None of the compounds tested, of whatever structure, had any effects on nicotine convulsions or arecoline tremor, i.e., they had no central H- or M-cholinolytic activity.

These hydroxyindolylacetone derivatives have thus shown anticonvulsant activity in respect of antagonism to corazole and electroshock. Of these compounds, one (II) is superior to Zarontin in its anticonvulsant activity and protective index.

LITERATURE CITED

- 1. M. Ya. Mikhel'son and Ya. R. Savinskii, Farmakol. Toksikol., 18, No. 3, 28-33 (1955).
- 2. G. Heller, Ber. Chem. Ges., 53, 1545-1551 (1920).
- 3. F. D. Poppo, J. Heterocycl. Chem., 19, 589-592 (1982).
- 4. F. Braude and H. G. Lindwall, J. Am. Chem. Soc., 55, 325-327 (1933).
- 5. P. J. Islip and A. C. White, J. Chem. Soc., No. 4, 1201-1204 (1964).
- 6. C. S. Franklin and A. C. White, J. Chem. Soc., No. 2, 1335-1337 (1963).
- 7. H. Hellmann and I. Löschman, Ber. Chem. Ges., 87, 1684-1690 (1954).
- 8. J. T. Litchfield and F. Wilcoxon, J. Pharmacol. Exp. Ther., 96, 99-113 (1949).
- 9. E. A. Swinyard, W. C. Brown, and L. S. Goodman, J. Pharmacol. Exp. Ther., 106, 319-330 (1952).
- 10. G. Tacconi, P. P. Richetti, and G. Desimoni, J. Parkt. Chem. 135, 339-344 (1973).
- 11. J. E. P. Toman, E. A. Swinyard, and L. S. Goodman J. Neurophysiol., 9, 231-240 (1946).

SYNTHESIS AND LOCAL ANESTHETIC ACTIVITY OF 6-[\alpha-AMINO-\alpha-PHENYLALKYL] CHROMANS

V. K. Daukshas, O. Yu. Pyatrauskas,

UDC 615.216.2:547.814].012.1

Yu. Yu. Ramanauskas, I. Yu. Yautakene,

V. V. Lapinskas, and R. S. Maskalyunas

Local anesthetic activity is exhibited by the $6-(\omega-\text{amino}-\omega-\text{phenylalkyl})-1,4-\text{benzodiox-anes}$ [3]. Therefore, in order to investigate possible new local anesthetic agents we synthesized and studied previously unknown chroman derivatives whose structures are similar to the indicated derivatives of 1,4-benzodioxane.

We obtained the 4 (α -amine- ω -phenylalkyl)chromans (IIIa-d) by reducing sodium in an n-butanol solution of oximes (IIa-d) synthesized by reacting the previously known 6-(ω -phenylacyl)chromans (Ia-d) [2, 7, 9] with hydroxylamine HCl in a pyridine solution.

Ia-d;
$$X = C = 0$$
; IIa-d: $X = C = NOH$; IIIa-d: $X = CH - NH_2$ a: $n = 0$; b $n = 1$, c: $n = 2$; d: $n = 3$.

The IIIa-d amines were precipitated in the form of hydrochlorides. Inasmuch as the IIIc amine hydrochlorides turned out to be only slightly water soluble, we also obtained the amine lactates. However, the IIId amine lactate was also only slightly soluble.

Stretch vibrations of the HO-group in the IR spectra of all of the IIa-d oximes were manifested at 3250 cm⁻¹. However, the UV spectrum of the IIa oxime which has both aromatic rings conjugated with a C=NOH bond, was distinctive by a bathochromatic shift in the long-wave absorption band. There were no significant differences between the UV spectra of any of the IIIa-d amine hydrochlorides. The structure of the synthesized compounds was confirmed by PMR spectral data (Table 1).

The IIIa-c chroman derivatives were found to exhibit the highest degree of local anesthesia activity, but they were also found to be more toxic and more irritating to the tissue than the known derivatives of 1,4-benzodioxane which have a similar structure [3].

V. Kapsukas Vilnius University. Translated from Khimiko-farmatsevticheskii Zhurnal, Vol. 21, No. 2, pp. 170-174, February, 1987. Original article submitted September 17, 1985.

TABLE 1. Compounds IIa-d and IIIa-d

		53	24	86	74	80	83	61 92	40
0	z 	5,53	5,24	4,98	4,74	5 5,08	3 4,83	7 4,61	5 4,40
ed, 9	ct	-	1	1	1	12,85	12,23	9, = 1	
Calculated, %	=	5,97	6,41	6,81	7,17	6,58	6,96	7,30	7,60
Ca	Ö	\$75,87	76,38	76,84	77,26	69,68 6,58	70,46	71,16 7,30	71,79 7,60 11,15
	Empirical formula	5,33 C ₁₆ N ₁₅ NO ₂ 6 75,87 5,97	C ₁₇ H ₁₇ NO ₂ 76,38 6,41	C ₁₈ H ₁₉ NO ₂ 76,84 6,81	C ₁₉ H ₂₁ NO ₂ 77,26 7,17	C ₁₆ H ₁₇ NO. HČI	70,22 7,26 11,95 5,08 C ₁₇ H ₁₉ NO. 70,46 6,96 HCl	76,86 7,50 11,91 4,65 $\frac{C_{18}I_{21}NO}{HCI}$ 71,16 7,30 11,67 70,35 7,39 - 3,70 $\frac{C_{18}H_{21}NO}{C_{14}C_{14}}$ 70,57 7,61 -	4,35 C ₁₉ H ₂₁ NO. 71,79 7,60 3,84 C ₁₉ H ₂₃ NO. 71,13 7,87 C ₃ H ₆ O ₃
	z	5,33	4,94	4,67	4,57		5,08	4,65	3,84
%	ij	1	1	1		69,71 6,40 12,56 5,36	11,95	16,11	71,52 7,68 10,81 4,35 71,02 7,98 — 3,84
Found, %	=	6,00	6,75	7,03	7,16	6,40	7,26	7,50	86,7
	Ü	75,68	76,59	76,68	77,33	12,69	70,22	70,86	71,52 7,68
	PMR spectrum, 6, ppm	1,999 (CH ₂) ^a , 2,72t (ArCH ₂) ^a , 3,41t (OCH ₂) ^a , 6,65d (8-H) ^b , 7,02—7,35 m (5,7-H), 7,30 s	(1.64 L), 3,123 (OH) 1,924 (CH ₂) ^a , 2,72 t (ArCH ₂) ^a , 4,07s. (ArCH ₂), 4,67 t (OCH ₂) ^a , 6,57d (8-H)b, 7,05—7,32 m (ArH), 4,68 t OH)	1,95 q (CH ₃) a, 2,71 t (ArCH ₂) a, 2,80—3,10 m (ArCH ₂) b, 10 t (OCH ₂) a, 6,65 d (8-H) b, 7,00—735 m, (ArH) 0 05 c (OH)	1,67—2,05m (CH ₂), 2,45—2,80m (ArCH ₂ ,-C—CH ₂), 4,10 t (OCH ₂), 6,59d (8-H)b, 6,96—7,10 m 6,7-H) 7,09° (CH ₂), 8,90° (OH ₂)	(9.711) , 7.925 , $(Ce^{11}6)$, 9.05 , (NH_2) , 2.551 $(ArCH_2)^{4}$, 1.775 (NH_2) , 2.551 $(ArCH_2)^{4}$, 4.855 , (NCH) 6.52 d $(8-H)^{6}$, 6.864 , 6.875 , 6.975	1,76s (NH ₂), 1,82 q (CH ₂) ² , 2,65 t (ArCH ₂) ³ , 2,70d (ArCH ₂) ³ , 3,92 t (NCH) ³ , 3,97 t (OCH ₂) ³ , 6,56 (6,H) ³ , 6,87d (5-H)c, 6,90—7,22 m (7-H),	99 1,0-1,3 m (WH ₂), 1,581,97 m (CH ₂), 2,47t 70,86 7,50 11, 87 (ArCH ₂) ^a , 2,57 t (ArCH ₂) ^a , 3,12-3,40 m (NCH), 22 3,92 t (OCH ₂) ^a , 6,57 d (8-H)b, 6,72-7,30 m 70,35 7,39 - (5,7-H), 7,17 s (C ₆ H ₅) ^d	1,09 t (NH) ^a , 1,55t (NH) ^a , 1,64—2,02 m (CH ₂), 2,56g (ArCH ₂) ^a , 3,14—3,47 m (NCH), 3,97 t (OCH ₂) ^a 6,55 ^d (8-H) ^b , 6,85—7,22 m (5,7-H), 6,99 s (C ₆ H ₆) ^d
UV spectrum	log e	4,48	4,52	4,38	4,43	4,49	3,44,9	3,87	4,12 3,80 3,21
UV spe	λmax. log e	210 244 273	212 268	211 266	212 265	210 237	8.53 8.33 8.33 8.33 8.33 8.33 8.33 8.33	235 1 285 1 285	207 281 7
	mp, C (solvent)	145—6 ethanol			57.—8 cyclo- nexane		220—1 ethanol	210—1 n-butanol 141—2 acetone	
%	Yield,	- 65	- 92	94	6	6	16	85	95
	Com-	IIa	IIb	IIc	PII	IIIa	III	IIIc	IIId

Note. a J = 6 Hz, b J = 9 Hz, C J = 2 Hz. dree base. Lactate.

TABLE 2. Acute Toxicity, Local Anesthetic Action, and Local Irritant Action of IIIa, b Amine Hydrochlorides and IIIc Amine Lactate

, and the second				Cond	Conduction anesthesia	esia	Local	Local irritant action	A STATE OF THE PROPERTY OF T
Compound	. Бъ₀. тg/ kg	LP ₆₀ .mg/kg Infiltration anesthesia	Surface anesthesia	minimum con- time required centration for to reduce acblocking nerve iton potential conductivity, to 50% of 10 mM solution, min		time required degree of i tion potential minion by from 50 to a 1% solution, min	7 g	average tissue- threshold tistiritating sue-irritating concentration, concentration, ϕ_0	threshold tissue-irritating concentration,
IIIa	$^{226}_{(189-270)}$	1,9	0	0,05	6,5	29	1,9	1,2	0,1
IIIb	$\frac{174}{(112 - 270)}$	3,4	0,04	0,07	10,0	30	1,3	2,3	0,2
IIIc)	$\frac{76}{(45-129)}$	භ	0	0,01	7,5	√15 h	1,7	1,4	0,2
Novocaine	570 (539 — 602)	0,	0	0,75	12,5	25	0,0	9'9	6,1
Trimecaine	391 (372 — 410)	2,9	0	0,75	6,5	23	1,2	3,6	0,1
Lidocaine	270 (204 — 356)	6,1	0,03	0,85	20,0	38	6,0	6,9	2,0
Pyromecaine	$\frac{300}{(287 - 313)}$	2,5	0,18	0,25	5,6	49	6,1	c	9,0 🖈
Dicaine	$\frac{44}{(35-5)}$	5,6	00,1	0,02	c,	>15 h	2,6	9,0	0,1

The acute toxicity of compounds IIIa-c was in direct proportion to a 0 to 2 increase in (n) methylene groups in their side chain. However, a symbatic increase in all types of local anesthetic and local irritant action did not occur. The local anesthetic properties of the IIIc amine hydrochloride differed little from those of local anesthetic agents used in medicine (Table 2).

The investigations undertaken indicate that the type of compounds examined represents a potential source of new local anesthetics.

EXPERIMENTAL CHEMICAL

UV spectra were recorded on a Specord UV-VIS instrument (GDR) in ethanol. IR spectra were recorded on a UR-20 instrument (GDR) in petroleum jelly. PMR spectra were recorded on a Tesla BS487C instrument (Czechoslovakia) with an operating frequency of 80 MHz in CCl₄. The PMR spectrum of the oxime IIa was recorded in CDCl₃. TMS was used as the internal standard.

The characteristics and yields of the new compounds are listed in Table 1.

 $6-(\omega$ -phenylacyl)chroman Oximes (IIa-d). A mixture of 0.04 moles of the ketones of Ia-d [2, 7, 9], 11.6 g (0.16 mole) of hydroxylamine HCl, and 120 ml of pyridine was heated for 4 h at 100°C, cooled, and decanted into water. This was followed by ether extraction and distillation of the ether from the dried extract.

 $6-(\alpha-\text{Amino-}\omega-\text{phenylalkyl})$ chromans (IIIa-d). A 4.6 g (0.2 mole) portion of metallic sodium was added in pieces to a solution of 0.025 mole of IIa-d oximes in 70 ml of n-butanol at the solution's bp temperature. After the sodium was dissolved the mixture was cooled, acidified with HCl, and concentrated in a vacuum. The residue was made alkaline with an aqueous solution of NaOH, extracted by ether and passage through gaseous anhydrous HCl (or by the addition of lactic acid). The hydrochlorides (or lactates) of the IIIa-d amines precipitated into the dried ether extract.

EXPERIMENTAL PHARMACOLOGICAL

The IIIa, b amines were studied in the form of their hydrochlorides and the IIIc amine was examined in the form of a lactate. Acute toxicity upon subcutaneous injection in white mice was determined by the Litchfield and Wilcoxon method as modified by Roth [1]. Infiltration anesthesia was studied in guinea pigs by the method in [5]. Surface anesthesia was tested on rabbit cornea by the method in [4], and conduction anesthesia was tested on isolated frog sciatic nerve by recording the action potential and minimum concentrations needed to block nerve conductivity [10]. Local irritant properties were tested on white rats by method [6] as modified in [8].

LITERATURE CITED

- 1. M. L. Belen'kii, Elements of Qualitative Pharmacological Effect Analysis [in Russian], 2nd edn., Leningrad (1963), pp. 81-106.
- V. K. Daukshas, P. G. Gaydyalis, E. B. Udrenayte, et al., Khim.-farm. Zh., No. 9, 1069-1072 (1985).
- 3. V. K. Daukshas, Yu. Yu. Ramanauskas, É. B. Udrenayte, et al., Khim.-farm. Zh., No. 7, 816-820 (1984).
- 4. V. V. Zakusov, Pharmacology of the Nervous System [in Russian], Leningrad (1953), pp. 178-191.
- 5. E. Bülblring and J. Wajda, J. Pharmacol. Exp. Ther., 85, 78-84 (1945).
- 6. I. O. Hoppe, E. B. Alexander, and L. C. Miller, J. Am. Pharm. Ass., 39, 147-151 (1950).
- 7. G. Illuminati, L. Mandolini, and B. Masci, J. Chem. Soc., 97, 4960-4966 (1975).
- 8. P. P. Koelzer and K. H. Wehr, Arzneim.-Forsch., 8, 181-190 (1958).
- 9. S. V. Kostanecki, V. Lampe, and Ch. Marchalk, Ber. Dtsch. Chem. Ges., 40, 3660-3669 (1907).
- 10. P. Seeman, M. Chau-Wong, and S. Moyyen, Can. J. Physiol. Pharmacol., 50, 1181-1192 (1972).