

0045-6535(94)00307-6

SYNTHESIS OF POLYFLUORINATED DIBENZO-p-DIOXINS

Haffer, U.; Rotard, W.*; Mailahn, W.

Institut für Wasser-, Boden- und Lufthygiene des Bundesgesundheitsamtes, Corrensplatz 1, D-14195 Berlin, Germany

ABSTRACT

Fluorinated dibenzo-p-dioxins (PFDD) have been selectively synthesized from fluorophenols and isolated by liquid-column- and thin layer chromatography. The structures were confirmed by IR, MS, HR-MS, ¹H-NMR and ¹⁹F-NMR-spectroscopy. Reaction times, melting points and the IR-absorption bands are presented for several PFDD's as well as ¹H- and ¹⁹F-NMR-spectra for two PFDD's and the mass-spectrum for 2,3,7,8- T_4FDD .

KEYWORDS: PFDD, synthesis, melting points, GC/MS, 19F-NMR, 1H-NMR, IR

INTRODUCTION

Polyhalogenated dibenzo-p-dioxins (PXDD) and -furans (PXDF) are well known as hazardous compounds. While a lot of information is available about the occurence and toxicity of chlorinated (PCDD) and brominated (PBrDD) dioxins there is nearly no information about PFDD. It can be assumed that in certain thermal processes in which organic and fluorine compounds coincide (e.g. industrial production of aluminium) PFDD/F may be generated. Thermolytic reaction of hexafluorobenzene in the presence of air shows the formation of O_8FDD . To investigate the formation of PFDD, their occurence and behaviour in the environment, PFDD-reference compounds were synthesized. Only the synthesis of 2,3-D₂FDD (from 1,2,4,5-tetrafluorobenzene and catechol) [1], 2,7-D₂FDD (from potassium-1-bromo-4-fluoro-phenolate in methanol) [2] and O_8FDD (from pentafluorophenolate with copper powder at 300°C) [3] have been previously described.

EXPERIMENTAL

GC-MS analysis were carried out on a HP 5890 system using direct coupling (fused silica transfer-line 1.0 m x 0.25 mm), split/splitless injection, retention gap (1 m x 0.52 mm fused silica deactivated tubing) and a 30 m DB-5 (0.33 mm i.d.; 0.3 μ m f. th.) fused silica capillary column with a head pressure of 77 kPa; carrier gas

^{*:} author to whom correspondence should be addressed

helium and the following temperature program 50 °C, 2 min, 5 °C/min, 140 °C, 30 °C/min, 270 °C, 15 min. The GC-MS transferline temperature was 270 °C. The mass-spectra were obtained by an INCOS 50, Finnigan MAT in the EI- and total ion chromatogramm (TIC) mode, 70 eV. High resolution mass spectrometry was carried out on a VG AutoSpec, with direct coupling to a HP 5890 II (30 m DB-5, 0.25 mm i.d., 0.25 μ m f.th.), with a resolution of 15 000. Infrared spectra were obtained by an EFS 48, Bruker, ¹H-NMR-spectra were determined in deutero-dichloromethane on a AM 270, Bruker and ¹⁹F-NMR-spectra in deutero-chloroform on a FX 90 Q, Joel. 2,4-Di-, 2,5-Di-, 2,3,5-Tri-, 2,4,5-Tri- and 2,3,5,6-Tetrafluorophenoles were obtained from Aldrich, Steinheim, Germany; Pentafluorophenole from Fluka, Neu-Ulm, Germany; 2,3,6-Tri- and 2,3,4-Trifluorophenoles from Yarsley, Wolverhampton, England and 2,3-Di- and 2,6-Difluorophenoles from ABCR, Karlsruhe, Germany. All solvents were p.a. grade and obtained from Merck, Darmstadt, Germany.

RESULTS AND DISCUSSION

Like synthesizing PCDD's from chlorophenols [4], reaction of fluorophenols yield PFDD's.

Figure 1: synthesis of PFDD's from F_x-phenols

PFDD	FP	rt	yield	mp [°C]	
1,6-D₂FDD	2,6-D ₂ FP	12 h	5,4 %	163	
2,7-D ₂ FDD	2,5-D ₂ FP	3 d	2,9 %	174-176	
2,7-D ₂ FDD	2,4-D ₂ FP	2 d	43,5 %	174-176	
1,2,6,7-T₄FDD	2,3,4-T ₃ FP	6 d	13,3 %	167	
1,3,6,8-T₄FDD	2,3,5-T ₃ FP	8 d	12,0 %	-	
2,3,7,8-T₄FDD	2,4,5-T ₃ FP	2 d	17,5 %	183	
1,2,4,6,7,9-H ₆ FDD	2,3,5,6-T₄FP	6 d	10,6 %	133-134	
O ₈ FDD	PsFP	4 d	2,5.%	161	
FP: fluorophenol; rt: re	eaction time; mp: melti	ing point	4	4	

This reaction of fluorophenols involves an intermolecular nucleophilic aromatic substitution, followed by an intramolecular one, to give the corresponding PFDD's (Fig. 2).

Figure 2: Synthesis of PFDD's via nucleophilic aromatic substitution of polyfluorinated phenols

If there are two fluorine atoms in the ortho-position to the oxygene (biphenylether II, Fig. 2 and Fig. 3), rotation around the C-O-bond allows the formation of different products depending on which fluorine (F_a or F_b) will be removed by nucleophilic substitution in the next step.

Figure 3: Polyfluorinated biphenylether

This simple reaction has the advantage, that all starting compounds (except 2,3,4,5- and 2,3,4,6- tetrafluorophenol) are commercially available.

The reactions were carried out in a polar, aprotic solvent (to stabilize the ionic intermediate I, Fig. 2) in the presence of a base at elevated temperatures. Reaction time may vary up to 8 days (Tab. 1).

The resulting PFDD's were isolated from the reaction mixture by liquid-column- and, when necessary, thin layer chromatography with silicagel and n-hexane as eluent.

Fig. 4 - 7 show the ¹H-NMR and ¹⁹F-NMR-spectra of the symmetric 2,3,7,8-T₄FDD and the non-symmetric 2,7-D₂FDD.

Figure 4: 1H-NMR-spectrum of 2,3,7,8-T₄FDD

Figure 5: 19F-NMR-spectrum of 2,3,7,8-T₄FDD

Figure 7: 19F-NMR-spectrum of 2,7-D₂FDD

2,3,7,8-T₄FDD can be described as an AA'XX'-system, 2,7-D₂FDD as an A,B,C,X-system, where H_A and H_B have nearly the same chemical shift (Fig. 8).

Figure 8: NMR-system of 2,3,7,8-T₄FDD and 2,7-D₂FDD

Fig. 9 shows the mass-spectrum of $2,3,7,8-T_4FDD$. The fragmentation is analogous to that of the corresponding TCDD [5,6] but the intensities of the fragments are different.

Figure 9: EI-mass-spectrum of 2,3,7,8-T₄FDD

Fig. 10 shows the IR-spectrum of 2,3,7,8-T₄FDD and Tab. 2 presents the IR-absorption bands of 7 different PFDD's compared to 2,3,7,8-TCDD [6].

2,3,7,8-T₄FDD and O₈FDD show a lack of the aromatic ring breathing absorption band. All investigated PFDD's show no aromatic C-H-stretch absorption band and no aromatic C-F-absorption in the detected area. 2,7-D₂FDD shows an additional absorption band at 1137 cm⁻¹. The isomers can be distinguished by their IR-spectra.

IR-absorption- bands [cm ⁻¹]	2,3,7,8- T4CDD	2,3,7,8- T4FDD	2,7-D D ₃ FDD	1,2,6,7- T4FDD	1,6- D2FDD	1,2,3,4,6- P ₅ FDD	O,FDD	1,3,6,8- T4FDD
U _{C-H, ar}	3122, 3028		1		}	I	1	1
Vc=c, ar	1569,	1516s	1636w		1635w	1612w	1535	1647
	1493 1473 1464	1	1605w 1497s	1524m	1593m 1508s	1501s	 1501s	1605 1512s
	1457, 1394	ł	1447s	1485s	1477s	1474s	1477s	1454s
Uss; Ar-O-Ar' U.	1327s 1212e	1381w 1258s	1323 1254m	1339m 1242s	1319s 1254m	1292m 1250m	1354w 1157m	1227 1119 s
S. H. ar, in plane	1173	1173	1215m	1065s	1069s	1061s	1057s	1096
$\delta_{ m ar}$ ring-breathing	1115		1099m	1018s	1119w	1018m	1	m 666
Re.H. out of plane	876	906m	960m	798m	845w	;	-	841m
-	870	864m 	849m 802w		771m 706w	771w 		
Vc-ci, ar Vc-ci, ar Vc-F, ar	798	I	ł	I	1	ł	I	

`

Table 2, IR-absorption bands of PFDD's and 2,3,7,8-TCDD [6]

Ar: aromat ar: aromatic as': asymmetric s': symmetric δ : deformation U: strech m:medium s: strong --: no absorption detected measuring range: 400 - 4000 cm⁻¹

w: weak

Figure 10: IR-spectrum of 2,3,7,8-T₄FDD

ACKNOWLEDGEMENT

We like to thank our co-workers Mr. V. Schinz for the preparation of the IR-spectra and Mrs. D. Conrad for the preparation of the 1,2,3,4,6-P₅FDD-congenere; Dr. H.-J. Kroth, Technische Universität Berlin, for the preparation of the ¹H-NMR-spectra; Mr. J. Lenz, Freie Universität Berlin, for the preparation of the ¹⁹F-NMR-spectra.

REFERENCES

- 1 Kende AS, Wade JJ, Ridge D, Poland A. J. Org. Chem. 1974; 7:931-7
- 2 Baciu I, Penciu A. Rev. Chim. (Bucharest) 1969;20(5):305
- 3 Deniville L, Huynh AH. Bull. Soc. Chim. Fr. 1974;487-489
- 4 Buu-Hoi et al., J. Heterocycl. Chem. 1979;51:2273-2275
- 5 Safe S, Jamieson WD, Hutzinger O.Anal. Chem. 1975;47,2;327
- 6 Pohland AE, Yang GG. J.Agr.FoodChem. 1972;20,6;1093