Ethyl 2-nitroacetoacetate as a new synthetic equivalent of ethoxycarbonylnitrile oxide

V. P. Kislyi,* A. L. Laikhter, B. I. Ugrak, and V. V. Semenov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: +7 (095) 135 5328

It was shown that ethyl 2-nitroacetoacetate is a synthetic precursor of ethoxycarbonylnitrile oxide as well as of isoxazole- and isoxazoline-3-carboxylic acids and their esters. The elimination of acetic acid from ethyl 2-nitroacetoacetate occurs in a mixture of acetic acid and acetic anhydride in the presence of strong mineral acids, *e.g.*, H_2SO_4 , at room temperature and gives isoxazolines in yields of up to 85-91%.

Key words: ethoxycarbonylnitrile oxide, isoxazoles, isoxazolines.

The efficient procedure for the nitration of carbonyl compounds in a two-phase system¹ makes it possible to obtain functional derivatives of α -nitroketones in considerable amounts. One of the main directions of the decomposition of these nitroketones in acid media is the formation of nitrile oxides,² which serve as intermediates in the syntheses of isoxazoles, oxadiazoles, and heterocycles of other types.

$$CH_{3}COCH_{2}-X \xrightarrow{NO_{2}^{+}} CH_{3}COCH-X \xrightarrow[I]{-CH_{3}COOH} X-C \equiv N \rightarrow C$$

Ethoxycarbonylnitrile oxide (ECNO) (1) and its adducts with alkenes (2) or alkynes (3), *i.e.*, isoxazolines (4) or isoxazoles (5), are useful synthetic intermediates, in particular, in the syntheses of γ -hydroxy- α -amino acids³⁻⁵ and α -ketocarboxylic acids or their oximes.⁶ Furthermore, several isoxazoline-3-carboxylic acids are of special interest as physiologically active compounds.⁷ In a review (Ref. 8), ECNO was called "an underestimated synthon in organic chemistry".

The following methods for generating ECNO are known: in basic media from the respective chloroxime⁹ or nitroacetic ester¹⁰ and with acid catalysis from nitroacetic ester¹¹ or nitromalonic ester.¹² However, there remains interest in the elaboration of procedures for synthesizing isoxazolines and in finding new sources of ECNO based on available raw materials.¹²

Previously,¹³ the transformation of ethyl 2-nitroacetoacetate (ENA) under mild conditions (AcOH, 1 h, ~20 °C) to bis(ethoxycarbonyl)furoxane **6** was reported. The formation of ECNO as the intermediate was postulated, but adducts with alkenes were not obtained.

The unusually mild conditions of this reaction and the availability of ENA^{13} prompted us to study the possibility of using ENA as a new synthetic analog of ECNO. For example, decomposition of ENA in the presence of alkenes 2a-g or alkynes 3a-c resulted in the respective isoxazolines 4a-g or isoxazoles 5a-c(Scheme 1, Table 1).

These reactions with alkenes containing electronwithdrawing substituents normally proceed with very high yields. However, the reactions with alkenes containing electron-donating substituents require greater amounts of catalysts and/or longer reaction times, while the yields of the products are much lower. For example, the yield of compound **4f** is as low as 30 %, and the

4a—f, **5a**—c: R = Et; **4g**: R = H; **2a**, **4a**: $R^1 = EtOOC$, $R^2 = H$; **2b**, **4b**: $R^1 = NC$, $R^2 = H$; **2c**, **4c**: $R^1 = EtOOC$, $R^2 = Me$; **2d**, **4d**: $R^1 = MeCOOCH_2$, $R^2 = H$; **2e**, **4e**: $R^1 = BrCH_2$, $R^2 = H$; **2f**, **4f**: $R^1 = Me(CH_2)_3$, $R^2 = H$; **2g**, **4g**: $R^1 = Ph$, $R^2 = H$; **3a**, **5a**: $R^1 = H$, $R^2 = H$; **3b**, **5b**: $R^1 = MeOOC$, $R^2 = MeOOC$; **3c**, **5c**: $R^1 = H$, $R^2 = CF_3(OCF_2CF_2)_2OCF_2$

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 103-105, January, 1994.

1066-5285/94/4301-98 \$12.50 © 1994 Plenum Publishing Corporation

Com- pound	<u>Alkene</u> ENA ratio	τ/h ^a	Amor of H ₂ S (mol.	unt B .p./°C (<i>p</i> /Torr) O ₄ [M.p./°C] %)	Yield ^b (%)
 4a	1.1	3	30	100-105(0.1)	91
4b	1.1	3	15	80(0.1)	85
4c	1.05	3	30	110(0.1)	63
4d	1.2	8	45	100(0.05)	70
4e	1.3	8	30	[52—54]	85
4f	2.0	72	45	80(0.07)	18
$4g^c$				[108—109]	12
5a	8	30		45-50(0.5)	70
5b	1.1	3	30	120(0.5)	82
5c	1.5	48	30	110(0.5)	45 ^d

Table 1. Yields of cycloaddition products

 $a \tau$ is the reaction time. ^b The yields are given with respect to the isolated product. ^c See Experimental. ^d Yield according to GLC-MS data.

synthesis of compound **4g** must be performed by a modified procedure involving the preparation of a sodium salt of ENA. Such alkenes as *tert*-butyl vinyl ether, 2-methoxypropene, or vinyl acetate do not undergo this reaction at all but rather undergo resinification under these conditions. Some alkenes (cyclohexene, ethyl β , β -dimethylacrylate, tri- and tetrachloroethylene, butyndiol diacetate) do not form adducts but are stable under the reaction conditions due to their known low activity in the 1,3-dipolar cycloaddition.

The conditions required for generating ECNO from ENA are much milder than those for the acid-catalyzed generation of ECNO from other precursors.^{11,12} It should

Table 2. ¹H NMR chemical shifts and coupling constants

Russ. Chem. Bull., Vol. 43, No. 1, January, 1994

be noted that the reaction with alkenes is regiospecific and gives only 5-substituted isoxazolines, whereas the reaction with perfluoro-2,5,8-trioxanon-1-ylacetylene (3c) results in mixtures of 4- and 5-substituted isoxazoles (in a ratio of 10 : 1, respectively, according to GLC-MS data).

Unlike the method for synthesizing isoxazoles from ECNO under alkaline conditions, where the reaction with electron-deficient alkenes occurs in low yields,¹² the method proposed by us makes it possible to synthesize isoxazoles with electron-withdrawing substituents more efficiently.

The structures of the compounds obtained were confirmed by ${}^{1}H$ and ${}^{13}C$ NMR spectral data (Tables 2 and 3).

Experimental

¹H NMR spectra were obtained on a Bruker WM-250 spectrometer (250.13 MHz). ¹³C NMR spectra were obtained on a Bruker AM-300 instrument (75.47 MHz). ENA and its sodium salt were prepared by the known procedures.¹ All of the unsaturated compounds were distilled just before use.

General procedure for the decomposition of ENA (for all isoxazolines 4a--g, 5a--c, except 4g and furoxane 6). ENA (3.5 g, 2.95 mL, 0.02 mol) was added to an AcOH--Ac₂O (5 : 1) mixture (10 mL) containing an alkene (0.02--0.04 mol, see Table 1), and then a catalytic amount of H_2SO_4 was added. The mixture was stirred and left to stand at 20 °C. After the reaction was completed, the mixture was poured into water and extracted with chloroform. The chloroform extract was washed with water and dried with Na₂SO₄. Chloroform was evaporated, and the residue was distilled.

Bis(ethoxycarbonyl)furoxane (6). ENA (3.5 g, 2.95 mL, 0.02 mol) was added to an AcOH $-Ac_2O$ (5 : 1) mixture

Com-				δ (<i>J</i> /Hz)		
pound	3-COOEt		H ^a (C-4)	H ^b (C-4)	H(C-5)	Other signals
	CH ₃	OCH ₂				
4a	1.23 t (7.1)	4.17 q (7.1)	3.39 dd (17.5, 9.3)	3.40 dd (17.5, 10.2)	5.12 dd (9.3, 10.2)	5-COOEt: 1.28 t (7.1, Me); 4.26 q (7.1, CH ₂)
4b	1.26 t (7.2)	4.25 q	3.47 dd (18.0, 6.8)	3.57 dd (18.0, 11.3)	5.38 dd (6.8, 11.3)	_
4 c	1.25 t (7.0)	4.20 q (7.1)	3.03 d (17.5)	3.65 d (17.5)		1.61 s (5-Me); 5-COOEt: 1.31 t (7.0, Me) 4.29 q (7.0, OCH ₂)
4d	1.29 t (7.2)	4.41 q (7.2)	2.98 dd (17.8, 7.9)	3.25dd (17.8, 9.5)	4.96 dddd (7.9, 9.5, 3.9, 5.6)	2.01 s (OOCCH ₃); CH ₂ OOC: 4.08 dd (12.1, 3.9); 4.19 dd (12.1, 5.6)
4e	1.38 t (7.2)	4.37 q (7.2)	3.38 dd (18.0, 7.5)	3.20 dd (18.0, 11.0)	5.07 dddd (7.5, 11.0, 4.5, 7.5)	CH ₂ Br: 3.43 dd (11.0, 4.5); 3.55 dd (11.0, 7.5)
4f	1.37 t (7.2)	4.32 q (7.2)	2.82 dd (17.5, 8.6)	3.22 dd (17.5, 10.9)	4.77 dddd (8.6, 10.9, 6.3, 7.2)	CH ₃ CH ₂ CH ₂ CH ₂ : 0.9 m, 1.4 m, 1.6-1.8 m
4g			3.25 dd (17.8, 9.1)	3.66 dd (17.8, 11.6)	5.87 dd (9.1, 11.6)	7.30-7.45 m (Ph); 5.30 br.s (COOH)
5a	1.38 t (7.2)		4.41 q (7.2)	6.75 d (1.8)	8.52 d (1.8)	
5b	1.32 t (7.1)		4.38 q (7.1)			3.87 s (4-MeOOC) 3.92 s (5-MeOOC)
6	1.42 t (7.1)		4.51 q (7.1)	_		4-EtOOC: 1.28 t (7.1, Me), 4.26 q (7.1, CH ₂)

Com	-			$\delta~(J_{i^3\mathrm{C},{}^1\mathrm{H}}/\mathrm{Hz})$			
poun	d <u>C-3</u>	C-4	C-5	3-COO	Me(OEt)	CH ₂ (OEt)	Other atoms
4a	150.96 td (7.1, 2.7)	37.37 td (139.7, 2.3)	79.69 dt (157.5, 2.6)	159.66 t (3.2)	13.86 qt (127.4, 2.0)	62.09 tq (151.3, 4.5)	Me(5-Et): 13.86 qt (127.4, 2.0); CH ₂ (5-Et): 62.00 tq (151.3, 4.5); 5-COO: 168.71 ttd (2.5, 3.5, 2.5)
4b	151.47 td (7.0, 2.8)	39.52 td (142.0, 3.3)	68.06 dt (166.6, 2.0)	158.59 t (3.3) (127.6, 2.6)	13.58 qt (141.1, 4.5)	62.41 tq	CN: 116.09 dt (3.8, 9.0)
4c	150.94 t (6.9)	43.25 tq (138.6, 4.3)	88.44 qt (7.0, 3.0)	160.04 t (3.2)	13.80 qt (127.5, 2.6)	62.12 tq (148.5, 4.4)	Me(5-Et): 13.95 tq (127.2, 2.1); CH ₂ (5-Et): 62.2 tq (150.3, 4.4); 5-COO: 170.59 qddd (3.0, 2.5, 6.3, 2.7); 5-Me: 23.28 qdd (130.0, 4.5, 6.7)
4d	151.26 td (7.1, 1.7)	35.54 t (137.3)	80.52 dt (154.8, 2.5)	160.15 t (3.4)	13.91 qt (130.5, 2.6)	61.96 qt (148.5, 4.4)	Me: 20.49 q (130.0); CH ₂ O: 64.16 tt (148.5, 8.0); COO: 170.39 tq (2.9, 6.8)
4 e	151.29 td (7.0, 2.0)	38.30 td (130.0, 3.5)	81.70 dt (156.4, 2.7)	160.35 t (3.2) (127.5, 2.6)	14.12 qt (148.6, 4.5)	62.29 tq	CH ₂ Br: 32.51 ttd (153.0, 8.5, 1.7)
4f	150.89 td (7.0, 2.0)	40.68 td (132.0, 3.0)	86.29 dt (158.0, 2.5)	162.55 c			Ph: 126.01, 129.02, 129.1, 139.11
4g	151.37 td (7.4, 2.4)	38.41 ddt (135.2, 138.5, 4.0)	84.17 dm (151.3)	160.95 t (3.4)	14.12 qt (130.1, 2.6)	61.91 tq (148.3, 4.5)	Bu: 13.89, 22.42, 27.22, 34.75
5a	155.64 dd (6.4, 4.0)	105.18 dd (187.4, 14.0)	156.0 dd (204.8, 11.0)	159.76 t (3.3) (127.5, 2.7)	14.06 qt (148.7, 4.5)	62.19 tq	¹⁷ O: 168.1 (ON); 356.4 (COO)
5b	154.26 s	117.57 s	158.64 s	157.70 t (3.2)	13.75 qt (127.6, 2.8)	62.91 tq (149.3, 4.5)	4-CH ₃ : 53.23 q (148.4); 4-COO: 155.39 q (4.0); 5-CH ₃ : 53.43 q (149.2); 5-COO: 159.97 q (4.0)
6	149.72 t (0.9)	107.70 t (1.0)	4-COO: 157.4 5-COO: 155.7	48 t (3.4) 74 t (3.3)	Me(4-Et): 14.12 qt (127.4, 2.6) Me(5-Et): 14.13 qt (127.4, 2.6)	CH ₂ (4-Et): 64.22 tq (149.0, 4.5) CH ₂ (5-Et): 66.08 tq (151.2, 4.5)	¹⁵ N: -1.0 (N), -15.7 (N-O); ¹⁴ N: -15.7 (N-O)

Table 3. ¹³C NMR chemical shifts and coupling constants

(10 mL) containing H_2SO_4 (0.5 mL), and the mixture was stirred for 1 h. The mixture was poured into water and extracted with chloroform. The extract was washed with water and dried with Na_2SO_4 . Chloroform was evaporated, and the residue was distilled. B.p. 160 °C (12 Torr). Yield 86 %.

5-Phenylisoxazoline-3-carboxylic acid (4g). The sodium salt of ENA (4.14 g, 0.02 mol) was dissolved in an AcOH—Ac₂O (5 : 1) mixture (10 mL) containing styrene (0.02—0.04 mol) and H₂SO₄ (0.04 mol), and the reaction mixture was kept for 1 h at 20 °C. Then the mixture was poured into water and extracted with chloroform. The extract was washed with water and dried with Na₂SO₄. Chloroform was evaporated, and aqueous 10 % NaOH (7 mL) was added. The mixture was stirred for 3 h at 40 °C and cooled to 0 °C. 2 N HCl was added, and the precipitate was filtered off and recrystallized from hexane.

Ethyl (perfluoro-2,5,8-trioxanon-1-yl)isoxazole-3-carboxylate (5c) was obtained by the general procedure, but extra chloroform (10 mL) was added. MS: $[M^+]$ 507, $[M^+-F]$ 488, $[M^+-OEt]$ 462.

References

1. V. P. Kislyi, A. L. Laikhter, B. I. Ugrak, and V. V. Semenov, Izv. Akad. Nauk, Ser. Khim., 1994, 103 [Russ.

Chem. Buil., 1994, 43, 70 (Engl. Transl.)].

- 2. T. Simmons and K. Kreuz, J. Org. Chem., 1968, 33, 836.
- 3. K. E. Harding, T. E. Marman, and Nam Do-Hyum, Tetrahedron, 1985, 44, 5605.
- 4. G. Zimmerman, W. Hass, H. Faash, H. Schmalle, and W. A. Konig, Lieb. Ann. Chem., 1985, 2165.
- M. V. Kashutina, S. L. Ioffe, V. M. Shitkin, N. O. Cherskaya, V. A. Korenevskii, and V. A. Tartakovskii, *Zh. Org. Khim.*, 1973, 43, 1715 [J. Org. Chem. USSR, 1973, 43 (Engl. Transl.)].
- V. Jager, H. Grund, and W. Schwab, Angew. Chem., 1979, 1, 91.
- 7. J. Philippe, Ger. Offen, 2,065, 430 (25 Oct. 1973).
- 8. A. Kozikowski, Acc. Chem. Res., 1984, 17, 410.
- 9. T. E. Rave and D. S. Breslow, J. Org. Chem., 1971, 36, 3813.
- T. Shimizu, Y. Hayashi, H. Hiroshi, and K. Teramura, Bull. Chem. Soc. Japan, 1986, 59, 2827.
- 11. T. Shimizu, Y. Hayashi, and K. Teramura, Bull. Chem. Soc. Japan, 1984, 57, 2531.
- 12. T. Shimizu, Y. Hayashi, and K. Teramura, Bull. Chem. Soc. Japan, 1985, 58, 2519.
- 13. S. Sifniades, J. Org. Chem., 1975, 40, 3562.

Received June 15, 1993