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The literature of photochemistry provides few descriptive ex- 
amples of the excited-state behavior of non-Kekulb molec~les .~  
The present study of 2-isopropylidenecyclopentane- 1,3-diyl (1) 
has uncovered a remarkable light-induced rearrangement to 2- 
methylhept-2-en-6-yne (2). 
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Biradical 1 in its triplet ground state4ts is generated by pho- 
todeazetation of the diazene 3 in glassy matrices a t  77 K,4 and 

its electron paramagnetic resonance (EPR) signal persists under 
these conditions for a t  least 1 h after irradiation is terminated. 
Melting the matrix produces high yields of dimers of l.486*7 In 
the present experiments, the course of the photolysis of 1 at 
wavelengths appropriate to the absorption maxima between 299 
and 322 nm8 in glassy preparations at 77 K was monitored either 
by determining the relative yields of monomeric and dimeric9 
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products obtained upon melting the matrix or by following the 
decline of the EPR signal intensity. In a typical run (diethyl 
ether-methylcyclopentane glass, 120 min of irradiation with 
Rayonet "3000 A" lamps of a sample of 1 that had been prepared 
by photolysis of 3 with "3500 A" lamps), an absolute yield of 44% 
of monomeric products was obtained, which consisted of 93% 
enyne 2, identified by isolation and spectroscopic comparisonlo 
with an independently synthesized authentic sample," and OS-1% 
each of minor products, of which we have identified three resulting 
from formal disproportionation (1 -isopropylcyclopentene, iso- 
propylidenecyclopentane, and 6,6-dimethylfulvene) and two from 
hydrogen shift (5 and 6). Compound 5 also is a product of the 
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pyrolyses of 3 and 2,'* but it is noteworthy that the acyclic trienes 
7-9 which are prominent bond cleavage products of the latter 
reactions, did not constitute more than 0.1% of the present pho- 
tolysis mixtures. 

The most reasonable formal mechanism for the deep-seated 
rearrangement leading to the enyne 2 involves photochemical ring 
closure of biradical 1 to the bicyclo[3.l.0]hex-l-ene 10 (Scheme 
I) followed by a vinylidene cycloreversion to give 11, which then 
undergoes hydrogen shift. Whether the intermediates 10 and 11 
are ground- or excited-state species is not yet clear. For example, 
the carbene rearrangement 11 - 2 is an amply precedented 
thermal reaction at ordinary or elevated  temperature^,'^ but if 
the activation barrier of 8.6 kcal/mol ~ a l c u l a t e d . ' ~ ~ ~ ~  for the parent 
vinylidene - acetylene reaction applies here, the process should 
be immeasurably slow at 77 K. Either the barrier is lower,'& the 
shift is facilitated by quantum mechanical tunneling, or the overall 
reaction 10 - 2 occurs without relaxation to the ground vibronic 
state of 11. Similarly, the vinylidene cycloreversion step 10 - 
11 is a well-known photochemical reaction of methylenecyclo- 
propane,15 but until recently12 has had no thermal precedent. Thus, 
cleavage of 10 may occur before relaxation to the ground state. 
Alternatively, ground-state bicyclohexene 10 might be formed and 
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undergo secondary photolysis. However, as was established by 
light-filtering experiments, this pathway would require that the 
absorption spectrum of 10 extend toward the red as far as 315 
nm. 

Bicyclic hydrocarbon 4 is already known16 to be a minor product 
(1 5-2076) of the photolysis of diazene 3 at 77 K, where it probably 
arises from ring closure of the short-lived singlet state of biradical 
1. Compound 4 also seems to be formed in the present experiments 
as a photolysis product of triplet 1, but it cannot be a source of 
the other monomeric hydrocarbons under these conditions because 
it has only end absorption in the ultraviolet region, and is pho- 
tochemically stable to 3000-A radiation. 

A parallel study12 shows that the thermally produced (pre- 
sumably singlet) intermediate 1 uses the internal energy it has 
acquired at  400 OC for the exothermic destruction of the C4-C5 
bond. In contrast, the photochemically excited triplet 1 generated 
here uses its -90 kcal/mol of excitation energy to stitch up a weak 
C-C bond (C5-C6 of 10 and probably C1<4 of 4), a reaction that 
would be endothermic" in the ground state. 
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Although the thermal chemistry of the trimethylenemethane 
biradical 1 at  moderate temperatures is almost entirely inter- 
molecular (dimerization or cycloaddition with  olefin^),^ we have 
found a richly detailed set of novel intramolecular transformations 
at  higher temperature. 

Flash vacuum pyrolysis of the diazene 2 at temperatures above 
400 OC and pressures of 103-10-4 torr gave the products shown 
in Table I. Control experiments established the occurrence of 
the reactions 4 - 5 + 6 (+7?); 5 F= 6; 5,6, or 7 - 4; 5 or 6 - 
4 and 7 - 4-6. These processes were slow enough to permit the 
identification of the primary pyrolysis products as 4 and 7-9. 
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Table I. Products of Flash Vacuum Pyrolysisb of Diazene 2 
and Eneyne 9a-c 

% yield from reactant 

product diazene 2 enyne 9 

4 

5 A 
6 

7 

8 4 
9 

10 A 
I Id M 

10 31 

25 10 

30 10 

5 1 

10 32 

1 

0 6 

0 b 

a At 700 "C, 10-3-10-4 torr, residence time -0.02 s. Experi- 

Identified 
mental details given in supplementary material. 
wise noted, all products were identified by isolation. 
by gas chromatographic retention time. 

Unless other- 
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Scheme I shows proposed mechanisms for the formation of 4 and 
9, in which no attempt is made to decide the extremely subtle 
question of whether the actual pathways originate from the bi- 
radical 1 or the bicyclic hydrocarbon 3. 

The enyne 9 apparently arises by a route beginning with cy- 
clization of 1 to the bicycle[ 3.1 .O] hex- 1 -ene 12. This compound 
suffers thermal vinylidene cycloreversion to the carbene 13, which 
then undergoes a well-documented4 type of hydrogen shift. The 
possibility that the 12 - 9 reaction may be concerted cannot be 
evaluated on the basis of the present experiments. 

Reversal of the entire cyclization sequence was observed in the 
pyrolysis of the enyne 9 (Table I), which gave the same group 
of trienes 4-6 obtained from diazene 2. Another major product 
from 9 was toluene (8), which also was observed from diazene 
2, probably as a secondary product via 9. The formation of 8 can 
be rationalized by several mechanisms which we have not yet been 
able to distinguish experimentally. 

Products 10 and 11, although superficially seeming to resemble 
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