (dd, J=2.2, 2.2 Hz, 1H); δ_{C} (100 MHz, CDCl₃) 17.6, 19.0, 19.6, 19.9, 20.6, 22.3, 26.1, 29.2, 33.0, 34.2, 40.1, 41.5, 42.8, 49.5, 56.8, 80.6, 113.3, 133.0, 134.4, 174.1, 174.8. HRMS (ESI): M+H⁺, observed 317.2478; expected for C₂₁H₃₃O₂: 317.2481. The prolonged reaction time resulted in isomerization of C-4 to give 14. Properties of **14**: [α]²⁵_D +233.2 (*c*=0.485, CHCl₃); *ν*_{max} (liquid film) 2956, 2872, 1749, 1654, 1457, 1383, 1153, 1129, 1060, 1003, 889, 851 cm $^{-1};~\delta_{\rm H}$ (400 MHz, CDCl₃) 0.60 (s, 3H), 0.83 (d, J=6.8 Hz, 3H), 0.84 (d, *I*=6.8 Hz, 3H), 0.92 (d, *I*=6.8 Hz, 3H), 1.04 (d, *I*=6.8 Hz, 3H), 1.22-1.64 (m, 6H), 1.74 (m, 1H), 1.88 (m, 2H), 2.05 (m, 2H), 2.29-2.43 (m, 2H), 4.65 (ddd, J=0.9, 7.3, 10.5 Hz, 1H), 5.16 (dd, *J*=8.2, 15.5 Hz, 1H), 5.25 (dd, *J*=7.8, 15.5 Hz, 1H), 5.63 (br dd, *J*=1.9, 1.9 Hz, 1H); δ_C (100 MHz, CDCl₃) 12.2, 17.6, 19.6, 19.9, 21.0, 28.9, 29.7, 30.8, 33.0, 35.6, 40.1, 42.8, 48.0, 52.2, 55.4, 81.8, 111.1, 132.9, 134.6, 172.7, 173.9. HRMS (ESI): M+H⁺, observed 317.2475; expected for C₂₁H₃₃O₂: 317.2481.

4.1.6. (1R,3aR,4Z,5R,7aR,1'R,2'E,4'R)-5,6,7,7a-Tetrahydro-4-(2hydroxyethylidene)-7a-methyl-1-(1',4',5'-trimethyl-2'-hexenyl)-3aHindan-5-ol (13). To a stirred and cooled (-78 °C) solution of 8 (106 mg, 333 μ mol) in CH₂Cl₂ (3 ml) was added DIBAL (1.55 ml, 2.33 mmol, 1.5 M solution in toluene). The mixture was stirred for 1.5 h at -78 °C and was guenched by the careful addition of MeOH. The mixture was then warmed to room temperature and diluted with aqueous Rochelle's salt solution and ether. The mixture was stirred vigorously for 2 h. Next, the aqueous phase was extracted with EtOAc, and the combined organic extracts were dried over MgSO₄. After concentration of the solvent in vacuo, the residue was purified by column chromatography (hexane/ethyl acetate=1/1) to give the titled compound 13 (89.7 mg, 84%) as a white powder; [found: C, 78.95; H, 11.13. C₂₁H₃₆O₂ requires C, 78.69; H, 11.32%]; $[\alpha]_D^{25}$ +1.7 (*c* 1.0, CHCl₃); ν_{max} (KBr) 3403 (br), 2957, 2927, 2872, 1462, 1371, 1262, 1075, 1013, 973, 804, 739 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.55 (s, 3H), 0.83 (d, J=6.4 Hz, 3H), 0.84 (d, J=6.4 Hz, 3H), 0.92 (d, J=6.8 Hz, 3H), 1.03 (d, J=6.3 Hz, 3H), 1.25-1.55 (m, 7H), 1.75–1.90 (m, 6H), 2.02 (m, 1H), 2.52 (m, 1H), 4.20 (ddd, J=0.9, 6.8, 12.4 Hz, 1H), 4.33 (ddd, J=1.4, 7.8, 12.4 Hz, 1H), 4.73 (t, J=1.5 Hz, 1H), 5.18 (dd, J=7.8, 15.5 Hz, 1H), 5.21 (dd, J=7.8, 15.5 Hz, 1H), 5.35 (dt, J=2.0, 7.3 Hz, 1H); δ_{C} (100 MHz, CDCl₃) 11.4, 17.6, 19.6, 20.0, 21.1, 22.1, 27.7, 30.2, 33.1, 34.5, 40.4, 42.8, 44.9, 49.7, 56.2, 57.8, 64.4, 122.5, 132.1, 135.5, 144.8. HRMS (ESI): M+Na⁺, observed 343.2592; expected for C₂₁H₃₆O₂Na: 343.2613. By using less amount of DIBAL, the corresponding aldehyde 12 was obtained in 30-40% yield. Properties of **12**: white powder, $[\alpha]_D^{25}$ +130.8 (*c* 0.68, CHCl₃); ν_{max} (KBr) 3399 (br), 2956, 2872, 1664, 1458, 1372, 1136, 1028, 971 cm⁻ $\delta_{\rm H}$ (400 MHz, CD₃OD) 0.63 (s, 3H), 0.84 (d, J=7.3 Hz, 3H), 0.85 (d, J=6.8 Hz, 3H), 0.93 (d, J=6.9 Hz, 3H), 1.05 (d, J=6.4 Hz, 3H), 1.25-1.55 (m, 6H), 1.76-1.95 (m, 6H), 2.05 (m, 1H), 2.86 (m, 1H), 5.21 (dd, J=7.8, 15.5 Hz, 1H), 5.25 (dd, J=7.8, 15.5 Hz, 1H), 5.33 (m, 1H), 5.67 (dd. J=1.3, 8.3 Hz, 1H), 10.08 (d, J=8.3 Hz, 1H); $\delta_{\rm C}$ (100 MHz, CD₃OD) 12.1, 18.2, 20.1, 20.5, 21.6, 22.6, 28.8, 32.0, 34.4, 35.6, 41.7, 44.4, 51.8, 58.0, 64.1, 125.9, 133.6, 136.7, 169.0, 191.9.

HRMS (ESI): M+Na⁺, observed 341.2445; expected for $C_{21}H_{34}O_2Na$: 341.2456.

4.1.7. Demethylincisterol A_3 (**2**). To a solution of **13** (5 mg, 16 μ mol) in acetone (0.5 ml), Jones reagent was added dropwise until an orange-brown color persisted. Thereafter, the reaction mixture was poured into water, the aqueous mixture was extracted with three portions of EtOAc, and the organic phases were washed successively with water and brine and dried over MgSO₄. The solvent was evaporated and the residue was purified by column chromatography (hexane/EtOAc=5/1) to give the titled compound **2** (2 mg, 39%) as a colorless oil; $[\alpha]_D^{25}$ +130.0 (*c* 0.35, MeOH), lit.⁴ $[\alpha]_D$ +130 (*c* 0.69, MeOH); *v*_{max} (liquid film) 3266 (br), 2953, 2871, 1759, 1730, 1667, 1465, 1378, 1342, 1131, 1115, 1054, 970, 948, 904, 852 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.61 (s, 3H), 0.83 (d, J=6.9 Hz, 3H), 0.84 (d, *I*=6.8 Hz, 3H), 0.92 (d, *I*=6.8 Hz, 3H), 1.04 (d, *I*=6.4 Hz, 3H), 0.93-1.00 (m, 2H), 1.10-2.10 (m, 14H), 2.27 (ddd, J=2.3, 3.6, 13.7 Hz, 1H), 2.65 (m, 1H), 2.76 (br s, 1H), 5.17 (dd, J=8.2, 15.2 Hz, 1H), 5.25 $(dd, J=7.8, 15.2 Hz, 1H), 5.64 (d, J=1.8 Hz, 1H); \delta_{C} (100 MHz, CDCl_{3})$ 11.7, 17.6, 19.6, 20.0, 21.0, 21.4, 28.8, 33.0, 35.0, 35.3, 40.1, 42.8, 48.8, 50.3, 55.3, 104.7, 112.3, 132.9, 134.6, 170.5, 170.7. HRMS (EI): M⁺, observed 332.2351; expected for C₂₁H₃₂O₃: 332.2354. The ¹H and 13 C NMR spectra of the synthetic **2** are identical with those of the natural product. The purity of the synthetic 2 is >98% as judged by the NMR spectra.

4.1.8. (1R.3aR.4S.7aR.1'R.4'S)-Hexahvdro-7a-methvl-1-(1'.4'.5'-tri*methylhexyl*)-*indan*-4-ol (**15**). To a stirred and cooled $(-7 \circ C)$ solution of 6^{14} (766 mg, 2.77 mmol) in MeOH (8 ml) was added NaBH₄ (146 mg, 3.86 mmol). After stirring for 1 h at room temperature, the reaction was quenched with water. The aqueous phase was extracted with EtOAc, and the organic extract was washed with saturated aqueous NaHCO3 solution, water, and brine and was dried with MgSO₄. Removal of the solvent in vacuo gave the crude alcohol. The obtained crude alcohol was dissolved in acetic acid (10 ml), and PtO_2 (6.3 mg, 28 μ mol) was added to the solution. The mixture was stirred under H₂ (balloon) for 24 h at room temperature. The mixture was subsequently diluted with EtOAc and filtered through a Celite pad. After evaporation of the solvents, the residue was purified by column chromatography (hexane/ethyl acetate=90/1) to give the titled compound 15 (692 mg, 89% in two steps) as a colorless oil; [found: C, 81.05; H, 13.01. C₁₉H₃₆O requires C, 81.36; H, 12.94%]; $[\alpha]_{D}^{25}$ +23.6 (*c* 1.0, CHCl₃). ν_{max} (liquid film): 3431 (br), 2957, 2873, 1465, 1377, 1242, 1166, 1066, 990, 942, 887 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.78 (d, J=6.8 Hz, 3H), 0.79 (d, J=6.9 Hz, 3H), 0.86 (d, J=6.8 Hz, 3H), 0.87–0.98 (m, 3H), 0.90 (d, J=6.4 Hz, 3H), 0.93 (s, 3H), 1.00–1.92 (m, 16H), 2.00 (m, 1H), 4.07 (br s, 1H); δ_{C} (400 MHz, CDCl₃) 13.5, 15.4, 17.4, 17.6, 18.7, 20.5, 22.5, 27.1, 30.6, 31.5, 33.5, 33.6, 35.7, 39.1, 40.4, 41.8, 52.6, 56.6, 69.5. HRMS (EI): M⁺, observed 280.2761; expected for C₁₉H₃₆O: 280.2766.

4.1.9. (1*R*,3*aR*,7*aR*,1′*R*,4′*S*)-5,6,7,7*a*-Tetrahydro-7*a*-methyl-1-(1′,4′,5′trimethylhexyl)-3*a*H-indan-4-one (**16**). To a stirred and cooled (0 °C) solution of **15** (8.7 mg, 31.1 µmol) in CH₂Cl₂ (0.5 ml) was added NaHCO₃ (13.0 mg, 155 µmol) and Dess–Martin periodinane (20.0 mg, 62.2 µmol). After stirring for 1 h at room temperature, the reaction was quenched with saturated aqueous NaHCO₃ solution. The aqueous phase was extracted with EtOAc, and the organic extract was washed with saturated aqueous NaHCO₃ solution, water, and brine and was dried with MgSO₄. After concentration in vacuo, the residue was purified by column chromatography (hexane/ethyl acetate=60/1) to afford the titled compound **16** (8.2 mg, 95%) as a colorless oil; [found: C, 81.81; H, 12.48. C₁₉H₃₄O requires C, 81.95; H, 12.31%]; [α]_D²⁵ –3.6 (*c* 1.0, CHCl₃); ν_{max} (liquid film) 2956, 2872, 1715, 1465, 1378, 1307, 1241, 1226, 1056, 942, 874, 836 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.63 (s, 3H), 0.78 (d, *J*=6.9 Hz, 3H), 0.79 (d, *J*=6.9 Hz, 3H), 0.85 (d, *J*=6.6 Hz, 3H), 0.90–1.20 (m, 2H), 0.95 (d, *J*=6.4 Hz, 3H), 1.10–2.30 (m, 16H), 2.44 (dd, *J*=7.5, 11.6 Hz, 1H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 12.5, 15.4, 17.6, 18.9, 19.1, 20.5, 24.1, 27.5, 30.5, 31.5, 33.5, 35.9, 38.98, 39.01, 41.0, 49.9, 56.6, 62.0, 212.1. HRMS (ESI): M+Na⁺, observed 301.2498; expected for C₁₉H₃₄ONa: 301.2507.

4.1.10. (1R,3aR,5R,7aR,1'R,4'S)-5,6,7,7a-Tetrahydro-5-(diethvlphosphonoacetoxy)-7a-methyl-1-(1',4',5'-trimethylhexyl)-3aH-indan-4-one (17). To a stirred solution of 16 (100 mg, 359 µmol) in THF (2 ml) at $-78 \degree$ C was added dropwise LiHMDS (430 µl, 430 µmol, 1.0 M solution in THF), and the mixture was stirred for 45 min. After addition of TMSCl (37 µl, 430 µmol), the reaction mixture was stirred for 2 h at the same temperature. Next, the mixture was poured into a saturated aqueous NaHCO3 solution. The aqueous phase was extracted with ether. The combined organic layers were washed with brine and dried with MgSO₄. Removal of the solvent in vacuo yielded the crude silyl enol ether. A stirred solution of the silvl enol ether and N-methylmorpholine-N-oxide (150 µl, 718 µmol, 4.8 M solution in water) in THF/H₂O (3/1, 10 ml) was treated with $181 \mu l$ of a 1% (w/v) *t*-BuOH solution of OsO₄ (7 µmol). The resulting yellow solution was stirred at room temperature overnight, followed by the addition of 25 mg of NaHSO₃. filtration, and the removal of the THF in vacuo. The aqueous phase was extracted with CH₂Cl₂, and the combined organic extracts were dried over MgSO₄. Removal of the solvent in vacuo afforded a dark brown oil. This oil was dissolved in CH₂Cl₂ (1 ml), and pyridine (43.5 µl, 538 µmol), and diethylphosphonoacetyl chloride²⁴ (153 mg, 716 µmol) were added to the resulting solution at 0 °C. After stirring for 1 h at 0 °C, the mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography (hexane/ethyl acetate=2/1) to give the titled compound 17 (88.2 mg, 52% in three steps) as a white solid; mp 100-102 °C; [found: C, 63.55; H, 9.90. C₂₅H₄₅O₆P requires C, 63.54; H, 9.60%]; $[\alpha]_D^{25}$ –7.9 (*c* 1.0, CHCl₃); ν_{max} (KBr) 3471, 2958, 2872, 1746, 1601, 1465, 1387, 1324, 1263, 1162, 1112, 1018, 973, 904, 869, 835 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.64 (s, 3H), 0.78 (d, *J*=6.8 Hz, 6H), 0.79 (d, J=6.8 Hz, 3H), 0.86 (d, J=6.8 Hz, 3H), 0.94 (d, J=6.4 Hz, 3H), 0.94–1.25 (m, 3H), 1.30–1.62 (m, 4H), 1.34 (t, J=6.9 Hz, 6H), 1.82–2.13 (m, 6H), 2.98 (s, 1H), 3.01 (dd, J=7.3, 12.0 Hz, 1H), 3.03 (s, 1H), 4.16 (m, 4H), 4.91 (t, *J*=3.4 Hz, 1H); δ_C (100 MHz, CDCl₃) 12.3, 15.4, 16.3, 16.4, 17.6, 18.5, 18.9, 20.5, 27.5, 29.6, 30.4, 31.5, 33.5, 33.8, 34.4, 35.1, 35.9, 39.0, 51.2, 56.7, 58.0, 62.68, 62.74, 62.76, 62.82, 77.9, 164.5, 164.6, 205.8, HRMS (ESI): M+Na⁺, observed 495.2842; expected for C₂₅H₄₅O₆NaP: 495.2851.

4.1.11. (3bR,5aR,6R,8aR,1'R,4'S)-3a,3b,4,5,5a,7,8,8a-Octahydro-5amethyl-6-(1',4',5'-trimethylhexyl)-2H-indeno[5,4-b]furan-2-one (**18**). To a stirred and cooled $(0 \circ C)$ solution of **17** (88 mg, 186 μ mol) in THF (1 ml) under an Ar atmosphere were added LiCl (11.8 mg, 278 µmol) and DBU (30.5 µl, 204 µmol). The mixture was stirred for 1 h at 0 °C and subsequently quenched with water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography (hexane/ethyl acetate=20/1) to give the titled compound 18 (50.9 mg, 86%) as a colorless oil; $[\alpha]_D^{25}$ –71.6 (*c*=1.0, CHCl₃); ν_{max} (liquid film) 2957, 2872, 1755, 1643, 1467, 1378, 1329, 1284, 1153, 1087, 1021, 977, 941, 898, 847, 805 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.79 (d, *J*=6.8 Hz, 3H), 0.79 (d, J=6.8 Hz, 3H), 0.86 (d, J=6.8 Hz, 3H), 0.90 (s, 3H), 0.92 (d, *I*=6.4 Hz, 3H), 0.94–1.00 (m, 2H), 1.16–1.62 (m, 9H), 1.82–2.13 (m, 4H), 2.31 (m, 1H), 2.69 (m, 1H), 5.30 (dddd, J=1.8, 1.8, 5.7, 13.2 Hz, 1H), 5.70 (dd, *J*=2.2, 2.2 Hz, 1H); δ_C (100 MHz, CDCl₃) 15.4, 17.6, 18.5,

18.9, 20.5, 22.4, 26.2, 28.8, 30.6, 31.5, 33.2, 34.4, 36.1, 39.0, 41.7, 49.3, 56.8, 80.7, 113.2, 174.1, 174.9. HRMS (EI): M^+ , observed 318.2528. C₂₁H₃₄O₂ requires 318.2559.

4.1.12. (1R,3aR,4Z,5R,7aR,1'R,4'S)-5,6,7,7a-Tetrahydro-4-(2hydroxyethylidene)-7a-methyl-1-(1',4',5'-trimethylhexyl)-3aH-indan-5-ol (19). To a stirred and cooled (-78°C) solution of 18 (10.0 mg, 31.4 umol) in CH₂Cl₂ (1 ml) was added DIBAL (219 ul, 10.0 mg)219 µmol, 1.0 M solution in toluene). The mixture was stirred for 1.5 h at -78 °C and was guenched by the careful addition of MeOH. The mixture was then warmed to room temperature and diluted with aqueous Rochelle's salt solution and ether. The mixture was stirred vigorously for 2 h. Next, the aqueous phase was extracted with EtOAc, and the combined organic extracts were dried over MgSO₄. After concentration of the solvent in vacuo, the residue was purified by column chromatography (hexane/ethyl acetate=1/1) to give the titled compound 19 (9.5 mg, 95%) as a white solid; mp 80-82 °C; [found: C, 77.90; H, 11.84. C₂₁H₃₈O₂ requires C, 78.20; H, 11.18%]; $[\alpha]_D^{25}$ +16.6 (*c* 1.0, CHCl₃); ν_{max} (KBr) 3255, 2959, 2871, 1467, 1377, 1337, 1252, 1214, 1155, 1100, 1054, 1007, 960, 922, 893, 853 cm⁻¹ $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.54 (s, 3H), 0.78 (d, *J*=6.6 Hz, 3H), 0.79 (d, J=6.8 Hz, 3H), 0.86 (d, J=6.8 Hz, 3H), 0.88-1.02 (m, 2H), 0.93 (d, J=6.0 Hz, 3H), 1.10-2.30 (m, 17H), 2.51 (dd, J=7.3, 10.9 Hz, 1H), 4.18 (dd, J=6.1, 12.0 Hz, 1H), 4.33 (ddd, J=1.1, 8.2, 12.0 Hz, 1H), 4.73 (br s, 1H), 5.35 (dt, J=1.6, 7.3 Hz, 1H); δ_{C} (100 MHz, CDCl₃) 11.1, 15.5, 17.6, 19.0, 20.5, 22.2, 27.5, 30.3, 30.6, 31.5, 33.6, 34.6, 36.5, 39.1, 45.1, 49.6, 56.2, 57.8, 64.4, 122.6, 144.9. HRMS (ESI): M+Na⁺, observed 345.2757; C₂₁H₃₈O₂Na requires: 345.2770.

4.1.13. Chaxine A (1). A 10 ml flask was charged with a solution of 19 (10.0 mg, 31.0 µmol), 1-methyl-2-azaadamantane N-oxyl (1-Me-AZADO, 52 µg, 0.31 µmol) in CH₂Cl₂ (0.2 ml) and a saturated aqueous solution of NaHCO₃ (42.0 µl) containing KBr (368 µg, 3.09 µmol) and *n*-Bu₄NBr (TBAB, 238 µg, 1.54 µmol). To this cooled (0 °C) and stirred mixture, a pre-mixed solution of aqueous NaOCl and a saturated aqueous solution of NaHCO₃ (304 μ l, 1:1.4 v/v) was added dropwise over 6 min. The mixture was stirred for 1 h at 0 °C and was quenched with a saturated aqueous solution of Na₂S₂O₃ (0.2 ml). The aqueous layer was separated and extracted with ether. The combined organic layers were washed with brine, dried with MgSO₄, and concentrated under reduced pressure to afford the crude ketoaldehyde. To a stirred solution of the resulting ketoaldehyde in acetone (0.2 ml), the Jones reagent (2.67 M, 161 μ l, 4.29 µmol) was added dropwise at 0 °C. The mixture was stirred for 1 h at 0 °C and then poured into water. The aqueous phase was extracted with EtOAc. The combined organic extracts were washed successively with water and brine and dried with MgSO₄. After evaporation of the solvents, the residue was purified by column chromatography (hexane/ethyl acetate=4/1) to give the titled compound **1** (6.6 mg, 67%) as a colorless oil; $[\alpha]_D^{24}$ +136.8 (*c* 0.37, MeOH), lit.⁴ [α]_D+133 (*c* 0.1, MeOH); *v*_{max} (liquid film) 3359 (br), 2959, 1746, 1663, 1465, 1378, 1338, 1214, 1177, 1127, 1048, 960, 905, 854 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.59 (s, 3H), 0.78 (d, *J*=6.9 Hz, 6H), 0.86 (d, J=6.9 Hz, 3H), 0.95 (d, J=6.4 Hz, 3H), 0.93-1.00 (m, 2H), 1.10-1.65 (m, 9H), 1.75 (m, 1H), 1.86 (ddd, J=4.5, 14.2, 18.8 Hz, 1H), 2.00 (ddd, J=2.3, 4.6, 13.3 Hz, 1H), 2.08 (m, 1H), 2.27 (ddd, J=2.3, 4.2, 14.3 Hz, 1H), 2.64 (ddd, J=1.8, 6.5, 11.6 Hz, 1H), 3.04 (br s, 1H), 5.63 $(d, J=1.8 \text{ Hz}, 1\text{H}); \delta_{C}(100 \text{ MHz}, \text{CDCl}_{3})$ 11.5, 15.4, 17.6, 18.9, 20.5, 21.4, 28.6, 30.5, 31.5, 33.5, 35.2, 35.3, 36.2, 39.0, 49.0, 50.3, 55.4, 104.9, 112.2, 170.8, 171.1. HRMS (EI): M⁺, observed 334.2515; expected for $C_{21}H_{34}O_3$: 334.2508. The ¹H and ¹³C NMR spectra of the synthetic **1** are identical with those of the natural product. The purity of the synthetic 1 is >98% as judged by the NMR spectra.

Acknowledgements

We thank Professor H. Kawagishi (Shizuoka University) for the copies of NMR spectra of chaxine A and demethylincisterol A₃. We thank Dr. T. Tashiro (RIKEN) for the collection of the MS spectra. This work was supported by a grant from Advanced Research Project of Tokyo University of Agriculture.

Supplementary data

Supplementary data related to this article can be found online at doi:10.1016/j.tet.2011.12.057.

References and notes

- 1. Suda, T. Proc. Jpn. Acad., Ser. B 2004, 80, 407-421.
- Udagawa, N.; Takahashi, N.; Akatsu, T.; Tanaka, H.; Sasaki, T.; Nishihara, T.; Koga, T.; Martin, J.; Suda, T. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 7260–7264.
- Teitelbaum, S. L. *Am. J. Pathol.* 2007, *170*, 427–435.
 Kawagishi, H.; Akachi, T.; Ogawa, T.; Masuda, K.; Yamaguchi, K.; Yazawa, K.; Takahashi, M. *Heterocycles* 2006, *69*, 253–258.
- Kawagishi, H.; Takahashi, M.; Yamaguchi, K.; Yazawa, K. Jpn. Kokai Tokkyo Koho IP 2008019223, 2008.
- De Riccardis, F.; Spinella, A.; Izzo, I.; Giordano, A.; Sodano, G. Tetrahedron Lett. 1995. 36, 4303–4306.
- (a) Ohta, K.; Yaoita, Y.; Matsuda, N.; Kikuchi, M. Natural Med. **1996**, 50, 179–181;
 (b) Akihisa, T.; Nakamura, Y.; Tagata, M.; Tokuda, H.; Yasukawa, K.; Uchiyama, E.; Suzuki, T.; Kimura, Y. Chem. Biodiversity **2007**, 4, 224–231; (c) Ueguchi, Y.; Matsunami, K.; Otsuka, H.; Kondo, K. J. Nat. Med. **2011**, 65, 307–312.
- Mansoor, T. A.; Hong, J.; Lee, C.-O.; Bae, S.-J.; Im, K. S.; Jung, J. H. J. Nat. Prod. 2005 68 331–336
- For example: (a) Fascio, M.; Mors, W. B.; Gilbert, B.; Mahajan, J. R.; Monteiro, M. B.; Dos Santos Filho, D.; Vichnewski, W. Phytochemistry **1976**, *15*, 201–203; (b) Ayer, W. A.; Dufresne, C. Bull. Soc. Chim. Belg. **1986**, *95*, 699–706; (c) Scher, J. M.; Burgess, E. J.; Lorimer, S. D.; Perry, N. B. Tetrahedron **2002**, *58*, 7875–7882; (d) Nishimura, K.; Hitotsuyanagi, Y.; Sugeta, N.; Sakakura, K.; Fujita, K.; Fukaya, H.; Aoyagi, Y.; Hasuda, T.; Kinoshita, T.; He, D.-H.; Otsuka, H.; Takeda, Y.; Takeya, K. Tetrahedron **2006**, *62*, 1512–1519; (e) Yadav, P. P.; Arora, A.; Bid, H. K.; Konwar, R. R.; Kanojiya, S. Tetrahedron Lett. **2007**, *48*, 7194–7198; (f) Matuo, Y.; Deguchi, J.; Hosoya, T.; Hirasawa, Y.; Hirobe, C.; Shiro, M.; Morita, H. J. Nat. Prod. **2009**, *72*, 976–979.
- 10. Togashi, H.; Mizushima, Y.; Takemura, M.; Sunagawara, F.; Koshino, H.; Esumi, Y.; Uzawa, J.; Kumagai, H.; Matsukage, A.; Yoshida, S.; Sakaguchi, K. *Biochem. Pharmacol.* **1998**, *56*, 583–590.
- 11. Takikawa, H.; Ueda, K.; Sasaki, M. Tetrahedron Lett. 2004, 45, 5569-5571.
- 12. Miles, W. H.; Connell, K. B. Tetrahedron Lett. 2003, 44, 1161-1163.
- Han, G.; KaPorte, M. G.; Folmer, J. J.; Werner, K. M.; Weinreb, S. M. J. Org. Chem. 2000, 65, 6293–6306.
- De Riccardis, F.; Izzo, I.; Di Filippo, M.; Sodano, G.; D'Acquisto, F.; Carnuccio, R. Tetrahedron 1997, 53, 10871–10882.
- 15. Bestmann, H. J.; Sandmeier, D. Chem. Ber. 1980, 113, 274-277.
- 16. Matsuo, K.; Shindo, M. Org. Lett. 2010, 12, 5346-5349.
- 17. Tamura, H.; Fujita, A.; Takagi, Y.; Kitahara, T.; Mori, K. *Biosci. Biotechnol. Biochem.* **1994**, *58*, 1902–1903.
- Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. *Tetrahedron Lett.* **1984**, *25*, 2183–2186.
- 19. Minato, H.; Nagasaki, T. J. Chem. Soc. C 1966, 377-379.
- (a) Inhoffen, H. H.; Quinkert, G.; Schütz, S.; Kampe, D.; Domagk, G. F. *Chem. Ber.* 1957, 90, 664–673; (b) Blalemore, P. R.; Kocienski, P. J.; Marzcak, S.; Wicha, J. *Synthesis* 1999, 1209–1215.
- Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. 2006, 128, 8412–8413.
- (a) Lindgren, B. O.; Nilsson, T. Acta Chem. Scand. **1973**, *27*, 888–890; (b) Kraus,
 G. A.; Roth, B. J. Org. Chem. **1980**, *45*, 4825–4830; (c) Bal, B. S.; Childers, W. E., Jr.;
 Pinnick, H. W. Tetrahedron **1981**, *37*, 2091–2096.
- Meyers, A. I.; Babiak, K. A.; Campbell, A. L.; Comins, D. L.; Fleming, M. P.; Henning, R.; Heuschmann, M.; Hudspeth, J. P.; Kane, J. M.; Reider, P. J.; Roland, D. M.; Shimizu, K.; Tomioka, K.; Walkup, R. D. J. Am. Chem. Soc. 1983, 105, 5015–5024.
- Choi, J.-H.; Ogawa, A.; Abe, N.; Masuda, K.; Koyama, T.; Yazawa, K.; Kawagishi, H. Tetrahedron 2009, 65, 9850–9853.