A ¹H-NMR METHOD FOR THE DETERMINATION OF ENANTIOMERIC EXCESS AND ABSOLUTE CONFIGURATION OF *CIS*-DIHYDRODIOL METABOLITES OF POLYCYCLIC ARENES AND HETEROARENES

Derek R. Boyd,*a Narain D. Sharma,^a Rosemary Boyle,^a R. Austin S. McMordie,^a Jagdeep Chima,^b and Howard Dalton.^{*b}

^aSchool of Chemistry, The Queen's University of Belfast, Belfast BT9 5AG, U.K. ^bDepartment of Biological Sciences, University of Warwick, Coventry CV4 7AL, U.K.

Keywords: Bacterial oxidation; *Pseudomonas putida* UV4; *cis*-dihydrodiol stereochemistry; benzofuran. **Abstract:** Metabolism of benzofuran and 2,3-dihydrobenzofuran by *P.putida* UV4 each yielded *cis*-dihydrodiols; catalytic hydrogenation of the *cis*-dihydrodiols obtained from polycyclic arenes and azaarenes followed by diMTPA ester formation (using both R- and S-MTPA) on the *cis*-tetrahydrodiols formed the basis of a ¹H-NMR method for the determination of both enantiomeric excess and absolute configuration.

Metabolism of polycyclic aromatic hydrocarbons (e.g. naphthalene^{1,2}, anthracene^{3,4}, phenanthrene^{3,5}, benz(a)anthracene^{6,7} and benzo(a)pyrene⁶) and aromatic heterocycles (e.g. quinoline⁸, isoquinoline⁸, quinoxaline⁸, quinazoline⁸, dibenzofuran⁹ and dibenzothiophene¹⁰) by bacteria (*Pseudomonas putida* or a *Beijerinckia* species) has resulted in the formation of *cis*-dihydrodiol bioproducts. As part of a continuing biotransformation programme using heterocyclic substrates and a mutant strain (UV4) of the bacterium *P.putida*, the *cis*-dihydrodiol **1** has been isolated as a new major metabolite of benzofuran without any evidence for the formation of the isomeric *cis*-dihydrodiol **2**. The latter bioproduct was, however, isolated after addition of either 2,3-dihydrobenzofuran to growing cultures of the same bacterium. Formation of *cis*-dihydrodiol **2** from 2,3-dihydrobenzofuran is consistent with a sequence involving benzylic hydroxylation to form intially, 3-hydroxy-2,3-dihydrobenzofuran (an arene hydrate of benzofuran), followed by *cis*-diol formation at the 4,5-bond to yield a transient triol intermediate **3** which undergoes rapid dehydration (Scheme 1). A similar rationalization has previously¹¹ been applied to the formation of *cis*-dihydrodiol **4** when 1,2-dihydronaphthalene was metabolized. The present observation is thus the second example of a monol ---> triol ---> diol metabolic sequence to be reported from biotransformations using *P.putida*.

In contrast with the *cis*-dihydrodiol metabolites of PAHs¹⁻⁷, where absolute configurations and optical purity values were generally obtainable by stereochemical correlation methods, very few stereochemical analyses have been carried out on *cis*-dihydrodiol metabolites of heterocycles. The isolation of *cis*-dihydrodiol derivatives of benzofuran (1 and 2) during the present study, allied to earlier work on the biotransformation of heterocycles by *P.putida*,⁸ prompted the quest for a widely applicable and convenient method for the determination of enantiomeric excess (e.e.) and absolute configuration. A general method based on ¹H-NMR spectral analysis has now been applied to the *cis*-dihydrodiols of PAHs (4, 5, 6) and hetero-arenes (1, 2, 7, 8, 9) (Table 1).

We have demonstrated the value of di- α -methoxy-(α -trifluoromethyl)phenylacetic acid (diMTPA) esters of stable 4-phenyl-1,2,4-triazoline-3,5-dione cycloadducts in the stereochemical analysis (e.e. and absolute configuration) of *cis*-dihydrodiol metabolites of substituted benzene substrates from *P.putida*. ¹² Attempts to form the diMTPA esters of *cis*-dihydrodiols directly, in both the substituted benzene series¹² and in the bicyclic series (1,2,4-10) generally resulted in aromatization of the dihydrodiols. Catalytic hydrogenation of *cis*-dihydrodiols (A) (Pd/C,H₂, MeOH or EtOAc, r.t.) provided the more stable *cis*-tetrahydrodiols (B) (Scheme 2). With the exception of the *cis*-tetrahydrodiol from compound 10 (which decomposed during attempted diMTPA ester formation) the *cis*-tetrahydrodiols 1, 2, 4-9, (B) upon treatment with the appropriate enantiomer of MTPA-chloride in pyridine (16h, r.t.) all yielded the corresponding diMTPA esters C in good yield (>90%).

Scheme 2 illustrates the sterochemical relationship between a single enantiomer of *cis*-dihydrodiol ($A_{R,S}$ or $A_{S,R}$), the corresponding *cis*-tetrahydrodiol ($B_{R,S}$ or $B_{S,R}$) and the diMTPA diastereoisomer formed using (R)-MTPA ($C_{R,S,R',R'}$, or $C_{S,R,R',R'}$). The diastereoisomeric excess of the diMTPA esters (C), which provides an indirect measure of the enantiomeric excess of the original *cis*-dihydrodiol metabolite (A), was readily determined from the MeO singlets in the ¹H-NMR spectrum. Thus, the diMTPA esters derived from naphthalene (4C), benz (a)anthracene (5C,6C) and quinoline (7C,8C) (where both enantiomers were available by chemical synthesis¹³)

cis-Tetrahydrodiol	diMTPA Esters ¹ H-NMR data ^a			cis-Dihydrodiol		
Compound				[α] D ⁰	% e.e. ^b	Absolute
	δ _H Α	δ _Η - δ _Η Α Β				Configuration
4C ^c 4C ^d	6.33 6.47	0.79 0.94	4A _{R,S}	+246 (CHCl ₃)	> 98	1R, 2S
5C ^d 5C ^c	6.56 6.44	0.99 0.85	5A _{S,R} e	-37 ^e (THF)	> 98 ^e	8S, 9R ^e
6C ^c 6C ^d	6.62 6.76	0.95 1.07	6A _{R,S}	+361 (THF)	> 98	11R, 10S
7C ^c 7C ^d	6.30 6.43	0.73 0.83	7A _{R.S}	+220 (THF)	> 98	5R, 6S ^f
8C ^c 8C ^d	6.56 6.57	0.90 0.94	8A _{R,S}	+45 (MeOH)	> 98	8R, 7S ^f
9Cc 9Cg	6.56 6.56 ^g	0.82 0.88g	9A _{R,S}	+210 (MeOH)	> 98	5R, 6S ^f
1C ^{h,i} 1C ^{j,i}	6.37 6.47j,i	0.86 0.96j,i	1A _{Sⁱ,S}	-35 (MeOH)	> 98	7S, ⁱ 6S ^f
2C ^c 2C ^g	6.03 6.23g	0.58 0.78g	2A _{R,S}	+16 ^k (MeOH)	ca.85	4R, 5S ^f

Table 1. ¹H-NMR spectral data for the *cis*-tetrahydrodiol diMTPA esters (C); optical rotation, enantiomeric excess, and absolute configuration of the *cis*-dihydrodiols (A)

^aCDCl₃ solvent; ^bdetermined from the relative peak areas of OMe signals in each diastereoisomer (C); ^cR,S,R',R' isomer; ^dS,R,R',R' isomer; ^echemically synthesised sample of the opposite configuration to the bacterial metabolite; ^fpreviously unreported absolute configuration; ^gobtained using the R,S,S',S' isomer which is equivalent to the S,R,R',R' isomer in the ¹H-NMR spectrum; ^hS,S,R',R' isomer; ⁱdue to the Sequence Rule priorities the configuration at C-7 is [S] and thus the trend observed is still consistent; ^jobtained using the S,S,S',S' isomer which is equivalent to the R,R,R',R' isomer; ^kminimal value due to compound instability.

showed discrete MeO signals for both diastereoisomers in each case. This readily confirmed that the *cis*-dihydrodiol metabolites 4, 5, 6, 7 and 8 were enantiomerically homogeneous (> 98% e.e.).

The cis-dihydrodiol metabolite 2 obtained from 2,3-dihydrobenzofuran was, by the latter method, found to be ca. 85% e.e. The total absence of the MeO-signals corresponding to one of the two possible diastereoisomers of 1C and 9C was consistent with e.e. values of > 98%. Whether or not the diastereoisomer $1C_{R,S,R',R'}$ (or $9C_{R,S,R',R'}$) (obtained from R-MTPA) could be unequivocally distinguished from the $1C_{S,R,R',R'}$ (or $9C_{S,R,R',R'}$) diastereoisomer by ¹H-NMR spectroscopy was investigated. Use of (S)-MTPA allowed the synthesis of $1C_{R,S,S',S'}$ (or $9C_{R,S,S',S'}$) diastereoisomers from the corresponding cis-dihydrodiol metabolites which are spectrally indistinguishable from the $1C_{S,R,R',R'}$ (or $9C_{S,R,R',R'}$) diastereoisomers but readily distinguishable from the $1C_{R,S,R',R'}$ (or $9C_{R,S,R',R'}$) diastereoisomers on the basis of MeO and other signals. Since the diMTPA diastereoisomers (10C) could not be synthesised, the optical purity of metabolite 10A ([α]-2.5^o)⁸ was determined (< 5% e.e.) by using the chiral lanthanide shift reagent method (Eu(hfc)₃/CD₃CN) which rendered the allylic proton non-equivalent.

The absolute configurations of the *cis*-dihydrodiol metabolites of naphthalene (4),² benz(a)anthracene (5, 6)⁷, quinoline (7, 8)¹³, quinoxaline (9)¹³ and benzofuran (1)¹³ have been unequivocally assigned by stereochemical correlation methods. For these *cis*-dihydrodiol metabolites, the R-configuration at the benzylic centre was associated with a smaller difference in δ values for protons H_A and H_B ($\delta_{H_{\overline{A}}} \delta_{H}$) as shown in Table 1. The diMTPA esters of *cis*-tetrahydrodiols 4B, 5B, 6B, 7B and 8B having an S benzylic configuration were found to have a larger difference in δ values ($\delta_{H_{\overline{A}}} \delta_{H_{\overline{B}}}$). Where benzylic proton signals were distinguishable, it was observed that the values ($\delta_{H_{\overline{A}}}$) were smaller for the benzylic R configuration. This consistent trend allowed the *cis*-dihydrodiol 2 to be tentatively assigned the absolute configuration shown (Table 1).

From analysis of the ¹H-NMR data (Table 1), it is evident that (a) the *cis*-dihydrodiols of polycyclic arenes or heteroarenes (including the new metabolites **1**, **2** and **8** reported here) are formed with e.e. values over the range < 5 to >98% despite previous reports^{2,4,5,7} of exclusive formation of homochiral *cis*-dihydrodiols of PAHs. (b) The benzylic R and non-benzylic S configuration previously reported for *cis*-dihydrodiols of PAHs is generally preferred in diols derived from heteroarenes (**1**, **2**, **7**, **8**, **9**) although exceptions (e.g. **10**) may occur.

Acknowledgement. We thank the SERC (Biotechnology Directorate) (NDS, JC), the DED/TBNI (NDS) and DENI (RB and RASMcM) for financial support.

References

- 1. Jerina, D.M., Daly, J.W., Jeffrey, A.M. and Gibson, D.T. Arch. Biochem. Biophys., 1971, 142, 394.
- 2. Jeffrey, A.M., Yeh, H.J.C., Jerina, D.M., Patel, T.R., Davey, J.F and Gibson, D.T. <u>Biochemistry</u>, 1975, <u>14</u>, 575.
- Jerina, D.M., Selander, H., Yagi, H., Wells, M.C. Davey, J.F. Mahadevan, V. and Gibson, D.T. J. Am. Chem. Soc., 1976, 98, 5988.
- Akhtar, M.N., Boyd, D.R., Thompson, N.J., Koreeda, M., Gibson, D.T., Mahadevan, V.and Jerina, D.M. <u>J. Chem. Soc., Perkin Trans.</u> 1, 1975, 2506.
- Koreeda, M., Akhtar, M.N., Boyd, D.R., Neill, J.D., Gibson, D.T. and Jerina, D.M. <u>J. Org. Chem.</u>, 1978, <u>43</u>, 1023.
- 6. Gibson, D.T., Mahadevan, V., Jerina, D.M., Yagi, H. and Yeh, H.J.C. Science, 1975, 189, 295.
- Jerina, D.M., van Bladeren, P.J., Yagi, H., Gibson, D.T., Mahadevan, V., Neese, A.S., Koreeda, M. Sharma, N.D. and Boyd, D.R. J. Org. Chem., 1984, 49, 3621.
- Boyd, D.R., McMordie, R.A.S., Porter, H.P., Dalton, H., Jenkins, R.O. and Howarth, O.W. <u>J. Chem. Soc. Chem. Commun.</u>, 1987, 1722.
- 9. Cerniglia, C.E., Morgan, J.C. and Gibson, D.T. Biochem. J., 1979, 180, 175.
- 10. Laborde, A.L. and Gibson, D.T. Appl. Environ. Microbiol., 1977, 34, 783.
- Boyd, D.R., McMordie, R.A.S., Sharma, N.D., Dalton, H., Williams, P. and Jenkins, R.O. J. Chem. Soc. Chem. Commun., 1989, 339.
- 12. Boyd, D.R., Dorrity, M.R.J., Hand, M.V., Malone, J.F., Sharma, N.D., Dalton, H., Gray, D.J. and Sheldrake, G.N. J. Am. Chem. Soc., 1991, 113, 666.
- 13. Boyd, D.R., Sharma, N.D., Boyle, R. and McMordie, R.A.S. Unpublished data.

(Received in UK 18 December 1991)